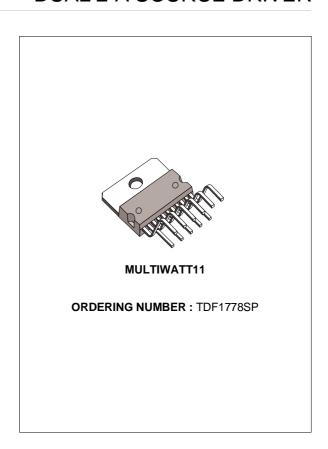


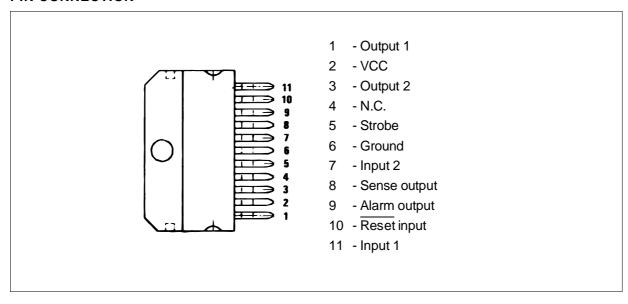
TDF1778

DUAL 2-A SOURCE DRIVER

- OUTPUT CURRENT UP TO 2.5 A
- WIDE RANGE OF SUPPLY VOLTAGES: +8 to +32 V
- CAN WITHSTAND OVERVOLTAGES OF AS HIGH AS 60 V BETWEEN V_{CC} AND GROUND
- INTERNAL ZENER DIODE PROVIDES FAST SWITCHING OF INDUCTIVE LOADS
- OUTPUT VOLTAGE CAN BE LOWER THAN GROUND

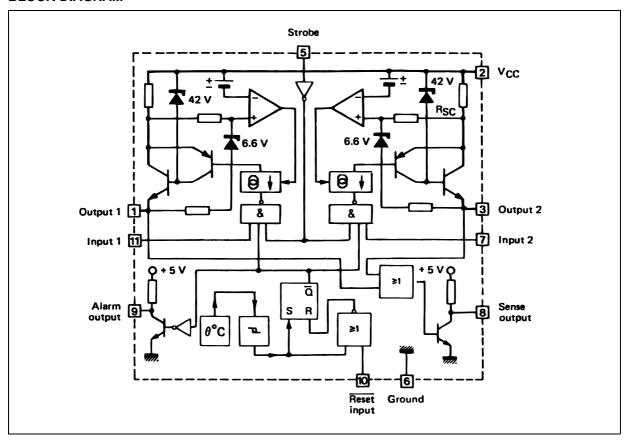

DESCRIPTION

The TDF1778 is a dual source driver delivering high output currents and capable to drive any type of loads (Electrovalves, contactors, lamps).


This device is essentially blow-out proof, each output is protected against short-circuits. If internal dissipation becomes too high, drivers will shut down to prevent excessive heating. An "ALARM" output is provided to indicate the action of the thermal protection. To reactivate the power outputs, the reset input must be forced to low state.

"SENSE" information of both power outputs are ORed together and then processed internally.

A "STROBE" input is also provided to offer the possibility of disabling the power outputs.



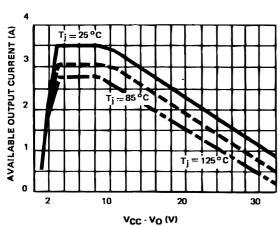
PIN CONNECTION

April 1993

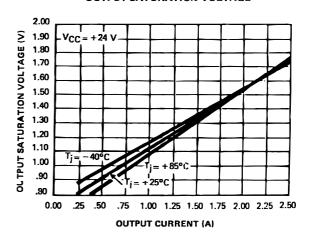
BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

