

November 2006

FAN7361, FAN7362 High-Side Gate Driver

Features

- Floating Channel Designed for Bootstrap Operation to +600V
- Typically 250mA/500mA Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- V_{CC} & V_{BS} Supply Range from 10V to 20V
- UVLO Function
- Output In-phase with Input
- 8-SOP

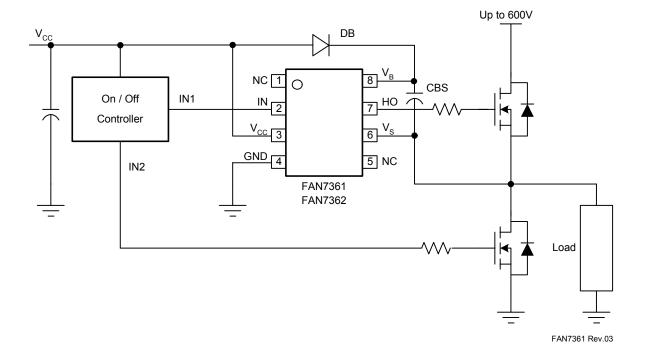
Applications

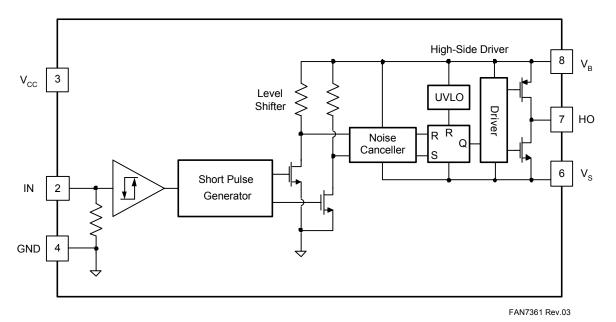
- PDP Scan Driver
- Motor Control
- SMPS
- Electronic Ballast

Description

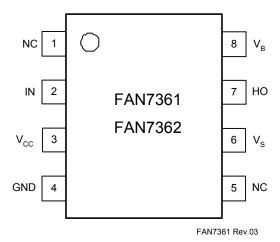
The FAN7361/FAN7362, a monolithic high-side gate driver IC, can drive MOSFETs and IGBTs that operate up to +600V. Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level shift circuit offers high-side gate driver operation up to V_S =-9.8V(typ.) for V_{BS} =15V.

The UVLO circuit prevents malfunction when V_{BS} is lower than the specified threshold voltage. Output drivers typically source/sink 250mA/500mA, respectively, which is suitable for fluorescent lamp ballast, PDP scan driver, motor control, and so on.


8-SOP


Ordering Information

Part Number	Package	Pb-Free	Operating Temperature Range	Packing Method
FAN7361M				TUBE
FAN7361MX	8-SOP	Yes	-40°C ~ 125°C	TAPE & REEL
FAN7362M	8-SOP			TUBE
FAN7362MX				TAPE & REEL


Typical Application Circuit

Internal Block Diagram

Pin Assignments

Pin Definitions

Pin	Name	Function/ Description	
1	N.C.	No Connection	
2	IN	Logic Input for High-Side Gate Driver Output	
3	V _{CC}	Supply Voltage	
4	GND	Logic Ground	
5	N.C.	No Connection	
6	V _S	High-Voltage Floating Supply Return	
7	НО	High-Side Driver Output	
8	V _B	High-Side Floating Supply	

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Offset Voltage	V _B -25	V _B +0.3	
V _B	High-Side Floating Supply Voltage	-0.3	625	
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{CC}	Logic Fixed Supply Voltage	-0.3	25	
V _{IN}	Logic Input Voltage	-0.3	V _{CC} +0.3	
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/nsec
P_{D}	Power Dissipation		0.625	W
Rthja	Thermal Resistance, Junction-to-Ambient		200	°C/W
T_J	Junction Temperature		150	°C
T _S	Storage Temperature		150	°C

Recommended Operating Conditions.

