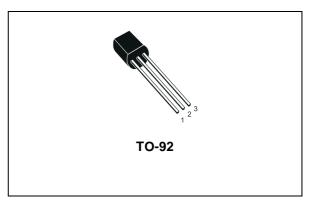


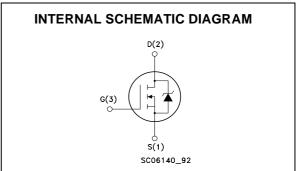
STQ1HNC60

N-CHANNEL 600V - 7Ω - 0.4A TO-92 PowerMesh™II MOSFET

PRELIMINARY DATA

TYPE	V _{DSS} R _{DS(on)}		I _D
STQ1HNC60	600 V	< 8 Ω	0.4 A


- TYPICAL $R_{DS}(on) = 7 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- NEW HIGH VOLTAGE BENCHMARK
- GATE CHARGE MINIMIZED


DESCRIPTION

Using the latest high voltage MESH OVERLAYTMII process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest RDS(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

- SWITCH MODE LOW POWER SUPPLES (SMPS)
- CFL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	600	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 k Ω)	600	V
V _{GS}	Gate- source Voltage	± 30	V
I _D	Drain Current (continuos) at T _C = 25°C	0.4	Α
I _D	Drain Current (continuos) at T _C = 100°C	0.25	Α
I _{DM} (●)	Drain Current (pulsed)	1.6	Α
Ртот	Total Dissipation at T _C = 25°C	3.5	W
	Derating Factor	0.028	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	3.5	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

 (\bullet) Pulse width limited by safe operating area

 $(1)I_{SD} \leq 0.4 \ A, \ di/dt \leq 100 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_j \leq T_{JMAX}.$

THERMAL DATA

Rthj-cas	e Thermal Resistance Junction-case	35.7	°C/W
Rthj-am	b Thermal Resistance Junction-ambient Max	60	°C/W
	(Surface Mounted)		°C
T _I	Maximum Lead Temperature For Soldering Purpose	300	

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	0.4	А
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	100	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V _{DS} = Max Rating, T _C = 125 °C			50	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 0.4 A		7	8	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
9fs	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 0.4 \text{ A}$		1.25		S
C _{iss}	Input Capacitance	$V_{DS} = 25V$, $f = 1$ MHz, $V_{GS} = 0$		160		pF
Coss	Output Capacitance			26		pF
C _{rss}	Reverse Transfer Capacitance			3.8		pF

2/6

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 300V, I _D = 0.7 A		8		ns
t _r	Rise Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 3)		8		ns
Qg	Total Gate Charge	$V_{DD} = 480V, I_D = 1.4 A,$		8.5	11.5	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10V$, $R_G = 4.7\Omega$		2.8		nC
Q_{gd}	Gate-Drain Charge			2.8		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 480 \text{ V}, I_D = 1.4 \text{ A},$		25		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		9		ns
t _c	Cross-over Time	(ooo toot on out, 1 igure o)		34		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				0.4	Α
I _{SDM} (2)	Source-drain Current (pulsed)				1.6	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 0.4 A, V _{GS} = 0			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 1.4 \text{ A}, \text{ di/dt} = 100 \text{A/} \mu \text{s},$		500		ns
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 100V$, $T_j = 150$ °C (see test circuit, Figure 5)		950		μС
I _{RRM}	Reverse Recovery Current	(ode tool official, rigure o)		3.8		Α

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

Fig. 1: Unclamped Inductive Load Test Circuit

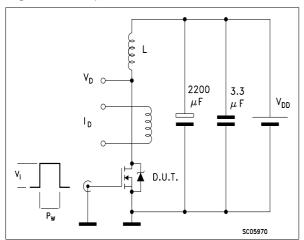


Fig. 3: Switching Times Test Circuit For Resistive Load

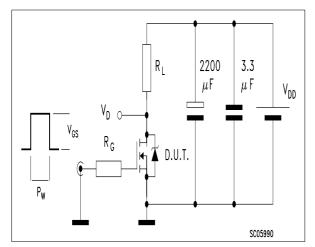


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

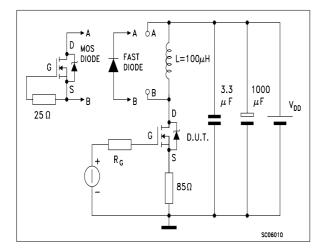
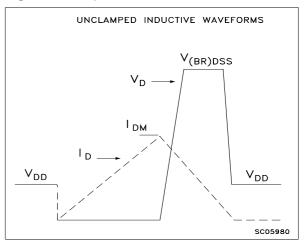
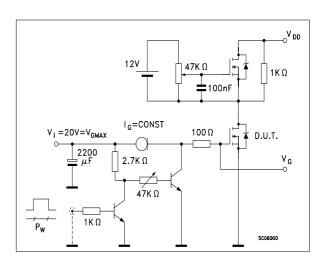
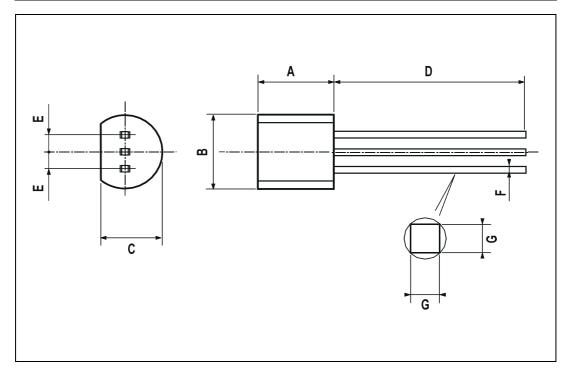


Fig. 2: Unclamped Inductive Waveform


Fig. 4: Gate Charge test Circuit

4/6

TO-92 MECHANICAL DATA

DIM.		mm inch		mm		inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	4.58		5.33	0.180		0.210		
В	4.45		5.2	0.175		0.204		
С	3.2		4.2	0.126		0.165		
D	12.7			0.500				
Е		1.27			0.050			
F	0.4		0.51	0.016		0.020		
G	0.35			0.14				

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com
