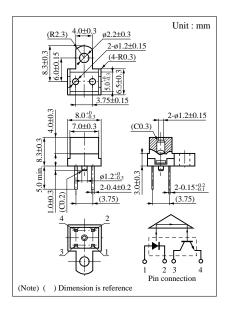
# **CNB1304**

## Reflective Photosensor

### Tape end sensor for DAT

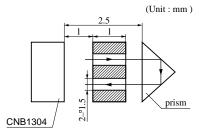
#### Overview


CNB1304 is a sensor which consists of a high efficiency GaAs infrared light emitting diode and a high sensitivity Si phototransistor which are arranged together in the same direction. It detects the beginning and end of a tape based on changes in the amount of light reflected from a prism which is situated outside of the sensor.

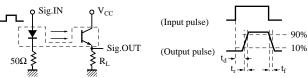
#### Features

- Fast response
- Small size and light weight

## ■ Absolute Maximum Ratings (Ta = 25°C)


| F                            | Parameter                     | Symbol Ratings    |             | Unit |
|------------------------------|-------------------------------|-------------------|-------------|------|
| Input (Light emitting diode) | Reverse voltage (DC)          | $V_R$             | 3           | V    |
|                              | Forward current (DC)          | $I_F$             | 50          | mA   |
|                              | Power dissipation             | $P_D^{*1}$        | 75          | mW   |
| Output (Photo transistor)    | Collector current             | $I_{C}$           | 20          | mA   |
|                              | Collector to emitter voltage  | $V_{CEO}$         | 30          | V    |
|                              | Emitter to collector voltage  | V <sub>ECO</sub>  | 5           | V    |
|                              | Collector power dissipation   | P <sub>C</sub> *2 | 100         | mW   |
| T                            | Operating ambient temperature | Topr              | -25 to +85  | °C   |
| Temperature                  | Storage temperature           | T <sub>stg</sub>  | -30 to +100 | °C   |




#### ■ Electrical Characteristics (Ta = 25°C)

| Parameter                |                                         | Symbol               | Conditions                                           | min | typ | max | Unit |
|--------------------------|-----------------------------------------|----------------------|------------------------------------------------------|-----|-----|-----|------|
| Input characteristics    | Forward voltage (DC)                    | V <sub>F</sub>       | $I_F = 50 \text{mA}$                                 |     |     | 1.5 | V    |
|                          | Reverse current (DC)                    | I <sub>R</sub>       | $V_R = 3V$                                           |     |     | 10  | μΑ   |
| Output characteristics   | Collector cutoff current                | I <sub>CEO</sub>     | $V_{CE} = 10V$                                       |     |     | 0.2 | μΑ   |
| Transfer characteristics | Collector current                       | $I_{C}^{*1}$         | $V_{CE} = 5V, I_F = 20mA, R_L = 100\Omega$           | 30  |     |     | μΑ   |
|                          | Response time                           | $t_r, t_f^{*2}$      | $V_{CC} = 10V, I_C = 0.5 \text{mA}, R_L = 100\Omega$ |     | 6   |     | μs   |
|                          | Collector to emitter saturation voltage | V <sub>CE(sat)</sub> | $I_F = 50 \text{mA}, I_C = 0.1 \text{mA}$            |     |     | 0.5 | V    |

<sup>\*1</sup> I<sub>C</sub> Measurement method



<sup>\*2</sup> Switching time measurement circuit



t<sub>d</sub>: Delay time

<sup>\*1</sup> Input power derating ratio is 1.0 mW/°C at Ta ≥ 25°C.

<sup>\*2</sup> Output power derating ratio is 1.34 mW/°C at Ta  $\geq$  25°C.

t<sub>r</sub>: Rise time (Time required for the collector current to increase from 10% to 90% of its final value)

 $t_f$ : Fall time (Time required for the collector current to decrease from 90% to 10% of its initial value)