NPN Silicon RF Transistor*

- For low noise, high-gain amplifiers up to 2 GHz
- For linear broadband amplifiers
- $f_{\mathrm{\top}}=8 \mathrm{GHz}, F=1 \mathrm{~dB}$ at 900 MHz
* Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration			Package
BFR193L3	RC	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	TSLP-3-1

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	12	V
Collector-emitter voltage	V_{CES}	20	
Collector-base voltage	V_{CBO}	20	
Emitter-base voltage	V_{EBO}	2	
Collector current	I_{C}	80	mA
Base current	I_{B}	10	
Total power dissipation ${ }^{1)}$	$P_{\text {tot }}$	580	mW
$T_{\mathrm{S}} \leq 95^{\circ} \mathrm{C}$			
Junction temperature	T_{j}	${ }^{\circ} \mathrm{C}$	
Ambient temperature	T_{A}	150	$-55 \ldots 150$
Storage temperature	$T_{\text {Sta }}$	$-55 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{2}$)	$R_{\text {thJs }}$	tbd	K/W

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{\text {(BR)CEO }}$ | 12 | - | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 100 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=20 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=10 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 1 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=1 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 70 | 100 | 140 | - |
| DC current gain- | | | | | |
| $I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}$, pulse measured | | | | | |

BFR193L3

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, f=500 \mathrm{MHz}$	f_{\top}	6	8	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.63	0.9	pF
Collector emitter capacitance $V_{\mathrm{CE}}=10 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.22	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0 \text {, }$ collector grounded	$C_{\text {eb }}$	-	2.25	-	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & t=900 \mathrm{MHz} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & t=1.8 \mathrm{GHz} \end{aligned}$	F	-	1 1.6	-	dB
Power gain, maximum available ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }} \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, f=900 \mathrm{MHz} \\ & I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }} \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, f=1.8 \mathrm{GHz} \end{aligned}$	$G_{m a}$	- -	$\begin{gathered} 19 \\ 12.5 \end{gathered}$	-	
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=900 \mathrm{MHz} \\ & I_{\mathrm{C}}=30 \mathrm{~mA}, V_{\mathrm{CE}}=8 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	- -	14.5 9	-	dB

$$
{ }^{1} G_{\mathrm{ma}}=\left|S_{21} / S_{12}\right|\left(\mathrm{k}-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right)
$$

BFR193L3

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transitor Chip Data:

$\mathrm{IS}=$	0.2738	fA	$\mathrm{BF}=$	125	-	$\mathrm{NF}=$	0.95341	-
$\mathrm{VAF}=$	24	V	$\mathrm{IKF}=$	0.26949	A	$\mathrm{ISE}=$	10.627	fA
$\mathrm{NE}=$	1.935	-	$\mathrm{BR}=$	14.267	-	$\mathrm{NR}=$	1.4289	-
$\mathrm{VAR}=$	3.8742	V	$\mathrm{IKR}=$	0.037925	A	$\mathrm{ISC}=$	0.037409	fA
$\mathrm{NC}=$	0.94371	-	$\mathrm{RB}=$	1.8368	Ω	$\mathrm{IRB}=$	0.91763	mA
$\mathrm{RBM}=$	1	Ω	$\mathrm{RE}=$	0.76534	-	$\mathrm{RC}=$	0.11938	Ω
$\mathrm{CJE}=$	1.1824	fF	$\mathrm{VJE}=$	0.70276	V	$\mathrm{MJE}=$	0.48654	-
$\mathrm{TF}=$	18.828	ps	$\mathrm{XTF}=$	0.69477	-	$\mathrm{VTF}=$	0.8	V
$\mathrm{ITF}=$	0.96893	mA	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	935.03	fF
$\mathrm{VJC}=$	1.1828	V	$\mathrm{MJC}=$	0.30002	-	$\mathrm{XCJC}=$	0.053563	-
$\mathrm{TR}=$	1.0037	ns	$\mathrm{CJS}=$	0	fF	$\mathrm{VJS}=$	0.75	V
$\mathrm{MJS}=$	0	-	$\mathrm{NK}=$	0	-	$\mathrm{EG}=$	1.11	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.72063		TNOM	300	K

All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by: Institut für Mobil- und Satellitentechnik (IMST)

Package Equivalent Circuit:

For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes

Package Outline
Top view

1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"

\square Stencil apertures

Marking Layout

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=15.000$ Pieces/Reel

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb
 ${ }^{2}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

