General Description

value from 20 to 200dB.

dvanced Analog Circuits Data Sheet

LOW VOLTAGE AUDIO POWER AMPLIFIER

The AZ386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20dB to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any

The inputs are ground referenced while the output automatically biases to one-half the supply voltage. The quiescent power drain is only 24mW when operating from a 6V supply, making the AZ386 ideal for battery operation.

Features

• Wide supply voltage range: 5V to 18V

AZ386

- Low quiescent current drain: 4.5mA
- Voltage gains from 20 to 200dB
- Battery operation
- Minimum external parts
- Low power dissipation
- Low distortion

Applications

- AM FM radio amplifier
- Cordless phone
- TV sound systems
- Portable tape player amplifier
- Intercoms
- Line drivers
- Ultrasonic drivers
- Small servo drivers
- Power converters

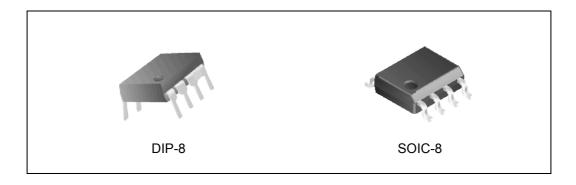


Figure 1. Package Types of AZ386

AZ386

Pin Configuration

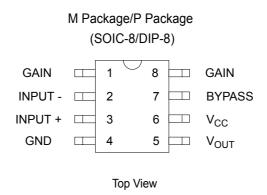


Figure 2. Pin Configuration of AZ386

Functional Block Diagram

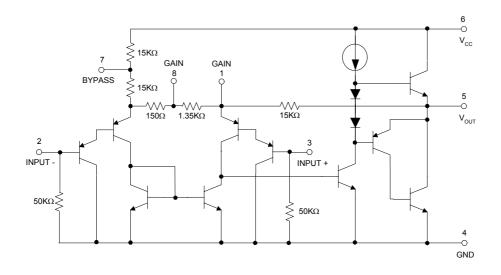


Figure 3. Functional Block Diagram of AZ386

Advanced Analog Circuits Data Sheet

LOW VOLTAGE AUDIO POWER AMPLIFIER

AZ386

Ordering Information

Package	Temperature Range	Part Number	Marking ID	Packing Type
SOIC-8	-40°C~85°C	AZ386M	386M	Tube/Tape/Reel
DIP-8		AZ386P	AZ386P	Tube

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Power Supply Voltage	V _{CC}	20		V
Package Dissipation (Note 2)	P_{D}	AZ386P	1.25	W
		AZ386M	0.73	W
Input Voltage	V _{IN}	-0.4		V
Operating Temperature Range	T _{OP}	-40 to 85		°C
Junction Temperature	T_{J}	150		°C
Storage Temperature Range	T_{STG}	-65 to 150		°C
Soldering Information		DIP-8 Soldering (10 sec.)	260	°C
		SOIC-8 (15 sec.)	215]
Thermal Resistance	θ_{JA}	DIP	107	°C/W
		SOIC	172	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: For operation in ambient temperatures (T_A) above 25°C, the device must be derated based on a 150°C maximum junction temperature and 1) a thermal resistance of 107°C/W junction to ambient for the dual-in-line package and 2) a thermal resistance of 170°C/W for the small outline package.

dvanced Analog Circuits Data Sheet

AZ386

Electrical Characteristics (Note 3)

Operating Conditions: $T_A=25^{\circ}C$ unless otherwise specified.

LOW VOLTAGE AUDIO POWER AMPLIFIER

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		5		18	V
Quiescent Current	I_Q	$V_{CC} = 6V, V_{IN} = 0$		4.5	8	mA
Output Power	P _{OUT}	$V_{CC} = 6V, R_L = 8\Omega, THD = 10\%$	250	325		mW
		$V_{CC} = 9V, R_L = 8\Omega, THD = 10\%$	500	700		mW
		$V_{CC} = 16V, R_L = 32\Omega, THD = 10\%$	700	1000		mW
Voltage Gain	G_{V}	$V_{CC} = 6V$, $f = 1KHz$		26		dB
		10μF from Pin 1 to 8		46		dB
Bandwidth	BW	$V_{CC} = 6V$, Pins 1 and 8 open		300		KHz
Total Harmonic Distortion	THD	$V_{CC} = 6V$, $R_L = 8\Omega$, $P_{OUT} = 125$ mW f=1KHz, Pins 1 and 8 open		0.2		%
Power Supply Rejection Ratio	PSRR	$V_{CC} = 6V$, f=1KHz, $C_{BYPASS} = 10\mu F$, Pins 1 and 8 open, Referred to Output		50		dB
Input Resistance	R _{IN}			50		ΚΩ
Input Bias Current	I_{BIAS}	$V_{CC} = 6V$, Pin 2 and 3 open		250		nA

Note 3: All voltages are measured with respect to the ground pin, unless otherwise specified.

