SONY # ICX267AK # Diagonal 8mm (Type 1/2) Progressive Scan CCD Image Sensor with Square Pixel for Color Cameras #### Description The ICX267AK is a diagonal 8mm (Type 1/2) interline CCD solid-state image sensor with a square pixel array and 1.45M effective pixels. Progressive scan allows all pixels' signals to be output independently. Also, the adoption of high frame rate readout mode supports 30 frames per second. This chip features an electronic shutter with variable charge-storage time which makes it possible to realize full-frame still image without a mechanical shutter. High resolution and high color reproductivity are achieved through the use of R, G, B primary color mosaic filters. Further, high sensitivity and low dark current are achieved through the adoption of HAD (Hole-Accumulation Diode) sensors. This chip is suitable for applications such as electronic still cameras, PC input cameras, etc. #### **Features** - Progressive scan allows individual readout of the image signals from all pixels. - High horizontal and vertical resolution (both approx. 800TV-lines) still image without a mechanical shutter. - Supports high frame rate readout mode (effective 512 lines output, 30 frames/s) - Square pixel - Horizontal drive frequency: 28.636MHz - No voltage adjustments (reset gate and substrate bias are not adjusted.) - R, G, B primary color mosaic filters on chip - High resolution, high color reproductivity, high sensitivity, low dark current - Low smear, excellent antiblooming characteristics - Continuous variable-speed shutter # 20 pin DIP (Plastic) Optical black position (Top view) #### **Device Structure** Interline CCD image sensor • Image size: Diagonal 8mm (Type 1/2) Total number of pixels: 1434 (H) × 1050 (V) approx. 1.50M pixels Number of effective pixels: 1392 (H) × 1040 (V) approx. 1.45M pixels • Number of active pixels: 1360 (H) × 1024 (V) approx. 1.40M pixels (7.959mm diagonal) • Chip size: 7.60mm (H) × 6.20mm (V) • Unit cell size: 4.65µm (H) × 4.65µm (V) Optical black: Horizontal (H) direction: Front 2 pixels, rear 40 pixels Vertical (V) direction: Front 8 pixels, rear 2 pixels Number of dummy bits: Horizontal 20 Vertical 3 Substrate material: Silicon # Wfine **CCD**® * Wfine CCD is a registered trademark of Sony Corporation. Represents a CCD adopting progressive scan, primary color filter and square pixel. Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits. # **Block Diagram and Pin Configuration** (Top View) # **Pin Description** | Pin No. | Symbol | Description | Pin No. | Symbol | Description | |---------|--------|----------------------------------|---------|--------|------------------------------------| | 1 | Vф1 | Vertical register transfer clock | 11 | VDD | Supply voltage | | 2 | Vф2A | Vertical register transfer clock | 12 | GND | GND | | 3 | Vф2B | Vertical register transfer clock | 13 | φSUB | Substrate clock | | 4 | Vфз | Vertical register transfer clock | 14 | NC | | | 5 | NC | | 15 | Сѕив | Substrate bias*1 | | 6 | NC | | 16 | NC | | | 7 | GND | GND | 17 | VL | Protective transistor bias | | 8 | NC | | 18 | φRG | Reset gate clock | | 9 | GND | GND | 19 | Нф1 | Horizontal register transfer clock | | 10 | Vouт | Signal output | 20 | Нф2 | Horizontal register transfer clock | $^{^{*1}}$ DC bias is generated within the CCD, so that this pin should be grounded externally through a capacitance of $0.1\mu F$. # **Absolute Maximum Ratings** | | Item | Ratings | Unit | Remarks | |--------------------------|--|-------------|------|---------| | | VDD, VOUT, φRG – φSUB | -40 to +10 | V | | | | Vφ2A, Vφ2B – φSUB | -50 to +15 | V | | | Against φSUB | $V\phi_1$, $V\phi_3$, $V_L - \phi SUB$ | -50 to +0.3 | V | | | | Hφ1, Hφ2, GND – φSUB | -40 to +0.3 | V | | | | Csub - ϕ SUB | –25 to | V | | | | VDD, VOUT, φRG, CSUB – GND | -0.3 to +18 | V | | | Against GND | Vφ1, Vφ2A, Vφ2B, Vφ3 – GND | -10 to +18 | V | | | | Hφ1, Hφ2 – GND | -10 to +15 | V | | | Against \/ | Vφ2A, Vφ2B – VL | -0.3 to +28 | V | | | Against V∟ | Vφ1, Vφ3, Hφ1, Hφ2, GND – VL | -0.3 to +15 | V | | | | Voltage difference between vertical clock input pins | to +15 | V | *1 | | Between input clock pins | Hφ1 – Hφ2 | -16 to +16 | V | | | i sissin pino | Hφ1, Hφ2 – Vφ3 | -16 to +16 | V | | | Storage temper | rature | -30 to +80 | °C | | | Operating temp | perature | -10 to +60 | °C | | $^{^{*1}\,}$ +24V (Max.) when clock width < 10µs, clock duty factor < 0.1%. ⁺¹⁶V (Max.) is guaranteed