

Micropower Precision Triple Supply Monitor

June 1998

FEATURES

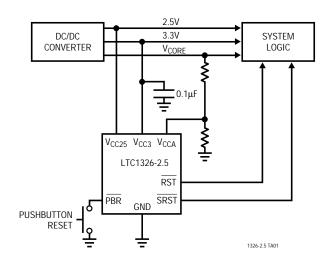
- Simultaneously Monitors 2.5V, 3.3V and Adjustable Inputs
- Guaranteed Threshold Accuracy: ±0.75%
- Low Supply Current: 20µA
- Internal Reset Time Delay: 200ms
- Manual Pushbutton Reset Input
- Active Low and Active High Reset Outputs
- Active Low "Soft" Reset Output
- Power Supply Glitch Immunity
- Guaranteed RESET for $V_{CC3} \ge 1V$ or $V_{CC25} \ge 1V$
- 8-Pin SO and MSOP Packages

APPLICATIONS

- Desktop Computers
- Notebook Computers
- Intelligent Instruments
- Portable Battery-Powered Equipment

DESCRIPTION

The LTC®1326-2.5 is a triple supply monitor intended for systems with multiple supply voltages. It provides micropower operation, small size and high accuracy supply monitoring.


Tight 0.75% threshold accuracy and glitch immunity ensure reliable reset operation without false triggering. The $20\mu A$ typical supply current makes the LTC1326-2.5 ideal for power-conscious systems.

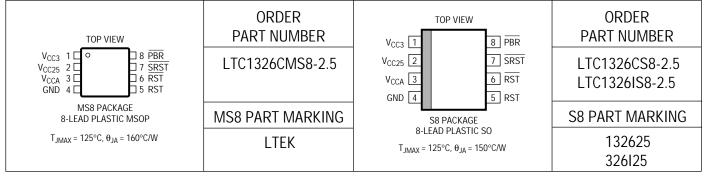
The RST output is guaranteed to be in the correct state for V_{CC25} or V_{CC3} down to 1V. The LTC1326-2.5 may also be configured as a dual or single supply monitor. Allowed configurations are 3.3V and 2.5V, 3.3V and Adj, or 3.3V only.

A manual pushbutton reset input provides the ability to generate a very narrow "soft" reset pulse (100µs typ) or a 200ms reset pulse equivalent to a power-on reset. Both SRST and RST outputs are open-drain and can be OR-tied with other reset sources.

17, LTC and LT are registered trademarks of Linear Technology Corporation

TYPICAL APPLICATION

RST Output Voltage vs Supply Voltage 3.5 $V_{CC25} = V_{CCA} = V_{CC3}$ 4.7k PULL-UP FROM RST TO V_{CC3} 3.0 T_A = 25°C RST OUTPUT VOLTAGE (V) 2.5 2.0 1.5 1.0 1.5 2.0 3.0 3.5 $V_{CC3}(V)$ 1326-2.5 TA02


ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)

Terminal Voltage	
V _{CC3} , V _{CC25} , V _{CCA}	– 0.5V to 7V
RST, SRST	– 0.5V to 7V
RST	$-0.5V$ to $(V_{CC3} + 0.3V)$
PBR	– 7V to 7V

Operating Temperature Range	
LTC1326C-2.5	0°C to 70°C
LTC1326I-2.5	– 40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec	c) 300°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS

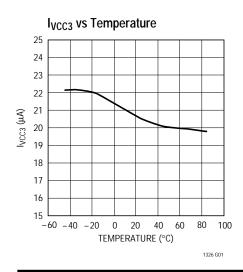
 V_{CC3} = 3.3V, V_{CC25} = 2.5V, V_{CCA} = V_{CC3} , T_A = 25°C unless otherwise noted.

