PECL* to TTL Translator

(+5 Vdc Power Supply Only)

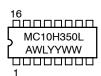
Description

The MC10H350 is a member of the 10H family of high performance ECL logic. It consists of 4 translators with differential inputs and TTL outputs. The 3-state outputs can be disabled by applying a HIGH TTL logic level on the common OE input.

The MC10H350 is designed to be used primarily in systems incorporating both ECL and TTL logic operating off a common power supply. The separate V_{CC} power pins are not connected internally and thus isolate the noisy TTL V_{CC} runs from the relatively quiet ECL V_{CC} runs on the printed circuit board. The differential inputs allow the MC10H350 to be used as an inverting or noninverting translator, or a differential line receiver. The MC10H350 can also drive CMOS with the addition of a pullup resistor.

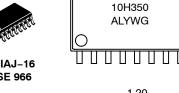
Features

- Propagation Delay, 3.5 ns Typical
- MECL 10KTM Compatible
- Pb-Free Packages are Available*


ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*


MC10H350P **AWLYYWWG**

PDIP-16 P SUFFIX **CASE 648**

SOEIAJ-16 **CASE 966**

PLLC-20 **FN SUFFIX CASE 775**

= Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week = Pb-Free Package

Application Note AND8002/D.

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

^{*}For additional marking information, refer to

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ORDERING INFORMATION

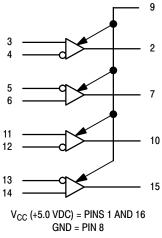
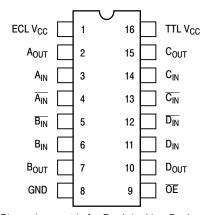



Figure 1. Logic Diagram

Pin assignment is for Dual-in-Line Package.

Figure 2. Dip Pin Assignment

Table 1. MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
V _{CC}	Power Supply (V _{EE} = GND)	7.0	Vdc
T _A	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range - Plastic - Ceramic	-55 to +150 -55 to +165	°C °C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

Table 2. ELECTRICAL CHARACTERISTICS (V_{CC} = 5.0 V \pm 5%) (Note 1)

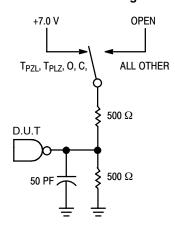
			T _A = 0°C	C to 75°C	
Symbol	Characteristic		Min	Max	Unit
I _{CC}	Power Supply Current	TTL	-	20	mA
		ECL	-	12	
I _{IH}	Input Current High	Pin 9	-	20	μΑ
I _{INH}		Others	-	50	
I_{IL}	Input Current Low	Pin 9	-	-0.6	mA
I _{INL}		Others	-	50	μΑ
V _{IH}	Input Voltage High	Pin 9	2.0	-	Vdc
V _{IL}	Input Voltage Low	Pin 9	-	0.8	Vdc
V _{DIFF}	Differential Input Voltage (Note 1)		350	-	mV
	Pins 3–6, 11–14 (1)				
V_{CM}	Voltage Common Mode		2.8	V_{CC}	Vdc
	Pins 3–6, 11–14				
V _{OH}	Output Voltage High		2.7	_	Vdc
	I _{OH} = 3.0 mA				
V _{OL}	Output Voltage Low		-	0.5	Vdc
	I _{OL} = 20 mA				
Ios	Short Circuit Current		-60	-150	mA
	V _{OUT} = 0 V				
I _{OZH}	Output Disable Current High		-	50	μΑ
	V _{OUT} = 2.7 V				
I _{OZL}	Output Disable Current Low		-	-50	μΑ
	V _{OUT} = 0.5 V				

^{*}Positive Emitter Coupled Logic

Table 3. AC PARAMETERS ($C_L = 50 \text{ pF}$) ($V_{CC} = 5.0 \pm 5\%$) ($T_A = 0^{\circ}\text{C}$ to 75°C)

		T _A = 0°C to 75°C		
Symbol	Characteristic	Min	Max	Unit
t _{pd}	Propagation Delay Data (50% to 1.5 V)	1.5	5.0	ns
t _r	Rise Time (Note 4)	0.3	1.6	ns
t _f	Fall Time (Note 4)	0.3	1.6	ns
t _{pdLZ} t _{pdHZ}	Output Disable Time	2.0 2.0	6.0 6.0	ns
t _{pdZL} t _{pdZH}	Output Enable Time	2.0 2.0	8.0 8.0	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.


4. 1.0 V to 2.0 V w/50 pF into 500 Ω .

^{1.} Common mode input voltage to pins 3-4, 5-6, 11-12, 13-14 must be between the values of 2.8 V and 5.0 V. This common mode input voltage range includes the differential input swing.

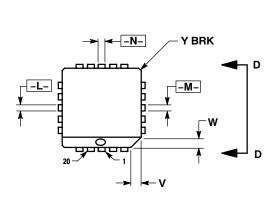
For single-ended use, apply 3.75 V (V_{BB}) to either input depending on output polarity required. Signal level range to other input is 3.3 V to 4.2 V.
 Any unused gates should have the inverting inputs tied to V_{CC} and the noninverting inputs tied to ground to prevent output glitching.