for turning on or off power supply. # **Bias Conditions** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |----------------------------|--------|-------|------|-------|------|---------| | Power Supply voltage | VDD | 14.55 | 15.0 | 15.45 | V | | | Protective transistor bias | VL | | *1 | | | | | Substrate clock | φSUB | | *2 | | | | | Reset gate clock | φRG | | *2 | | | | ^{*1} V_L setting is the V_{VL} voltage of the vertical transfer clock waveform, or the same power supply as the V_L power supply for the V driver should be used. # **DC Characteristics** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |----------------------|--------|------|------|------|------|---------| | Power supply current | IDD | | 7.7 | | mA | | # **Clock Voltage Conditions** | ltem | Symbol | Min. | Тур. | Max. | Unit | Waveform diagram | Remarks | |------------------------------------|-----------------------------|-------|------|-------|------|------------------|-----------------------| | Readout clock voltage | Vvт | 14.55 | 15.0 | 15.45 | V | 1 | | | | VvH02A | -0.05 | 0 | 0.05 | V | 2 | Vvh = Vvho2A | | | Vvh1, Vvh2A,
Vvh2B, Vvh3 | -0.2 | 0 | 0.05 | V | 2 | | | | VVL1, VVL2A,
VVL2B, VVL3 | -8.4 | -8.0 | -7.6 | V | 2 | VvL = (VvL1 + VvL3)/2 | | Vertical transfer clock
voltage | Vф1, Vф2A,
Vф2B, Vф3 | 7.6 | 8.0 | 8.4 | V | 2 | | | , valuage | VVL1 — VVL3 | | | 0.1 | V | 2 | | | | Vvнн | | | 0.9 | V | 2 | High-level coupling | | | VVHL | | | 1.3 | V | 2 | High-level coupling | | | Vvlh | | | 1.0 | V | 2 | Low-level coupling | | | VVLL | | | 0.9 | V | 2 | Low-level coupling | | Horizontal transfer | Vфн | 4.75 | 5.0 | 5.25 | V | 3 | | | clock voltage | VHL | -0.05 | 0 | 0.05 | V | 3 | | | | Vþrg | 3.0 | 3.3 | 5.5 | V | 4 | | | Reset gate clock voltage | Vrglh – Vrgll | | | 0.4 | V | 4 | Low-level coupling | | | VRGL — VRGLm | | | 0.5 | V | 4 | Low-level coupling | | Substrate clock voltage | Vфsuв | 22.15 | 23.0 | 23.85 | V | 5 | | ^{*2} Do not apply a DC bias to the substrate clock and reset gate clock pins, because a DC bias is generated within the CCD. # **Clock Equivalent Circuit Constant** | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | |---|------------------|------|------|------|------|---------| | | СфV1 | | 2200 | | pF | | | Capacitance between vertical transfer clock and | Сф∨2А | | 3300 | | pF | | | GND | Сф∨2В | | 3300 | | pF | | | | Сф∨з | | 3300 | | pF | | | | СфV12А, СфV2В1 | | 1200 | | pF | | | Capacitance between vertical transfer clocks | Сфу2А3, Сфу32В | | 1200 | | pF | | | | СфV13 | | 2200 | | pF | | | Capacitance between horizontal transfer clock and GND | Сфн1, Сфн2 | | 47 | | pF | | | Capacitance between horizontal transfer clocks | Сфнн | | 100 | | pF | | | Capacitance between reset gate clock and GND | СфRG | | 8 | | pF | | | Capacitance between substrate clock and GND | Сфѕив | | 680 | | pF | | | | R ₁ | | 36 | | Ω | | | Vertical transfer clock series resistor | R2A, R3 | | 56 | | Ω | | | | R ₂ B | | 56 | | Ω | | | Vertical transfer clock ground resistor | RGND | | 30 | | Ω | | | Horizontal transfer clock series resistor | Rфн | | 15 | | Ω | | | Reset gate clock series resistor | Rørg | | 20 | | Ω | | Vertical transfer clock equivalent circuit Horizontal transfer clock equivalent circuit Reset gate clock equivalent circuit # **Drive Clock Waveform Conditions** # (1) Readout clock waveform Vт Note) Readout clock is used by composing vertical transfer clocks $V\phi_{2A}$ and $V\phi_{2B}$. # (2) Vertical transfer clock waveform Vф1 Vф2A, Vф2B Vфз Vvh = Vvh02A $V_{VL} = (V_{VL01} + V_{VL03})/2$ $V_{VL3} = V_{VL03}$ $V\phi V1 = VVH1 - VVL01$ $V \phi V2A = VVH02A - VVL2A$ $V \phi V2B = VVH02B - VVL2B$ $V\dot{\phi}$ V3 = VVH3 - VVL03 # (3) Horizontal transfer clock waveform Cross-point voltage for the H ϕ_1 rising side of the horizontal transfer clocks H ϕ_1 and H ϕ_2 waveforms is Vcr. The overlap period for twh and twl of horizontal transfer clocks H ϕ_1 and H ϕ_2 is two. VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG. In addition, VRGL is the average value of VRGLH and VRGLL. $$V_{RGL} = (V_{RGLH} + V_{RGLL})/2$$ Assuming VRGH is the minimum value during the interval twh, then: $$V \phi RG = V RGH - V RGL$$. Negative overshoot level during the falling edge of RG is VRGLm. #### (5) Substrate clock waveform # **Clock Switching Characteristics** | | Item Symbol | | | twh | | | twl | tr | | tf | | | Unit | Remarks | | | |----------------------------|------------------------|-------------------------|------|------|------|------|------|------|------|------|------|------|------|---------|-------|---------------------| | | пеш | Symbol | Min. | Тур. | Мах. | Min. | Тур. | Max. | Min. | Тур. | Max. | Min. | Тур. | Max. | Offic | Remarks | | Rea | dout clock | VT | 3.2 | 3.4 | | | | | | 0.5 | | | 0.5 | | μs | During readout | | Vert | tical transfer