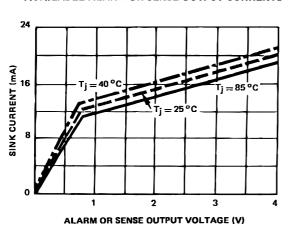
Symbol	Parameter	Value	Unit	
V _{CC}	Supply Voltage	35 V (60 V/10 ms)	V	
V _I , V _{reset}	Input Voltage (pins 7, 10 and 11)	- 30 to + 50	V	
V _{strobe}	Strobe Input Voltage	- 0.5 to V _{CC}	V	
Io	Output Current	Internally Limited	Α	
P _{tot}	Power Dissipation	Internally Limited	W	
T _{oper}	Operating Ambient Temperature Range	- 40 to + 85	°C	
Ti	Junction Temperature	+ 150	°C	

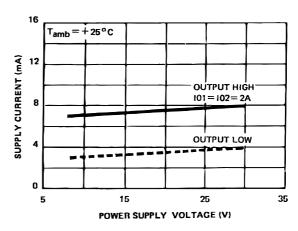

THERMAL DATA

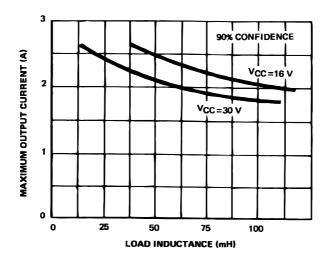
Symbol	Parameter	Value	Unit	
R _{th(j-c)}	Junction-case Thermal Resistance	Max.	3	°C/W
R _{th(j–a)}	Junction-ambient Thermal Resistance	Max.	40	°C/W

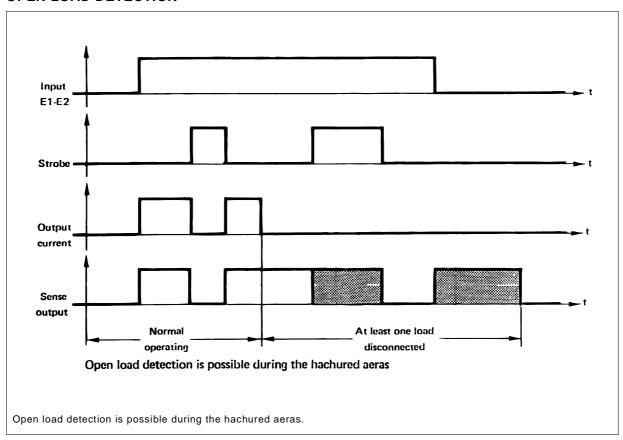

ELECTRICAL CHARACTERISTICS (V_{CC} = + 24V, - 40 $^{\circ}$ C < T_j < + 85 $^{\circ}$ C, unless otherwise specified)

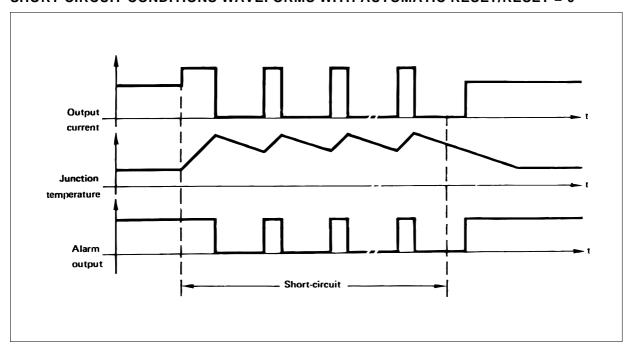
Symbol	Parameter		Тур.	Max.	Unit
Vcc	Power Supply Voltage		_	32	V
Icc	Power Supply Current (pin 6), I ₀₁ = I ₀₂ = 2A		_	20	mA
V _{IL} V _{IH}	Logic Input Voltage (pins 7, 10, 11)		_ _	0.8	V
VI	Logic Input Threshold (pin 5)	_	8.0	_	V
Іін	High Level Input Current (pins 7, 10, 11) V _I = + 2V	_	20	50	μΑ
I _{IL}	Low Level Input Current (pins 7, 10, 11) V _I = + 0.8V	- 5	0	+ 5	μΑ
Vон	High Level Logic Output Voltage (pins 8, 9) I(8) = I(9) = - 30 μA		4	_	V
V _{OL}	Low Level Logic Output Voltage (pins 8, 9) I(8) = I(9) = 2 mA		_	0.4	V
V _{CC} - V _{O1} V _{CC} - V _{O2}	Output Saturation Voltage (V(7) high, V(11) high, I _O = 2A)		1.5	1.8	V
I _{OL}	Low Level Input Current (pins 1, 3) V(7) Low, V(11) Low, V ₀ = 0V		400	1000	μΑ
V _{CC} - V _{O1} V _{CC} - V _{O2}			44 -	48	V
l _{O1} , l _{O2}	Available Output Current (pins 1, 3), V(7) High, V(11) High, $V_{CC} - V_O = 32V$, $T_j = 25^{\circ}C$		_	_	mA
I _{Oalarm}	Available "Alarm" Output Current, V(9) = + 4V		8	_	mA
I _{Osense}	Available "Sense" Output Current, V(8) = + 4V		8	_	mA
I _{IHsense}	Output Sensing High Level Input Current (pins 1, 3) V _I = + 2V		1	2	mA
V _{IHsense}	High Level "Sense" Input Voltage (pins 1, 3)		1.9	2.5	V