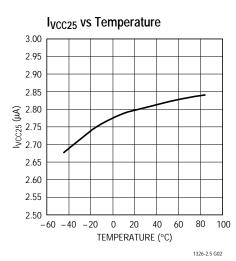
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{RT3}	Reset Threshold V _{CC3}	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ - $40^{\circ}C \le T_{A} \le 85^{\circ}C$	•	3.094 3.052	3.118 3.118	3.143 3.143	V V
V _{RT25}	Reset Threshold V _{CC25}	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ - $40^{\circ}C \le T_{A} \le 85^{\circ}C$	•	2.344 2.312	2.363 2.363	2.381 2.381	V V
V _{RTA}	Reset Threshold V _{CCA}	$0^{\circ}C \le T_{A} \le 70^{\circ}C$ -40°C \le T_{A} \le 85°C	•	0.992 0.980	1.000 1.000	1.007 1.007	V
V_{CC}	V _{CC3} Operating Voltage	RST in Correct Logic State	•	1		7	V
I _{VCC3}	V _{CC3} Supply Current	$\overline{PBR} = V_{CC3}$	•		20	40	μА
I _{VCC25}	V _{CC25} Input Current	$V_{CC25} = 2.5V$	•		2.8	7	μΑ
I _{VCCA}	V _{CCA} Input Current	$V_{CCA} = 1V$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $-40^{\circ}C \le T_{A} \le 85^{\circ}C$	•	-5 -15	0	5 15	nA nA
t _{RST}	Reset Pulse Width	\overline{RST} Low with 10kΩ Pull-Up to V _{CC3} 0°C ≤ T _A ≤ 70°C -40°C ≤ T _A ≤ 85°C	•	140 140	200 200	280 300	ms ms
t _{SRST}	Soft Reset Pulse Width	SRST Low with 10kΩ Pull-Up to V _{CC3}	•	50	100	200	μs
t _{UV}	V _{CC} Undervoltage Detect to RST	V _{CC25} , V _{CC3} or V _{CCA} Less Than Reset Threshold V _{RT} by More Than 1%			13		μs
I _{PBR}	PBR Pull-Up Current	$\overline{PBR} = 0V$ $0^{\circ}C \le T_{A} \le 70^{\circ}C$ $-40^{\circ}C \le T_{A} \le 85^{\circ}C$	•	3	7 7	10 15	μA μA

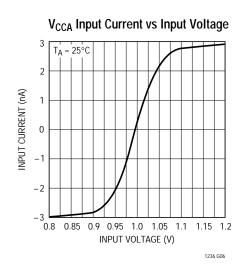
ELECTRICAL CHARACTERISTICS

 V_{CC3} = 3.3V, V_{CC25} = 2.5V, V_{CCA} = V_{CC3} , T_A = 25°C unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
$\overline{V_{IL}}$	PBR, RST Input Low Voltage			•			0.8	V
V_{IH}	PBR, RST Input High Voltage			•	2			V
t_{PW}	PBR Min Pulse Width			•	40			ns
t _{DB}	PBR Debounce	Deassertion of PBR Input to SRST Output (PBR Pulse Width = 1μs)		•		20	35	ms
t _{PB}	PBR Assertion Time for Transition from Soft to Hard Reset Mode	\overline{PBR} Held Less Than V _{IL} $0^{\circ}C \leq T_A \leq 70^{\circ}C$ $-40^{\circ}C \leq T_A \leq 85^{\circ}C$		•	1.4 1.4	2.0 2.0	2.8 3.0	S S
V _{OL}	V_{OL} RST Output Voltage Low $I_{SINK} =$			•		0.15	0.4	V
		$I_{SINK} = 100\mu A$, $0^{\circ}C \le T_A \le 70^{\circ}C$	V _{CC3} = 1V, V _{CC25} = 0V V _{CC3} = 0V, V _{CC25} = 1V V _{CC3} = 1V, V _{CC25} = 1V	•		0.05 0.05 0.05	0.4 0.4 0.4	V V V
		$I_{SINK} = 100\mu A$, $-40^{\circ}C \le T_A \le 85^{\circ}C$	V _{CC3} = 1.1V, V _{CC25} = 0V V _{CC3} = 0V, V _{CC25} = 1.1V V _{CC3} = 1.1V, V _{CC25} = 1.1V	•		0.05 0.05 0.05	0.4 0.4 0.4	V V V
	SRST Output Voltage Low	I _{SINK} = 2.5mA		•		0.15	0.4	V
	RST Output Voltage Low	I _{SINK} = 2.5mA		•		0.15	0.4	V
$\overline{V_{OH}}$	RST Output Voltage High (Note 3)	I _{SOURCE} = 1μA		•	V _{CC3} – 1			V
	SRST Output Voltage High (Note 3)	I _{SOURCE} = 1μA		•	V _{CC3} – 1			V
	RST Output Voltage High	I _{SOURCE} = 600μA		•	V _{CC3} – 1			V
t _{PHL}	Prop Delay RST to RST High Input to Low Output	C _{RST} = 20pF				25		ns
t _{PLH}	Prop Delay RST to RST Low Input to High Output	C _{RST} = 20pF				45		ns