k | Vф1, Vф2A,
Vф2B, Vф3 | | | | | | | | | | 15 | | 450 | ns | *1 | | 중 | During | Нф1 | 10 | 12.5 | | 10 | 12.5 | | | 5 | 7.5 | | 5 | 7.5 | no | *2 | | tal
clock | imaging | Нф2 | 10 | 12.5 | | 10 | 12.5 | | | 5 | 7.5 | | 5 | 7.5 | ns | | | Horizontal
transfer clo | During parallel-serial | Нф1 | | | | | | | | 0.01 | | | 0.01 | | 116 | | | Ha
tra | conversion | Нф2 | | | | | | | | 0.01 | | | 0.01 | | μs | | | Res | et gate clock | φRG | 4 | 8 | | | 24 | | | 2 | | 2 | | | ns | | | Sub | strate clock | φSUB | | 3.9 | | | | | | | 0.5 | | | 0.5 | μs | During drain charge | ^{*1} When vertical transfer clock driver CXD1267AN \times 2 is used. ^{*2} tf \geq tr - 2ns, and the cross-point voltage (VcR) for the H ϕ 1 rising side of the H ϕ 1 and H ϕ 2 waveforms must be at least V ϕ H/2 [V]. | Itom | Symbol | | two | | Lloit | Domorko | |---------------------------|----------|------|------|------|-------|---------| | Item | Symbol | Min. | Тур. | Max. | Unit | Remarks | | Horizontal transfer clock | Нф1, Нф2 | 8 | 10 | | ns | | # Spectral Sensitivity Characteristics (excludes lens characteristics and light source characteristics) # **Image Sensor Characteristics** $(Ta = 25^{\circ}C)$ | Item | | Symbol | Min. | Тур. | Max. | Unit | Measurement method | | Remarks | |--------------------|--------|--------|------|-------|--------|------|--------------------|--------------------------|---| | G sensitivity | | Sg | 320 | 400 | | mV | 1 | 1/30s accu | ımulation | | Sensitivity | R | Rr | 0.4 | 0.55 | 0.7 | | 1 | | | | comparison | В | Rb | 0.3 | 0.45 | 0.6 | | 1 | | | | | | Vsat | 450 | | | mV | 2 | | Progressive scan readout mode | | Saturation sign | al | Vsat2 | 380 | | | mV | 2 | Ta = 60°C | High frame rate readout mode | | | | Vsat4 | 380 | | | mV | 2 | | High frame rate readout two pixels addition*1 | | Smear | | Sm | | 0.001 | 0.0025 | % | 3 | | ve scan readout,
e rate readout two
ition | | | | | | 0.002 | 0.005 | % | 3 | High frame | e rate readout mode | | Video signal sh | odina | SHg | | | 20 | % | 4 | Zone 0 an | d I | | video signai sin | auirig | Sing | | | 25 | % | 4 | Zone 0 to | I' | | Uniformity between | | ∆Srg | | | 8 | % | 5 | | | | video signal cha | innels | ∆Sbg | | | 8 | % | 5 | | | | Dark signal | | Ydt | | | 8 | mV | 6 | Ta = 60°C | , 15 frames/s | | Dark signal sha | ading | ΔYdt | | | 2 | mV | 7 | Ta = 60°C, 15 frames/s*2 | | | Line crawl G | | Lcg | | | 3.8 | % | 8 | | | | Line crawl R | | Lcr | | | 3.8 | % | 8 | | | | Line crawl B | | Lcb | | | 3.8 | % | 8 | | | | Lag | | Lag | | | 0.5 | % | 9 | | | ^{*1} Vsat4 is the saturation signal amount at two pixels addition, and it is 190mV per one pixel. VsuB internal generation value ensures 190mV per one pixel of the saturation signal amount in high frame rate two pixels addition mode. ^{*2} Eliminates the dark signal shading in the vertical direction by the high-speed transfer of the vertical register. # **Zone Definition of Video Signal Shading** # **Measurement System** Note) Adjust the amplifier gain so that the gain between [*A] and [*B], and between [*A] and [*C] equals 1. # **Image Sensor Characteristics Measurement Method** # O Color coding and readout of this image sensor The primary color filters of this image sensor are arranged in the layout shown in the figure on the left (Bayer arrangement). Gr and Gb denote the G signals on the same line as the R signal and the B signal, respectively. Color Coding Diagram All pixel signals are output successively in a 1/15s period. The R signal and Gr signal lines and the Gb signal and B signal lines are output successively. #### Readout modes The diagram below shows the output methods for the following three readout modes. #### 1. Progressive scan mode In this mode, all pixels signals are output in non-interlace format in 1/15s. The vertical resolution is approximately 800 TV-lines and all pixels signals within the same exposure period are read out simultaneously, making this mode suitable for high resolution image capturing. # 2. High frame rate