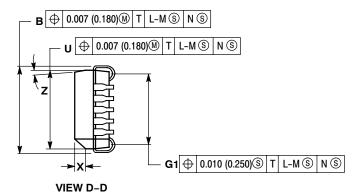
Figure 3. 3-State Switching Waveforms

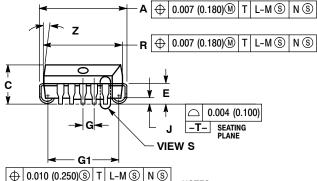
*INCLUDES JIG AND PROBE CAPACITANCE

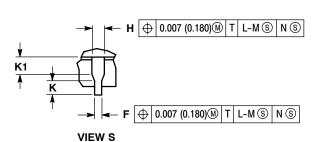
Application Note: Pin 9 is an \overline{OE} and the MC10H350 is disabled when \overline{OE} is at V_{IH} or higher.

Figure 4. Test Load

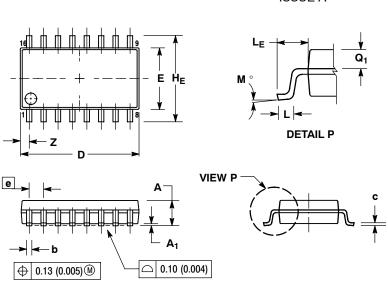

ORDERING INFORMATION


Device	Package	Shipping [†]	
MC10H350FN	PLLC-20	46 Units / Rail	
MC10H350FNG	PLLC-20 (Pb-Free)	46 Units / Rail	
MC10H350FNR2	PLLC-20	500 / Tape & Reel	
MC10H350FNR2G	PLLC-20 (Pb-Free)	500 / Tape & Reel	
MC10H350L	CDIP-16	25 Unit / Rail	
MC10H350M	SOEIAJ-16	50 Unit / Rail	
MC10H350MG	SOEIAJ-16 (Pb-Free)	50 Unit / Rail	
MC10H350MEL	SOEIAJ-16	2000 / Tape & Reel	
MC10H350MELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel	
MC10H350P	PDIP-16	25 Unit / Rail	
MC10H350PG	PDIP-16 (Pb-Free)	25 Unit / Rail	


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


PACKAGE DIMENSIONS

20 LEAD PLLC CASE 775-02 **ISSUE E**

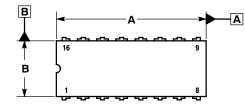

- NOTES:
 1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. DIMENSIONS IN INCHES.
 3. DATUMS -L., -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.

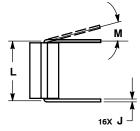
- PARTING LINE.
 4. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM —T-, SEATING PLANE.
 5. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 6. DIMENSIONS IN THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- PLASTIC BODY.
 7. DIMENSION H DOES NOT INCLUDE DAMBAR DIMIENSION H DUES NOT INCLUDE DAMBAR
 PROTRUSION OR INTRUSION. THE DAMBAR
 PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION
 TO BE GREATER THAN 0.037 (0.940). THE DAMBAR
 INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO
 BE SMALLER THAN 0.025 (0.635).

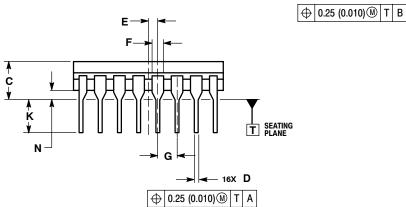
	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.385	0.395	9.78	10.03	
В	0.385	0.395	9.78	10.03	
С	0.165	0.180	4.20	4.57	
Е	0.090	0.110	2.29	2.79	
F	0.013	0.019	0.33	0.48	
G	0.050	BSC	1.27	BSC	
Н	0.026	0.032	0.66	0.81	
J	0.020		0.51		
K	0.025		0.64		
R	0.350	0.356	8.89	9.04	
c	0.350	0.356	8.89	9.04	
٧	0.042	0.048	1.07	1.21	
W	0.042	0.048	1.07	1.21	
Х	0.042	0.056	1.07	1.42	
Υ		0.020		0.50	
Z	2°	10°	2°	10 °	
G1	0.310	0.330	7.88	8.38	
K1	0.040		1.02		

PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966-01 **ISSUE A**

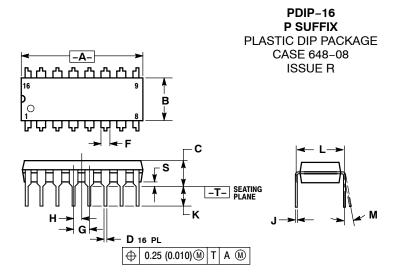

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI


- NOTES:


 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS DI AND E DO NOT INCLUDE MOLD
 FLASH OR PROTRUSIONS AND ARE MEASURED
 AT THE PARTING LINE. MOLD FLASH OR
 PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
 PER SIDE.
 4. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 5. THE LEAD WIDTH DIMENSION (b) DOES NOT
 INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD
 TO BE 0.46 (0.018).

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

CDIP-16 **L SUFFIX** CERAMIC DIP PACKAGE CASE 620A-01 **ISSUE O**


NOTES:

- DIMENSIONING AND TOLERANCING PER

- DIMENSIONING AND TOLEHARICING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC BODY.
 THIS DRAWING REPLACES OBSOLETE
- CASE OUTLINE 620-10.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.750	0.785	19.05	19.93
В	0.240	0.295	6.10	7.49
C		0.200		5.08
D	0.015	0.020	0.39	0.50
Е	0.050	BSC	1.27 BSC	
F	0.055	0.065	1.40	1.65
G	0.100	BSC	2.54 BSC	
Н	0.008	0.015	0.21	0.38
K	0.125	0.170	3.18	4.31
L	0.300 BSC		7.62 BSC	
M	0 °	15°	0 °	15°
N	0.020	0.040	0.51	1.01

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES		IES MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
Н	0.050 BSC		1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10 °
S	0.020	0.040	0.51	1.01

MECL 10K is a trademark of Motorola. Inc.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative