High Voltage Dual EL Lamp Driver

Features

- Independent input control for lamp selection
- Split supply capability
- Patented output timing
- One miniature inductor to power both lamps
- Low shutdown current
- Wide input voltage range 2.0 V to 5.8 V
- Output voltage regulation
- No SCR output
- Available in small packages (10-lead MSOP and 10-lead DFN/MLP)

Applications

- Mobile cellular phones, dual display
- Keypad and LCD backlighting
- Portable instrumentation
- Dual segment lamps
- Hand held wireless communication devices

General Description

The Supertex HV841 is a high voltage driver designed for driving two EL lamps with a combined area of 3.5 square inches. The input supply voltage range is from 2.0 V to 5.8 V . The device is designed to reduce the amount of audible noise emitted by the lamp. This device uses a single inductor and minimum number of passive components to drive two EL lamps. The nominal regulated output voltage of $\pm 100 \mathrm{~V}$ is applied to the EL lamps. The chip can be enabled/ disabled by connecting C_{1} and C_{2} (pins 1 and 4) to $\mathrm{V}_{\mathrm{EN}} /$ Ground.
The HV841 has an internal oscillator, a switching MOSFET, and two high voltage EL lamp drivers. An external resistor connected between the $R_{\text {Sw-osc }}$ and the voltage supply pin $V_{D D}$ sets the frequency for the switching MOSFET. The EL lamp driver frequency is set by dividing the MOSFET switching frequency by 128. An external inductor is connected between the L_{x} and the $V_{D D}$ pins. Depending on the $E L$ lamp size, a 1.0 to $10.0 \mathrm{nF}, 200 \mathrm{~V}$ capacitor is connected between C_{s} and Ground. The two EL lamps are connected between $E L_{1}$ to Com and $E L_{2}$ to Com.

The switching MOSFET charges the external inductor and discharges it into the capacitor at C_{S}. The voltage at C_{S} increases. Once the voltage at C_{s} reaches a nominal value of 100 V , the switching MOSFET is turned off to conserve power. The outputs $E L_{1}$ to Com and $E L_{2}$ to Com are configured as H bridges and switch in opposite states to achieve 200V across the EL lamp.

Typical Application Circuit

Ordering Information

DEVICE	Package Options	
	DFN/MLP-101	MSOP-10²
HV841	HV841K6-G	HV841MG-G

1 Product supplied on 3000 piece carrier tape reels only 2 Product supplied on 2500 piece carrier tape reels only
-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings*

Supply Voltage, V_{DD}	-0.5 to +7.5 V
Supply Voltage, V_{CS}	-0.5 to +120 V
Operating Ambient Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	-65° to $+150^{\circ} \mathrm{C}$

*Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground, Gnd

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Supply Voltage	2.0		5.8	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40		85	${ }^{\circ} \mathrm{C}$	

Function Table

\mathbf{C}_{1}	C $_{2}$	EL_{1}	EL_{2}	Com	IC
0	0	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	$\mathrm{Hi} Z$	OFF
0	1	$\mathrm{Hi} Z$	ON	ON	ON
1	0	ON	$\mathrm{Hi} Z$	ON	ON
1	1	ON	ON	ON	ON

Pin Configuration

[^0]Electrical Characteristics
DC Characteristics (Over operating conditions unless otherwise specified, $T_{A}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	On-resistance of switching transistor	-	-	6.0	Ω	$I=100 \mathrm{~mA}$
V_{DD}	Input Voltage Range	2.0	-	5.8	V	---
V_{cs}	Output regulation voltage	90	100	110	V	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.8 V
$\mathrm{V}_{\text {DIFF }}$	Differential output peak to peak voltage ($E L_{1}$ to Com, $E L_{2}$ to Com)	180	200	220	V	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.8 V
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current	-	-	150	nA	$\mathrm{C}_{1}=\mathrm{C}_{2}=0$ to 0.1 V
		-	-	500	nA	$\mathrm{C}_{1}=\mathrm{C}_{2}=0.1$ to 0.3 V
I_{DD}	Input current into the $V_{D D}$ pin	-		190	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.8 V
$\mathrm{f}_{\text {EL }}$	$\mathrm{V}_{\text {DIFF }}$ output drive frequency	215	244	273	Hz	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$. See Figure 1.
$\mathrm{f}_{\text {sw }}$	Switching transistor frequency	27.5	31.2	34.9	kHz	$\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}$. See Figure 1.
D	Switching Transistor Duty cycle	85	-	89	\%	---
$\mathrm{I}_{\text {LI }}$	Input logic low current going into the control pin	-	-	-0.6	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.8 V
I_{HH}	Input logic low current going into the control pin	-	-	0.6	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.8 V
$V_{\text {EN-L }}$	Logic input low voltage	0	-	0.3	V	---
$\mathrm{V}_{\text {EN-H }}$	Logic input high voltage	1.5	-	$V_{D D}$	V	---