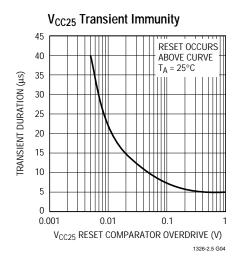

The lacktriangle denotes specifications which apply over the full operating temperature range.

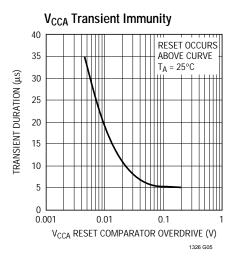

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

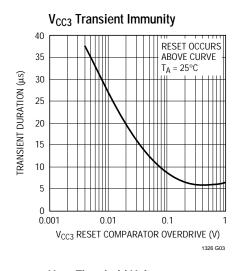

Note 2: All voltage values are with respect to GND.

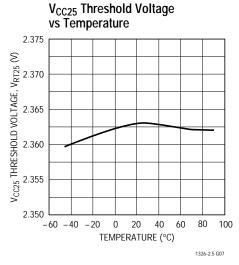
Note 3: The output pins \overline{SRST} and \overline{RST} have weak internal pull-ups to V_{CC3} of $6\mu A$ typ. However, external pull-up resistors may be used when faster rise times are required.

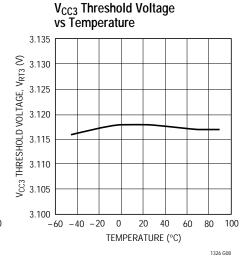
TYPICAL PERFORMANCE CHARACTERISTICS

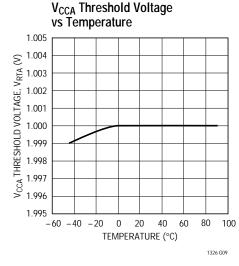


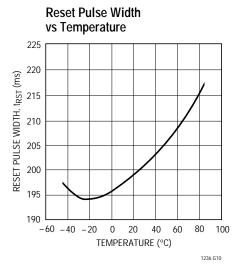


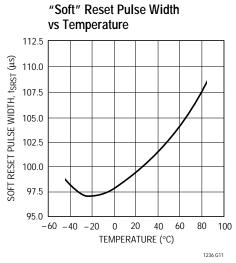


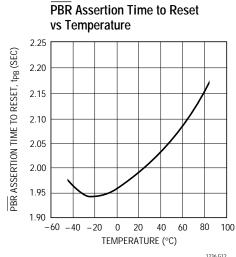



TYPICAL PERFORMANCE CHARACTERISTICS









PIN FUNCTIONS

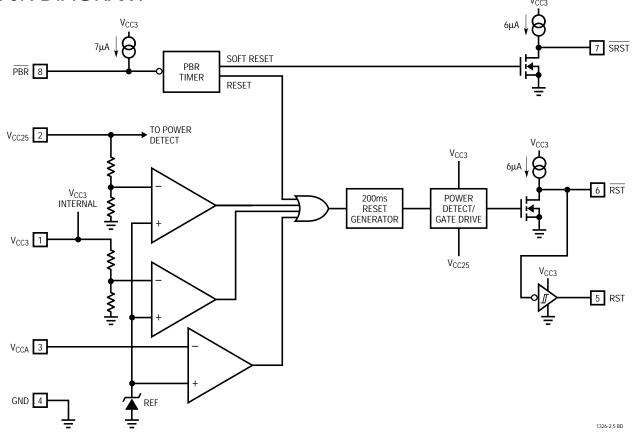
 V_{CC3} (Pin 1): 3.3V Sense Input and Power Supply Pin for the IC. Bypass to ground with $\geq 0.1 \mu F$ ceramic capacitor.

 V_{CC25} (Pin 2): 2.5V Sense Input. Used as gate drive for RST output FET when the voltage on V_{CC3} is less than the voltage on V_{CC25} . If unused it can be tied to V_{CC3} .

 V_{CCA} (Pin 3): 1V Sense, High Impedance Input. Can be used as a logic input with a 1V threshold. If unused it can be tied to either V_{CC3} or V_{CC25} .

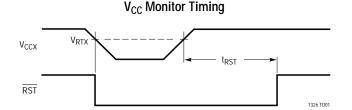
GND (Pin 4): Ground.

RST (Pin 5): Reset Logic Output. Active high CMOS \underline{logic} output, drives high to V_{CC3} , buffered compliment of RST. An external pull-down on the RST pin will drive this pin high.

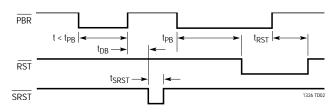

RST (Pin 6): Reset Logic Output. Active low, open-drain logic output with weak pull-up to V_{CC3} . Can be pulled up greater than V_{CC3} when interfacing to 5V logic. Asserted

when one or more of the supplies are below trip thresholds and held for 200ms after all supplies become valid. Also asserted after PBR is held low for more than 2 seconds and for an additional 200ms after PBR is released.

SRST (Pin 7): Soft Reset. Active low, open-drain logic output with weak pull-up to V_{CC3} . Can be pulled up greater than V_{CC3} when interfacing to 5V logic. Asserted for 100µs after \overline{PBR} is held low for less than 2 seconds and released.


PBR (Pin 8): Pushbutton Reset. Active low logic input with weak pull-up to V_{CC3} . Can be pulled up greater than V_{CC3} when interfacing to 5V logic. When asserted for less than 2 seconds, outputs a soft reset 100µs pulse on the SRST pin. When PBR is asserted for greater than 2 seconds, the RST output is forced low and remains low until 200ms after PBR is released.

BLOCK DIAGRAM



TIMING DIAGRAMS

Pushbutton Reset Function Timing

APPLICATIONS INFORMATION

Operation

The LTC1326-2.5 is a micropower, high accuracy triple supply monitoring circuit. The part has two basic functions: generation of a reset when power supplies are out of range, and generation of reset or a "soft" reset when the PBR is pulled low.

Supply Monitoring

All three V_{CC} inputs must be above predetermined thresholds for 200ms before the reset output is released. The LTC1326-2.5 will assert reset during power-up, power-down and brownout conditions on any one or more of the V_{CC} inputs.

On power-up, either the V_{CC25} or V_{CC3} pin can power the drive circuits for the RST pin. This ensures that RST will be low when either V_{CC25} or V_{CC3} reaches 1V. As long as any one of the V_{CC} inputs is below its predetermined threshold, RST will stay a logic low. Once all of the V_{CC} inputs rise above their thresholds, an internal timer is started and RST is released after 200ms. The RST pin outputs the inverted state of what is seen on RST pin.

RST is reasserted whenever any one of the V_{CC} inputs drops below its predetermined threshold and remains asserted until 200ms after all of the V_{CC} inputs are above their thresholds.

On power-down, once any of the V_{CC} inputs drop below its threshold, RST is held at a logic low. A logic low of 0.4V is guaranteed until V_{CC3} and V_{CC25} drop below 1V.

The three precision voltage comparators internal to the LTC1326-2.5 have response times that are typically 13 μ s. This slow response time helps prevent mistriggering due to transients on each of the V_{CC} inputs. The part's ability to suppress transients can be improved by bypassing each of the V_{CC} inputs with a 0.1 μ F capacitor to ground.

Pushbutton Reset

The LTC1326-2.5 provides a pushbutton reset input pin. The PBR input has an internal pull-up current source to V_{CC3} . If the PBR pin is not used it can be left floating.

When the PBR is pulled low for less than t_{PB} ($\approx 2~sec$), a narrow (100µs typ) soft reset pulse is generated on the SRST output pin after the button is released. The pushbutton circuitry contains an internal debounce counter which delays the output of the soft reset pulse by typically 20ms. This pin can be OR-tied to the RST pin and issue what is called a "soft" reset. The SRST thereby resets the microprocessor without interrupting the DRAM refresh cycle. In this manner DRAM information remains undisturbed. Alternatively, SRST may be monitored by the processor to initiate a software-controlled reset.

When the PBR pin is held low for longer than t_{PB} (\approx 2 sec), a standard reset is generated. Once the 2 second period has elapsed, a reset signal is produced by the pushbutton logic, thereby clearing the reset counter. Once the button is released, the reset counter begins counting the reset period (200ms nominal). Consequently, the reset outputs remain asserted for approximately 200ms after the button is released.

IT LINEAR TECHNOLOGY

APPLICATIONS INFORMATION

<u>During</u> a supply induced reset condition, the abi<u>lity of</u> the PBR pin to force a soft reset condition on the SRST pin is disabled. In other words SRST will remain high. If the PBR pin is held <u>low</u>, both <u>during</u> and after a supply induced reset (low RST), the RST pin will remain low until 200ms after the PBR goes high.

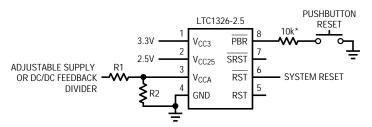
3V or 2.5V Power Detect/Gate Drive

The LTC1326-2.5 for the most part is powered internally from the V_{CC3} pin. The exception is at the gate drive of the output FET on the RST pin. On the input to this FET is power detection circuitry used to detect and drive the gate from either the 3.3V input pin (V_{CC3}) or the 2.5V input pin (V_{CC25}). The gate drive is derived from the pin with the highest potential. This ensures the part pulls the RST pin low as soon as either input pin is \geq 1V.

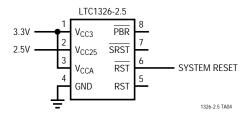
Dual and Single Supply Monitor Operation

The V_{CC3} , V_{CC25} and V_{CCA} inputs may be individually disabled by the following techniques which allows the LTC1326-2.5 to be used as a dual or single supply monitor.

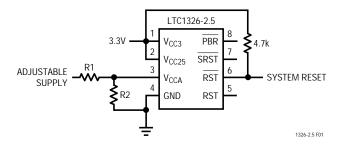
The V_{CCA} pin, if unused, can be tied to either V_{CC3} or V_{CC25} . This is an obvious solution since the trip points for V_{CC3} and V_{CC25} will always be greater than the trip point for V_{CCA} . Likewise, the V_{CC25} , if unused, can be tied to V_{CC3} . V_{CC3} must always be used. Tying V_{CC3} to V_{CC25} and operating off of a 2.5V supply will result in the continuous assertion of \overline{RST} .


Extending ESD Tolerance on the PBR Input Pin

The PBR pin is susceptible to ESD since it can be brought out to a front panel in normal applications. The ESD tolerance of this pin can be increased by adding a resistor in series with the \overline{PBR} pin. A 10k resistor can increase the \overline{ESD} tolerance of the \overline{PBR} pin to approximately 10kV. The \overline{PBR} 's internal pull-up current of $7\mu A$ typical means there is only 70mV (150mV max) dropped across the resistor.

