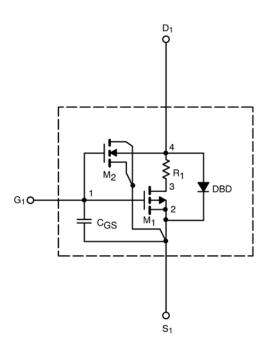


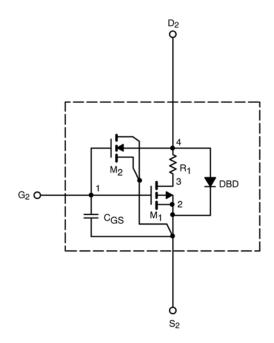
SPICE Device Model Si5941DU Vishay Siliconix

Dual P-Channel 8-V (D-S) MOSFET

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics


DESCRIPTION

The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

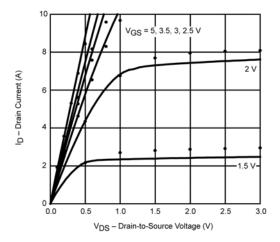
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

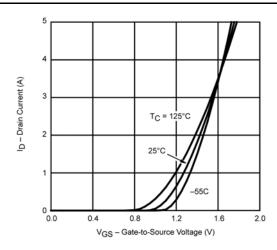
SUBCIRCUIT MODEL SCHEMATIC

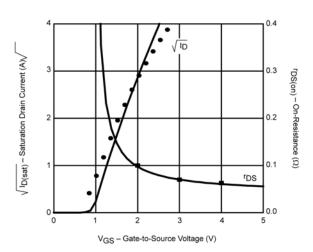
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

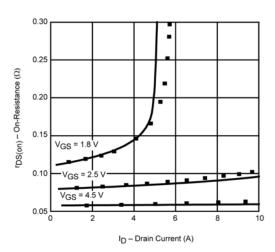
SPICE Device Model Si5941DU

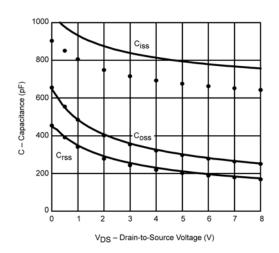
Vishay Siliconix

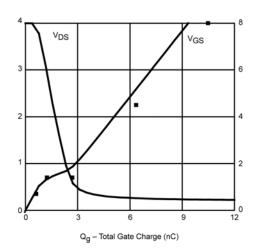

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERW	ISE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static	•				
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	0.80		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \le -5V$, $V_{GS} = -4.5V$	54		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	$V_{GS} = -4.5V$, $I_D = -3.6$ A	0.058	0.055	Ω
		$V_{GS} = -2.5V$, $I_D = -2.9$ A	0.083	0.086	
		$V_{GS} = -1.8V, I_D = -0.66 A$	0.114	0.125	
Forward Transconductance ^a	g _{fs}	$V_{DS} = -4V, I_{D} = -3.6 A$	9	8	S
Diode Forward Voltage ^a	V _{SD}	$I_{S} = -1A, V_{GS} = 0 V$	-0.80	-0.80	V
Dynamic ^b			-		
Input Capacitance	C _{iss}	$V_{DS} = -4 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	589	700	pF
Output Capacitance	C _{oss}		103	325	
Reverse Transfer Capacitance	C _{rss}		57	220	
Total Gate Charge	Q_g	$V_{DS} = -4 \text{ V}, V_{GS} = -8 \text{ V}, I_D = -5 \text{ A}$	9.5	11	nC
		$V_{DS} = -4 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -5 \text{ A}$	5.7	6.5	
Gate-Source Charge	Q_{gs}		1.3	1.3	
Gate-Drain Charge	Q_{gd}		1.5	1.5	


a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si5941DU Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data