Symbol	Parameter	Min.	Max.	Unit
V_{B}	High-Side Floating Supply Voltage	V _S +10	V _S +20	
V _S	High-Side Floating Supply Offset Voltage	6-V _{CC}	600	
V _{HO}	High-Side Output Voltage	V _S	V_{B}	V
V _{IN}	Logic Input Voltage	GND	V _{CC}	
V _{CC}	Logic Supply Voltage	10	20	
T _A	Ambient Temperature	-40	125	°C

Electrical Characteristics

 $V_{BIAS}(V_{CC},\,V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The $V_{IN},\,V_{TH}$ and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and V_S is applicable to HO and LO.

Symbol	Characteristics	Test Condit	ion	Min.	Тур.	Max.	Unit
V _{BSUV} +	V _{BS} Supply Under-Voltage Positive Going Threshold	V _{IN} =0V	FAN7361	8.2	9.2	10.2	v
VBSUV'		VIN-OV	FAN7362	7.6	8.6	9.6	
V _{BSUV} -	V _{BS} Supply Under-Voltage Negative	V _{IN} =0V	FAN7361	7.4	8.6	9.2	
*BSUV	Going Threshold	VIN-OV	FAN7362	7.2	8.2	9.2	v
V _{BSHYS}	V _{BS} Supply Under-Current Lockout	V _{IN} =0V	FAN7361		0.5		
*BSHYS	Hysteresis	VIN-OV	FAN7362		0.4		
I _{LK}	Offset Supply Leakage Current	$V_B = V_S = H = 600V$				10	
I_{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V			50	80	μA
I _{QCC}	Quiescent V _{CC} Supply Current	V _{IN} =0V			30	75	μ/ τ
I _{PBS}	Operating V _{BS} Supply Current	C _L =1nF, f=10kHz			420	550	
V _{IH}	Logic "1" Input Voltage		FAN7361	3.6			
V IH	Logic 1 input voltage		FAN7362	2.9			
V _{IL}	ogic "0" Input Voltage		FAN7361			1.0	V
V IL	Logic o input voltage	FAN73	FAN7362			8.0	
V _{OH}	High Level Output Voltage, V_B - V_{HO}	vel Output Voltage, V _B -V _{HO} No load				0.1	
V _{OL}	Low Level Output Voltage, V _{HO}	No load				0.1	
I _{IN+}	Logic "1" Input Bias Current	V _{IN} =5V			50	90	μA
I _{IN-}	Logic "0" Input Bias Current V _{IN} =0V				1.0	2.0	μΛ
I _{O+}	Output High Short Circuit Pulse Current V_{HO} =0V, V_{IN} =5V, PW \leq 10 μ s		200	250		mA	
I _{O-}	Output Low Short Circuit Pulse Current	V_{HO} =15V, V_{IN} =0V,PW \leq 10 μ s		400	500		IIIA
Vs	Allowable Negative V _S P Voltage for IN Signal Propagation to HO				-9.8	-7	V

Dynamic Electrical Characteristics

 $V_{BIAS}(V_{CC}, V_{BS})$ =15.0V, V_{S} =COM, C_{L} =1000pF and T_{A} = 25°C, unless otherwise specified.

Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay	V _S =0V		120	200	
t _{off}	Turn-off Propagation Delay	V _S =0V or 600V		90	180	naaa
t _r	Turn-on Rise Time			70	160	nsec
t _f	Turn-off Fall Time			30	100	

Typical Characteristics

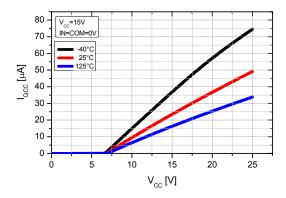


Figure 1. I_{QCC} vs. Supply Voltage

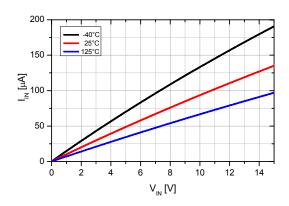


Figure 2. Input Bias Current vs. Input Voltage

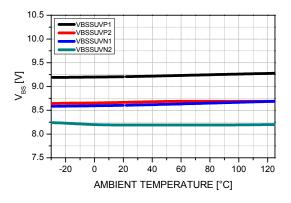


Figure 3. V_{BS} UVLO vs. Temp.

