


GaAs INFRARED EMITTING DIODE

QED233/234

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN INCHES (mm).
 2. TOLERANCE IS ± .010 (.25)
 UNLESS OTHERWISE SPECIFIED.
 3. FLAT DENOTES CATHODE.

DESCRIPTION

The QED23X is a 940nm GaAs LED encapsulated in a clear plastic T-1¾ package.

FEATURES

- Tight production E₀ distribution.
- Steel lead frames for improved reliability in solder mounting.
- Good optical-to-mechanical alignment.
- Wide emission angle.
- Mechanical and wavelength matched to QSD12X series phototransistor.
- Plastic package color allows easy recognition from phototransistor.
- Medium and high irradiance level.

GaAs INFRARED EMITTING DIODE

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless Otherw	rise Specified)
Storage Temperature	40°C to + 100°C
Operating Temperature	40°C to + 100°C
Soldering:	
Lead Temperature (Iron)	240°C for 5 sec. (2,3,4,5)
Lead Temperature (Flow)	
Continuous Forward Current	
Reverse Voltage	
Power Dissipation	200 mW ⁽¹⁾

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless Otherwise Specified) (All measurements made under pulse conditions.)							
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
Forward Voltage	$V_{\scriptscriptstyle F}$	_		1.50	٧	$I_F = 20 \text{ mA}$	
Reverse Leakage Current	l _e	_		10	μΑ	V _R = 5.0 V	
Peak Emission Wavelength	λ _P	_	940	_	nm	I _F = 20 mA	
Emission Angle at ½ Power	θ	_	±20	_	Degrees		
Radiant Incidence QED233	E₀	0.05		0.25	mW/10° Cone	$I_F = 20 \text{ mA}^{(6.7)}$	
Radiant Incidence QED234	E₀	0.13		_	mW/10° Cone	$I_F = 20 \text{ mA}^{(6.7)}$	

NOTES

- 1. Derate power dissipation linearly 2.67 mW/°C above 25°C.
- 2. RMA flux is recommended.
- 3. Methanol or Isopropyl alcohols are recommended as cleaning agents.
- 4. Soldering iron tip 1/16" (1.6 mm) minimum from housing.
- 5. As long as leads are not under any stress or spring tension.
- 6. Measurement is taken at the end of a single 100 μ sec pulse.
- 7. E_o is a measurement of the average apertured radiant energy incident upon a sensing area 0.444" (11.3 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 2.54" (64.4 mm) from the measurement surface. E_o is not necessarily uniform within the measurement area.