Thermal Resistance

(Mounted on FR4 board, $25 \mathrm{~mm} \times 25 \mathrm{~mm} \times 1.57 \mathrm{~mm}$)

Package	$\theta_{\text {JA }}$
MSOP-10	$400^{\circ} \mathrm{C} / \mathrm{W}$
DFN/MLP-10	$60^{\circ} \mathrm{C} / \mathrm{W}$

Functional Block Diagram

Figure 1: Test Circuit

[^1]
Pin Configuration and Description

Pin \#	Name	Function
1	C_{1}	Enable input signal for EL lamp 1. Logic high will turn ON the EL lamp 1 and logic low will turn it OFF. Refer to the Function Table.
2	$V_{\text {D }}$	Input supply voltage pin.
3	$\mathrm{R}_{\text {Sw-osc }}$	External resistor connection to set both the switching MOSFET frequency and EL Lamp frequency. The external resistor should be connected between this pin and the V_{DD} pin. The EL lamp frequency is switching frequency divided by 128. The switching frequency increases as the value of $R_{\text {sw-osc }}$ decreases. A $470 \mathrm{k} \Omega$ resistor will provide a switching frequency of 31.2 kHz , and an EL lamp frequency of 244 Hz . To change the frequency to $\mathrm{f}_{\text {sw1 }}$, the value of the resistor $R_{\text {sw-osc1 }}$ can be determined as $R_{\text {sw-osc } 1}=(470 \mathrm{k} \times 31.2 \mathrm{k}) / \mathrm{f}_{\mathrm{sW} 1}$.
4	C_{2}	Enable input signal for EL lamp 2. Logic high will turn ON the EL lamp 2 and logic low will turn it OFF. Refer to the Function Table.
5	GND	IC Ground Pin.
6	L_{x}	External inductor connection to boost the low input voltage using inductive flyback. Connect an inductor between V_{IN} and this pin. Also connect a high voltage fast recovery diode between this pin and the C_{S} pin. The anode of the diode needs to be connected to the L_{x} pin and the cathode to the C_{s} pin. In general, small valued inductors, which can handle more current, are more suitable for driving large sized lamps. As the inductor value decreases, the switching frequency should be increased to avoid saturation. When the switching MOSFET is turned ON, the inductor is being charged. When the MOSFET is turned OFF, the energy stored in the inductor is transferred to the high voltage capacitor connected at the C_{s} pin.
7	$\mathrm{C}_{\text {s }}$	Connect a 200 V capacitor between this pin and GND. This capacitor stores the energy transferred from the inductor.
8	Com	Common connection for both EL lamps. Connect one end of both the lamps to this pin.
9	EL_{2}	EL lamp 2 connection. For optimum performance, the smaller of the two lamps should be connected to this pin.
10	$E L_{1}$	EL lamp 1 connection. For optimum performance, the larger of the two lamps should be connected to this pin.

Split Supply Configuration

The HV841 can be used in applications operating from a battery where a regulated voltage is available. This is shown in Figure 2. The regulated voltage can be used to drive the internal logic
of HV841. The amount of current used to drive the internal logic is less than $190 \mu \mathrm{~A}$. Therefore, the regulated voltage could easily provide the current without being loaded down.

Figure 2: Split Supply Configuration

Audible Noise Reduction

This section describes a method (patented) developed at Supertex to reduce the audible noise emitted by the EL lamps used in application sensitive to audible noise. The waveform takes the shape of approximately 2RC time constants for rising and 2RC time constants for falling, where C is the capacitance of the EL lamp, and R is the external resistor, $R_{\text {SER }}$ connected in series with the $E L$ lamp.

Figure 3 shows a general circuit schematic that uses the series resistors, $\mathrm{R}_{\text {SER } 1}$ and $\mathrm{R}_{\text {SER2 } 2}$, for each of the EL lamps. $\mathrm{R}_{\text {SER } 1}$ and $R_{\text {SER } 2}$ are connected in series with the EL lamp. The audible noise can be set a desirable level by selecting the resistances for $R_{\text {SER } 1}$ and $R_{\text {SER2 }}$. It is important to note that addition of these external resistors will reduce the voltage across the EL lamp, and hence the brightness of the EL lamp.

Figure 3: Typical Application Circuit For Audible Noise Reduction

10-Lead DFN/MLP Package Outline (K6)

10-Lead MSOP Package Outline (MG)

 product specifications, refer to the Supertex website: http//www.supertex.com.

[^0]: Note: Packages are not drawn to scale.

[^1]: 1 or any (equivalent or better) $>120 \mathrm{~V}$, fast recovery diode
 Murata LQH4CN331K04
 3 The bigger sized lamp should be tied to EL1 and the smaller sized lamp to EL2 terminals (pins 10 and 9 respectively)