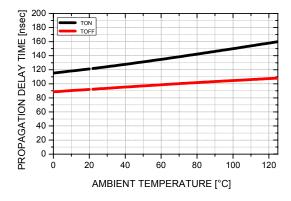


Figure 4. Turn On/Off Propagation Time vs. Temp.

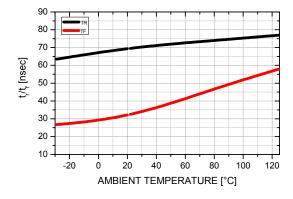


Figure 5. Rising/Falling Time vs. Temp.

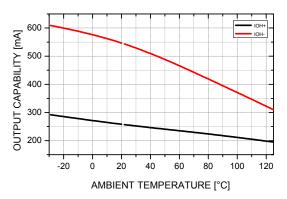


Figure 6. Output Sinking/Sourcing Current vs. Temp.

Switching Time Definition

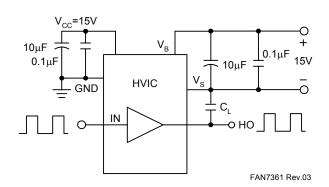


Figure 7. Switching Time Test Circuit

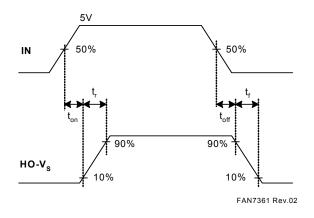


Figure 8. Input / Output Timing Diagram

Mechanical Dimensions

8-SOP

Dimensions are in millimeters (inches) unless otherwise noted.

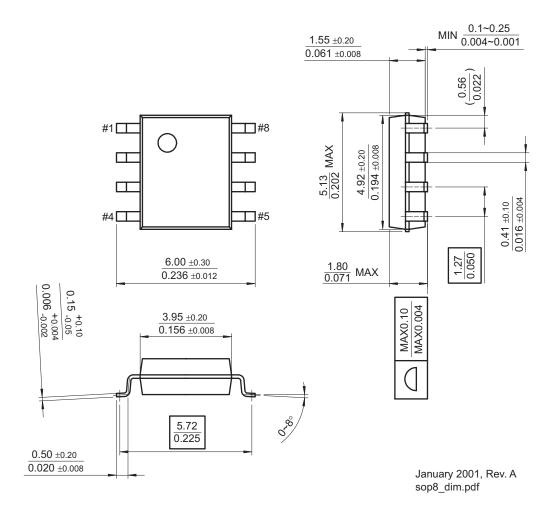


Figure 9. 8-Lead Small Outline Package (SOP)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	GlobalOptoisolator™	OCXPro™	μSerDes™	TinyBuck™
ActiveArray™	GTO™	OPTOLOGIC [®]	SILENT SWITCHER®	TinyLogic [®]
Bottomless™	HiSeC™	OPTOPLANAR™	SMART START™	TINYOPTO™
Build it Now™	I^2C^{TM}	PACMAN™	SPM™	TinyPower™
CoolFET™	i-Lo™	POP™	Stealth™	TinyPWM™
$CROSSVOLT^{TM}$	ImpliedDisconnect™	Power247™	SuperFET™	TruTranslation™
DOME™	IntelliMAX™	PowerEdge™	SuperSOT™-3	UHC®
EcoSPARK™	ISOPLANAR™	PowerSaver™	SuperSOT™-6	UltraFET [®]
E ² CMOS™	LittleFET™	PowerTrench [®]	SuperSOT™-8	UniFET™
EnSigna™	MICROCOUPLER™	QFET [®]	SyncFET™	VCX™
FACT [®]	MicroFET™	QS™	TCM™	Wire™
FACT Quiet Series™	MicroPak™	QT Optoelectronics™	TinyBoost™	
FAST [®]	MICROWIRE™	Quiet Series™		
FASTr™	MSX™	RapidConfigure™	Across the board. Aroun	d the world.™
FPS™	MSXPro™	RapidConnect™	Programmable Active D	roop™

ScalarPump™

DISCLAIMER

FRFET™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

 OCX^{TM}

A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

The Power Franchise®

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I21