

# **Silicon Tuning Diode**

These devices are designed in the popular Plastic Surface Mount Package for high volume requirements of FM Radio and TV tuning and AFC, general frequency control and tuning applications. They provide solid–state reliability in replacement of mechanical tuning methods.

- High Q
- Controlled and Uniform Tuning Ratio
- Standard Capacitance Tolerance 10%
- Complete Typical Design Curves
- Device Marking: 4G

| ORDERING INFORMATION |         |                    |  |  |
|----------------------|---------|--------------------|--|--|
| Device               | Package | Shipping           |  |  |
| MMVL2101T1           | SOD-323 | 3000 / Tape & Reel |  |  |

# **MMVL2101T1**

30 VOLTS
VOLTAGEVARIABLE
CAPACITANCEDIODE





#### **MAXIMUM RATINGS**

| Symbol         | Rating                     | Value | Unit |  |
|----------------|----------------------------|-------|------|--|
| V <sub>R</sub> | Continuous Reverse Voltage | 30    | Vdc  |  |
| l <sub>F</sub> | Peak Forward Current       | 200   | mAdc |  |

# **THERMALCHARACTERISTICS**

| Symbol           | Characteristic                         | Max  | Unit  |  |
|------------------|----------------------------------------|------|-------|--|
| P₀               | Total Device Dissipation FR-5 Board,*  | 200  | mW    |  |
|                  | $T_A = 25$ °C                          |      |       |  |
|                  | Derate above 25°C                      | 1.57 | mW/°C |  |
| R <sub>eJA</sub> | Thermal Resistance Junction to Ambient | 635  | °C/W  |  |
| $T_{J}, T_{stq}$ | Junction and Storage Temperature       | 150  | °C    |  |

<sup>\*</sup>FR-4 Minimum Pad

#### **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise noted)

| Characteristic                                     | Symbol         | Min | Тур | Max | Unit   |
|----------------------------------------------------|----------------|-----|-----|-----|--------|
| Reverse BreakdownVoltage                           | $V_{(BR)R}$    | 30  | _   | _   | Vdc    |
| $(I_R = 10 \mu\text{Adc})$                         |                |     |     |     |        |
| Reverse Voltage Leakage Current                    | I <sub>R</sub> | _   | _   | 0.1 | μAdc   |
| $(V_R = 25 \text{ Vdc}, T_A = 25^{\circ}\text{C})$ |                |     |     |     |        |
| Diode Capacitance Temperature Coefficient          | $TC_{C}$       | _   | 280 | _   | ppm/°C |
| $(V_R = 4.0 \text{ Vdc}, f = 1.0 \text{ MHz})$     |                |     |     |     |        |

|            | C <sub>t</sub> , Diode Capacitance<br>V <sub>R</sub> = 4.0 Vdc, f = 1.0 MHz |           | Q, Figure of Merit $V_R = 4.0 \text{ Vdc}$ $f = 50 \text{ MHz}$ | TR, Tuning Ratio $C_2/C_{30}$ $f = 1.0 \text{ MHz}$ |     |     |
|------------|-----------------------------------------------------------------------------|-----------|-----------------------------------------------------------------|-----------------------------------------------------|-----|-----|
| Device     | Min                                                                         | pF<br>Nom | Max                                                             | Min                                                 | Min | Max |
| MMVL2101T1 | 6.1                                                                         | 6.8       | 7.5450                                                          | 2.5                                                 | 2.7 | 3.2 |

#### PARAMETER TEST METHODS

#### 1. C<sub>T</sub>, DIODE CAPACITANCE

 $(C_T = C_C + C_J)$ .  $C_T$  is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

### 2. TR, TUNING RATIO

TR is the ratio of  $C_T$  measured at 2.0 Vdc divided by  $C_T$  measured at 30 Vdc.

# 3. Q, FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

 $Q = 2\pi fC/G$ 

(Boonton Electronics Model 33AS8 or equivalent). Use Lead Length <sup>•</sup> 1/16".

# 4. TCc, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

 $TC_{\text{C}}$  is guaranteed by comparing  $C_{\text{T}}$  at  $V_{\text{R}}=4.0$  Vdc, f = 1.0 MHz,  $T_{\text{A}}=-65^{\circ}\text{C}$  with  $C_{\text{T}}$  at  $V_{\text{R}}=4.0$  Vdc, f = 1.0 MHz,  $T_{\text{A}}=+85^{\circ}\text{C}$  in the following equation, which defines  $TC_{\text{C}}$ :

defines 
$$TC_c$$
:
$$TC_c = \left| \frac{C_T(+85^{\circ}C) - C_T(-65^{\circ}C)}{85+65} \right| \bullet \frac{10^6}{C_T(25^{\circ}C)}$$

Accuracy limited by measurement of  $C_T$  to  $\pm 0.1$  pF.



# MMVL2101T1

#### TYPICAL DEVICE CHARACTERISTICS

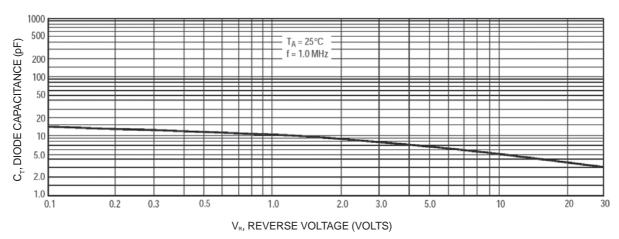



Figure 1. Diode Capacitance versus Reverse Voltage

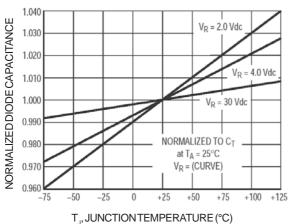



Figure 2. Normalized Diode Capacitance versus

Junction Temperature

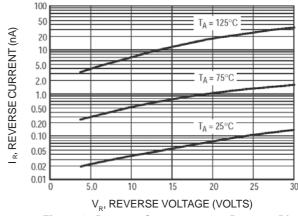



Figure 3. Reverse Current versus Reverse Bias Voltage

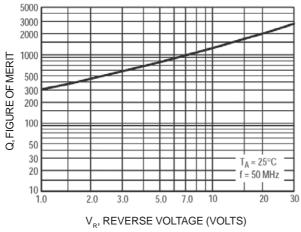



Figure 4. Figure of Merit versus Reverse Voltage

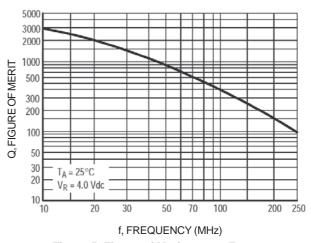



Figure 5. Figure of Merit versus Frequency