AZ386

Typical Performance Characteristics

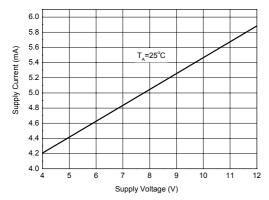


Figure 4. Quiescent Supply Current vs. Supply voltage

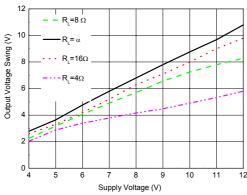


Figure 6. Peak-to-Peak Output Voltage Swing vs. Supply Voltage

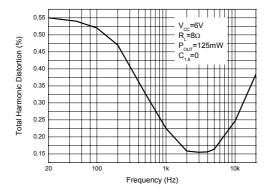


Figure 8. Distortion vs. Frequency

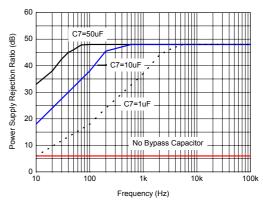


Figure 5. Power Supply Rejection Ratio (Referred to the Output) vs. Frequency

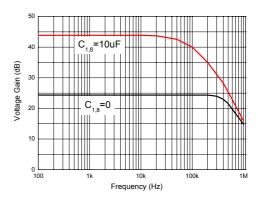


Figure 7. Voltage Gain vs. Frequency

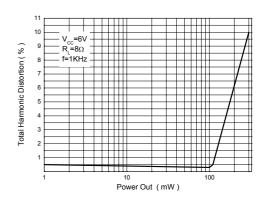


Figure 9. Distortion vs. Output Power

AZ386

Typical Performance Characteristics (Continued)

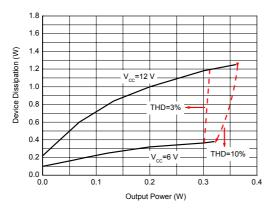


Figure 10. Device Dissipation vs. Output Power $(4\Omega \text{ Load})$

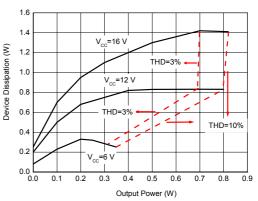


Figure 11. Device Dissipation vs. Output Power $(8\Omega \text{ Load})$

Typical Applications

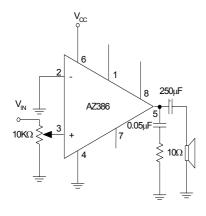


Figure 13. Amplifier With Gain = 20dB

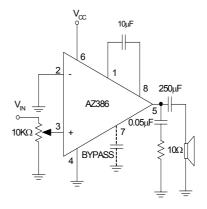


Figure 14. Amplifier With Gain = 200dB

AZ386

Typical Applications (Continued)

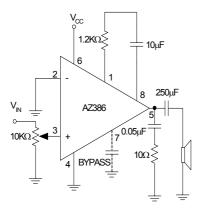


Figure 15. Amplifier With Gain = 50dB

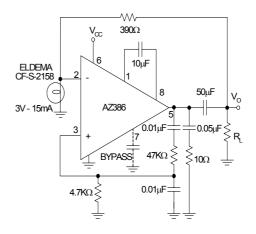


Figure 16. Low Distortion Power Wienbridge Oscillator

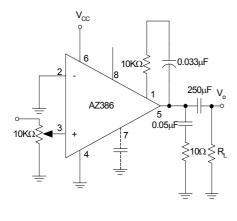
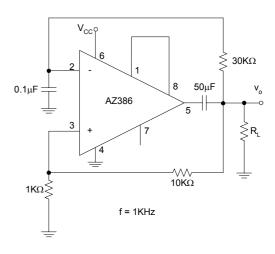
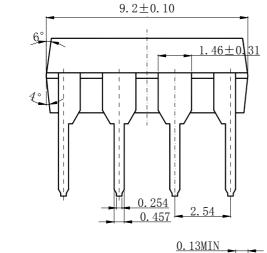
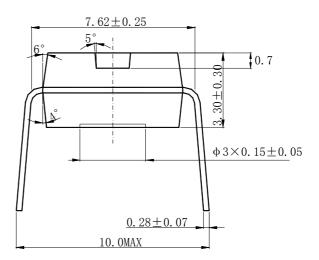
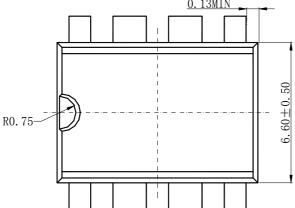


Figure 17. Amplifier With Bass Boost



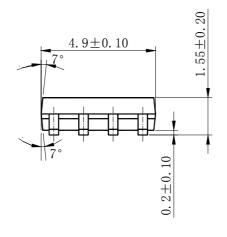

Figure 18. Square Wave Oscillator

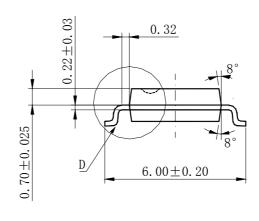


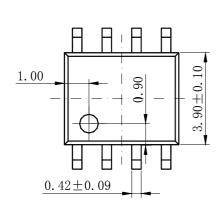

AZ386

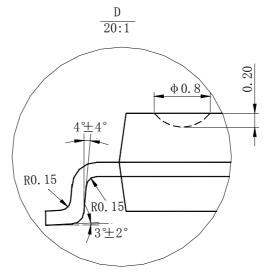
Mechanical Dimensions

DIP-8 Unit: mm






AZ386


Mechanical Dimensions (Continued)

SOIC-8 Unit: mm

http://www.aacmicro.com

USA: 860 Hillview Court, Suite 160, Milpitas, CA 95035, USA

Tel: 408-586 8809, Fax: 408-586 8801

China: 8th Floor, Zone B, 900 Yi Shan Road, Shanghai 200233, China

Tel: 86-21-6495-9539, Fax: 86-21-6485-9673

Taiwan: Room 2210, 22nd Fl, 333, Keelung Road, Sec.1, Taipei 110, Taiwan

Tel: 886-2-2758 6828, Fax: 886-2-2758 6892

IMPORTANT NOTICE

Advanced Analog Circuits Corporation reserves the right to make changes without further notice to any products or specifications herein. Advanced Analog Circuits does not assume any responsibility for use of any its products for any particular purpose, nor does Advanced Analog Circuits assume any liability arising out of the application or use of any its products or circuits. Advanced Analog Circuits Corporation does not convey any license under its patent rights or other rights nor the rights of others.