readout mode All effective areas are scanned in approximately 1/30s by reading out two out of four lines (3rd and 4th lines, 7th and 8th lines). The vertical resolution is approximately 400 TV-lines. This readout mode emphasizes processing speed over vertical resolution. #### 3. High frame rate readout two pixels addition mode All effective areas are scanned in approximately 1/30s by reading out two out of four lines (3rd and 4th lines, 7th and 8th lines), and by reading out two out of the remaining four lines (1st and 2nd lines, 5th and 6th lines) after shifting the vertical register by 2 bits, and adding them in the vertical register. #### Measurement conditions 1) In the following measurements, the device drive conditions are at the typical values of the progressive scan mode, bias and clock voltage conditions. 2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black level (OB) is used as the reference for the signal output, which is taken as the value of the Gr/Gb signal output or the R/B signal output of the measurement system. #### Definition of standard imaging conditions #### 1) Standard imaging condition I Use a pattern box (luminance: 706cd/m², color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter and image at F5.6. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity. # 2) Standard imaging condition I: Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm. #### 1. G sensitivity, sensitivity comparison Set to standard imaging condition I After selecting the electronic shutter mode with a shutter speed of 1/100s, measure the signal outputs (V_{Gr}, V_{Gb}, V_R and V_B) at the center of each Gr, Gb, R and B channel screen, and substitute the values into the following formulas. $$V_G = (V_{Gr} + V_{Gb})/2$$ $$Sg = V_G \times \frac{100}{30} [mV]$$ $$Rr = V_R/V_G$$ $$Rb = V_B/V_G$$ #### 2. Saturation signal Set to standard imaging condition I. After adjusting the luminous intensity to 20 times the intensity with the average value of the Gr signal output, 150mV, measure the minimum values of the Gr, Gb, R and B signal outputs. #### 3. Smear Set to standard imaging condition I. With the lens diaphragm at F5.6 to F8, first adjust the average value of the Gr signal output to 150mV. Measure the average values of the Gr signal output, Gb signal output, R signal output and B signal output (Gra, Gba, Ra, Ba), and then adjust the luminous intensity to 500 times the intensity with the average value of the Gr signal output, 150mV. After the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value (Vsm [mV]) independent of the Gr, Gb, R and B signal outputs, and substitute the values into the following formula. Sm = Vsm $$\div \frac{\text{Gra} + \text{Gba} + \text{Ra} + \text{Ba}}{4} \times \frac{1}{500} \times \frac{1}{10} \times 100 \text{ [%] (1/10V method conversion value)}$$ ### 4. Video signal shading Set to standard imaging condition I. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the Gr signal output is 150mV. Then measure the maximum (Grmax [mV]) and minimum (Grmin [mV]) values of the Gr signal output and substitute the values into the following formula. SHg = $$(Grmax - Grmin)/150 \times 100$$ [%] #### 5. Uniformity between video signal channels After measuring 4, measure the maximum (Rmax [mV]) and minimum (Rmin [mV]) values of the R signal and the maximum (Bmax [mV]) and minimum (Bmin [mV]) values of the B signal, and substitute the values into the following formulas. $$\Delta Srg = (Rmax - Rmin)/150 \times 100 [\%]$$ $$\Delta Sbg = (Bmax - Bmin)/150 \times 100 [\%]$$ #### 6. Dark signal Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60°C and the device in the light-obstructed state, using the horizontal idle transfer level as a reference. #### 7. Dark signal shading After measuring 6, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula. $$\Delta Vdt = Vdmax - Vdmin [mV]$$ ## 8. Line crawl Set to standard imaging condition \mathbb{I} . Adjusting the luminous intensity so that the average value of the Gr signal output is 150mV, and then insert R, G and B filters and measure the difference between G signal lines (Δ GIr, Δ GIg, Δ GIb [mV]) as well as the average value of the G signal output (Gar, Gag, Gab). Substitute the values into the following formula. Lci = $$\frac{\Delta Gli}{Gai} \times 100$$ [%] (i = r, g, b) #### 9. Lag Adjust the Gr signal output value generated by strobe light to 150mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula. #### Note) Substrate bias control - 1. Connect the ground resistor (VR1) shown below to the Csub pin by each readout mode in order to secure the saturation signal described on the image sensor characteristics. - · Progressive scan readout mode : $2.0k\Omega$ - High frame rate readout mode : 3.8kΩ - · High frame rate 2 pixels addition mode: Ground resistor should not be connected. - 2. If the substrate bias control signal is set to high level, and the ground resistor (VR1) connected to Csub pin is not grounded at 55ms before the exposure time starts because tf is late, the internal generation voltage (Vsub) may not fall enough. Substrate bias adjustment control signal Vsub Cont. #### **Notes on Handling** #### 1) Static charge prevention CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures. - a) Either handle bare handed or use non-chargeable gloves, clothes or material. Also use conductive shoes. - b) When handling directly use an earth band. - c) Install a conductive mat on the floor or working table to prevent the generation of static electricity. - d) Ionized air is recommended for discharge when handling CCD image sensor. - e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges. #### 2) Soldering - a) Make sure the package temperature does not exceed 80°C. - b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently. - c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground. #### 3) Dust and dirt protection Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them. - a) Perform all assembly operations in a clean room (class 1000 or less). - b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.) - c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass. - d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences. - e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape. # 4) Installing (attaching) a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.) b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive. - c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to the other locations as a precaution. - d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package. - e) If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin. - f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyano-acrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference) #### 5) Others - a) Do not expose to strong light (sun rays) for long periods, color filters will be discolored. When high luminance objects are imaged with the exposure level control by electronic-iris, the luminance of the image-plane may become excessive and discolor of the color filter will possibly be accelerated. In such a case, it is advisable that taking-lens with the automatic-iris and closing of the shutter during the poweroff mode should be properly arranged. For continuous using under cruel condition exceeding the normal using condition, consult our company. - b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions. - c) The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD characteristics. - d) This package has 2 kinds of internal structure. However, their package outline, optical size, and strength are the same. The cross section of lead frame can be seen on the side of the package for structure A. 29 - 1. "A" is the center of the effective image area. - 2. The two points "B" of the package are the horizontal reference. The point "B" of the package is the vertical reference. - 3. The bottom "C" of the package, and the top of the cover glass "D" are the height reference. - 4. The center of the effective image area relative to "B" and "B"" is $(H, V) = (6.9, 6.0) \pm 0.075$ mm. - 5. The rotation angle of the effective image area relative to H and V is $\pm 1^{\circ}$. - 6. The height from the bottom "C" to the effective image area is 1.41 ± 0.10 mm. The height from the top of the cover glass "D" to the effective image area is 1.49 ± 0.15 mm. - 7. The tilt of the effective image area relative to the bottom "C" is less than 50µm. The tilt of the effective image area relative to the top "D" of the cover glass is less than 50µm. - 8. The thickness of the cover glass is 0.5mm, and the refractive index is 1.5. - 9. The notches on the bottom of the package are used only for directional index, they must not be used for reference of fixing. ### PACKAGE STRUCTURE | Plastic | |--------------| | GOLD PLATING | | 42 ALLOY | | 0.95g | | AS-B6-04(E) | | |