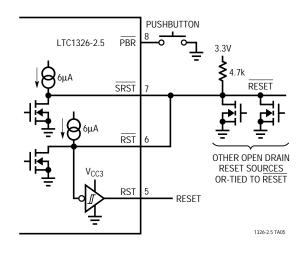

TYPICAL APPLICATIONS

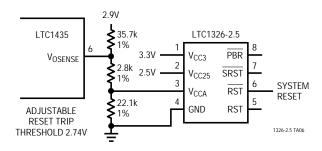
Triple Supply Monitor (3.3V, 2.5V and Adjustable)



*OPTIONAL RESISTOR EXTENDS ESD TOLERANCE OF PBR INPUT TO APPROXIMATELY 10kV

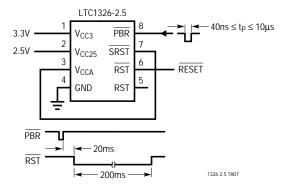
Dual Supply Monitor (3.3V and 2.5V, Defeat V_{CCA} Input)

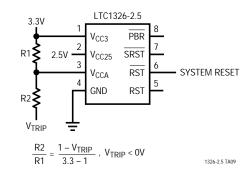

Dual Supply Monitor (3.3V plus Adj)



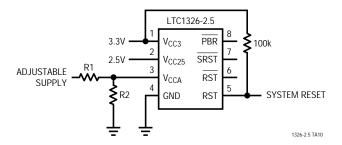
TYPICAL APPLICATIONS

 $\overline{\text{SRST}} \ \text{Tied to} \ \overline{\text{RST}} \ \text{and} \ \text{OR}\underline{\text{-Tying}} \ \text{Other Sources to} \ \overline{\text{RST}} \ \text{to}$ $\overline{\text{Generate}} \ \overline{\text{Reset}} \ \text{and} \ \text{Reset}$


Using V_{CCA} Tied to DC/DC Feedback Divider

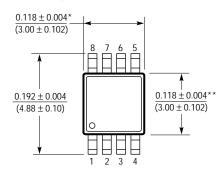


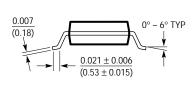
TYPICAL APPLICATIONS

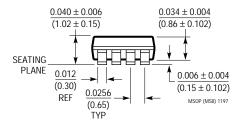

Using the Short Pulse Width, Pushbutton Soft Reset Feature to Initiate Hard Reset

Monitoring a Negative Supply

Reset Valid for V_{CC3} Down to 0V

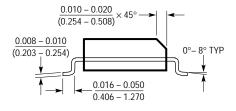


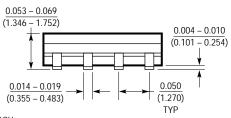

PACKAGE DESCRIPTION D


Dimensions in inches (millimeters) unless otherwise noted.

MS8 Package 8-Lead Plastic MSOP

(LTC DWG # 05-08-1660)

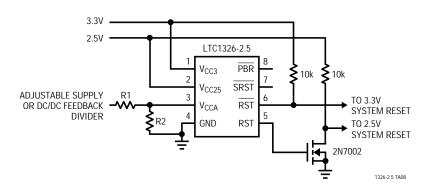



- * DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
- ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.
 INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

S8 Package 8-Lead Plastic Small Outline (Narrow 0.150)

(LTC DWG # 05-08-1610)

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE


S08 0996

^{**}DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

Triple Supply Monitor with Both 3.3V and 2.5V System Reset Outputs

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC690	5V Supply Monitor, Watchdog Timer and Battery Backup	4.65V Threshold
LTC694-3.3	3.3V Supply Monitor, Watchdog Timer and Battery Backup	2.9V Threshold
LTC699	5V Supply Monitor and Watchdog Timer	4.65V Threshold
LTC1232	5V Supply Monitor, Watchdog Timer and Pushbutton Reset	4.37V/4.62V Threshold
LTC1326	Micropower Precision Triple Supply Monitor	4.725V, 3.118V, 1V Thresholds (±0.75%)
LTC1536	Precision Triple Supply Monitor for PCI Applications	Meets PCI t _{FAIL} Timing Specifications