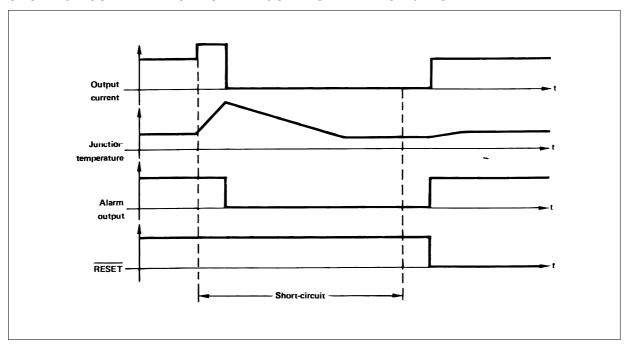


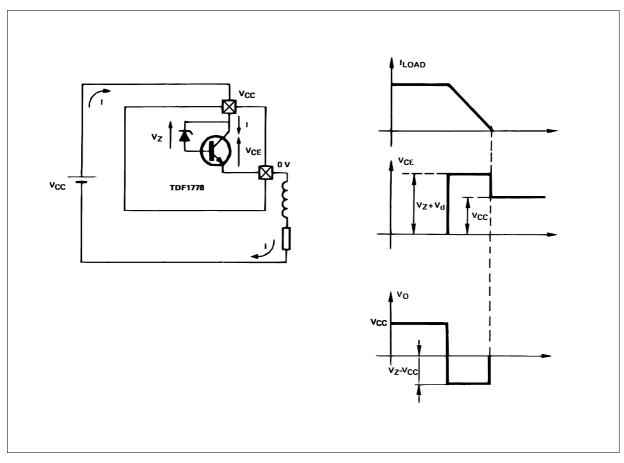

OUTPUT SATURATION VOLTAGE


AVAILABLE ALARM OR SENSE OUTPUT CURRENTS

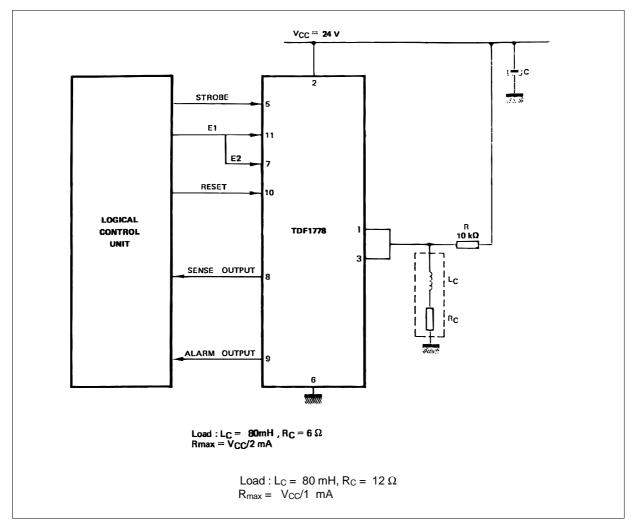

POWER SUPPLY CURRENT


MAXIMUM OUTPUT CURRENT VS LOAD INDUCTANCE


OPEN LOAD DETECTION


SHORT CIRCUIT CONDITIONS WAVEFORMS WITH AUTOMATIC RESET/RESET = 0

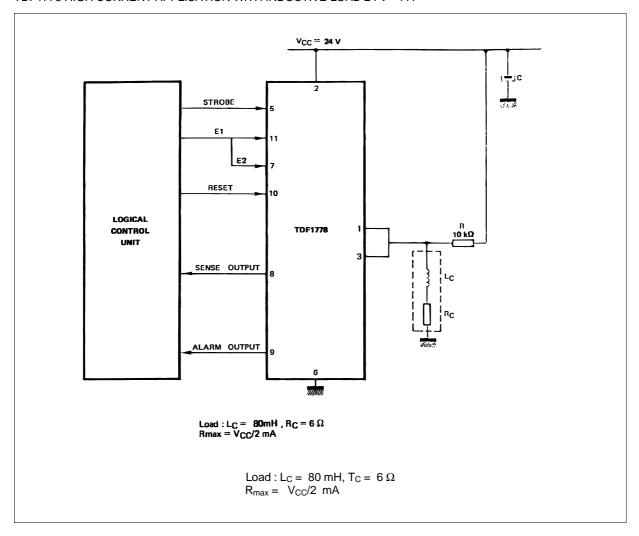
SHORT CIRCUIT WAVEFORMS WITH CONTROLLED RESET/RESET = 1



DEMAGNETIZATION UNDER INDUCTIVE LOAD

TYPICAL APPLICATION

TYPICAL APPLICATION WITH TDF1778 TWO INDUCTIVE LOADS 2 A - 24 V

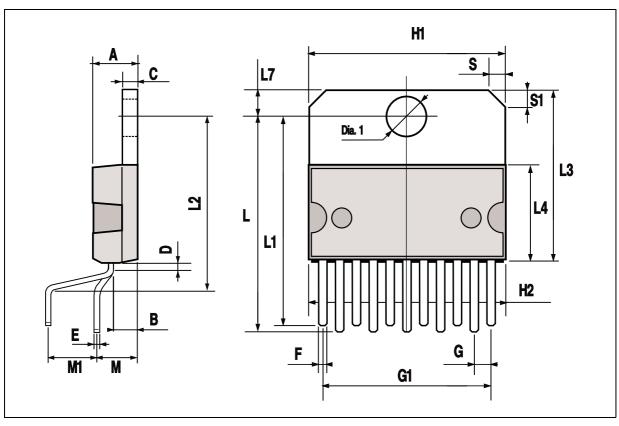


MAIN FEATURES

This application protected against short circuits. The load disconnection is detected when inputs E1 and E2 are low and the sense output is high.

When thermal protection is activated the pin 9 is low. Inputs and outputs are TTL comptable.

TDF1778 HIGH CURRENT APPLICATION WITH INDUCTIVE LOAD 24 V - 4 A



MAIN FEATURES

This application has the same features as the dual 2 A -12 V application.

MULTIWATT11 PACKAGE MECHANICAL DATA

DIM.		mm		inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.88		0.95	0.035		0.037	
G	1.45	1.7	1.95	0.057	0.067	0.077	
G1	16.75	17	17.25	0.659	0.669	0.679	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.87	0.886	
L2	17.4		18.1	0.685		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.73	5.08	5.43	0.186	0.200	0.214	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved MULTIWATT® is a Registered Trademark of the SGS-THOMSON Microelectronics

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

