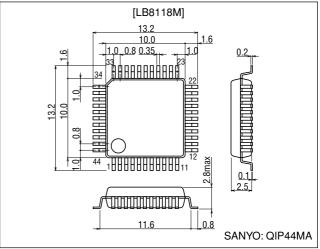


Monolithic Digital IC

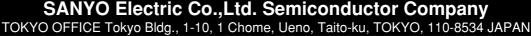
Actuator Driver for Portable CD Players


Overview

The LB8118M is an actuator driver IC designed for portable CD players that operate at 2.4 V (two Ni-Cd batteries) or 3.0 V (two dry cells). Because the fourchannel driver control outputs are divided into two groups, this device reduces power dissipation considerably during double-speed play.

Package Dimensions

unit: mm


3148-QIP44MA

Functions and Features

- H bridge drivers on chip for four channels to drive each CD actuator (the focus coil, the tracking coil, the spindle motor, and the sled motor).
- Step-up circuit (voltage to be set by an external resistor) on chip that is used to apply voltage to the CD DSP, ASP and microcontroller. Center-tap coil for step-up circuit makes it possible to supply the driver control voltage. (However, the drive Tr, L, C, and Di are all external.)
- Oscillator circuits for each converter on chip. (C is external.)
- Four-channel driver control output is divided into two groups (the focus/tracking group and the spindle/sled group) for minimum loss at double-speed playback. Highest operating voltage detected in each group is supplied for each 2ch H bridge driver after PMW conversion. The single channel PWM drive without dividing the outputs into two groups is also possible. (However, the PWM PNP-Tr, NPN-Tr, L, C, and Di are all external.)
- The dynamic range of 4-channel H bridge driver output voltage is up to 2 V on the focus and tracking side, and can be set by the Vo_{SET} pin on the spindle and sled side. However, if the 4-channel H bridge voltages in the H bridge driver block are the same, the maximum voltage is determined using the Vo_{SET} pin.
- Sled motor driving mode is switchable between step drive mode for lower power dissipation, and normal V-type drive mode. (The other three channels are fixed to V-type.)
- In the spindle motor drive circuit, the control gain can be set higher for double-speed playback.

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

• PWM step-down circuit for external power operates when external power (4 V or higher) is supplied. In this function, external power is converted to V_{CC} power supply, and two type voltage setting is possible. In playback mode, step-up voltage for DSP has to be set equal to or lower than V_{CC} , but in charging the battery, it has to be set higher enough than V_{CC} .

So step-down voltage (V_{CC}) setting of two types is possible with two pairs of external resistor. (Switching port is provided.)

(However, the PWM PNP-Tr, NPN-Tr, L, C, and Di are all external.)

- APC step-up power supply for the laser diode. (Also supports a pre-power supply for the internal bias.) The laser diode is controlled with a voltage of roughly 0.5 V.
- Battery pulse charging function on chip. (However, the drive NPN-Tr, and the current feedback C and R are external.)
- Battery check comparator on chip.
- The system can be started up and stopped by outputs from the microcontroller.
- Actuator muting function on chip (for all four channels simultaneously).
- Thermal shutdown circuit on chip.

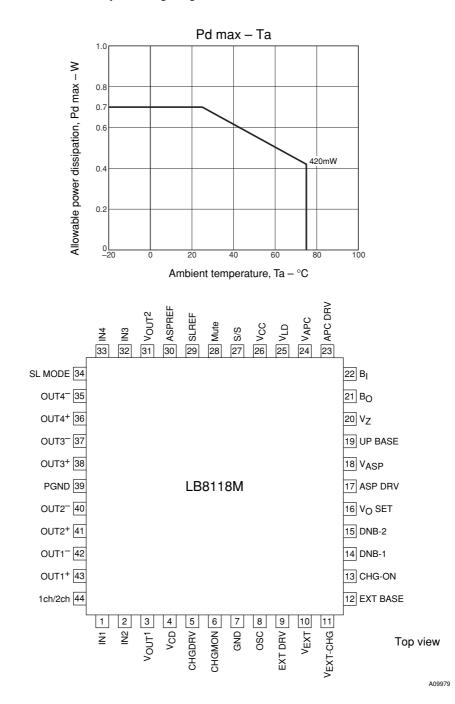
Specifications

Absolute Maximum Ratings at Ta = 25 °C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7	V
VCD pin input voltage	V _{CD} max		10	V
H bridge output current	I _{OUT} max	Maximum per channel is 400 mA.	800	mA
Allowable power dissipation	Pd max	Independent IC	700	mW
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

Allowable Operating Ranges at $Ta = 25 \ ^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	Vcc		1.6 to 5.0	V
V _{CD} pin input voltage	VCD		3.6 to 9.0	V
V _{CC} drop setting voltage when external voltage input is applied	V _{CC(EXT)}		3 to 5	V
H Bridge limiter voltage	VH LIM		0.15 to 2.25	V


Electrical Characteristics at Ta = 25 °C, V_{CC} = 3 V, V_{CD} = 4 V

Parameter	Symbol	Conditions	min	typ	max	Unit
[Power Supply Block]						
Standby current drain	Icco	$S/S = H$, the total of V_{CC} and V_{CD}			100	μA
V _{CC} quiescent current drain	lcc	$S/S = L, V_{CC}$ line only		11	15	mA
V _{CD} quiescent current drain	ICD	S/S = L, with no driver input		3.5	5.0	mA
[ASP step-up circuit]			• •	·		
ASP drive output current	IO ASPDRV		2.1	2.5	2.9	mA
VASP pin input bias current	IB VASP				200	nA
ASPBASE pin saturation voltage	VO ASPBASE	I _O = 1 mA		0.1	0.2	V
Load regulation	RLD ASP	$V_{ASP} = 3.4 \text{ V}, \text{ L} = 30 \ \mu\text{H}, \text{ C} = 220 \ \mu\text{F}$			1000	mV/A
Line regulation	RLN ASP	V _{ASP} = 3.4 V, L = 30 μH, C = 220 μF			100	mV/V
Minimum off duty	DMIN ASP			50		%
[APC step-up circuit]				·		
APC drive output current	IO APCDRV		0.37	0.50	0.63	mA
VAPC pin input bias current	IB VAPC				200	nA
VAPC - VLD voltage	VAPC - LD		0.35	0.50	0.65	V
Load regulation	RLD APC	V _{APC} = 3.4 V, L = 30 μH, C = 220 μF			1000	mV/A
Line regulation	RLN APC	V _{APC} = 3.4 V, L = 30 μH, C = 220 μF			100	mV/V
Minimum off duty	DMIN APC			50		%

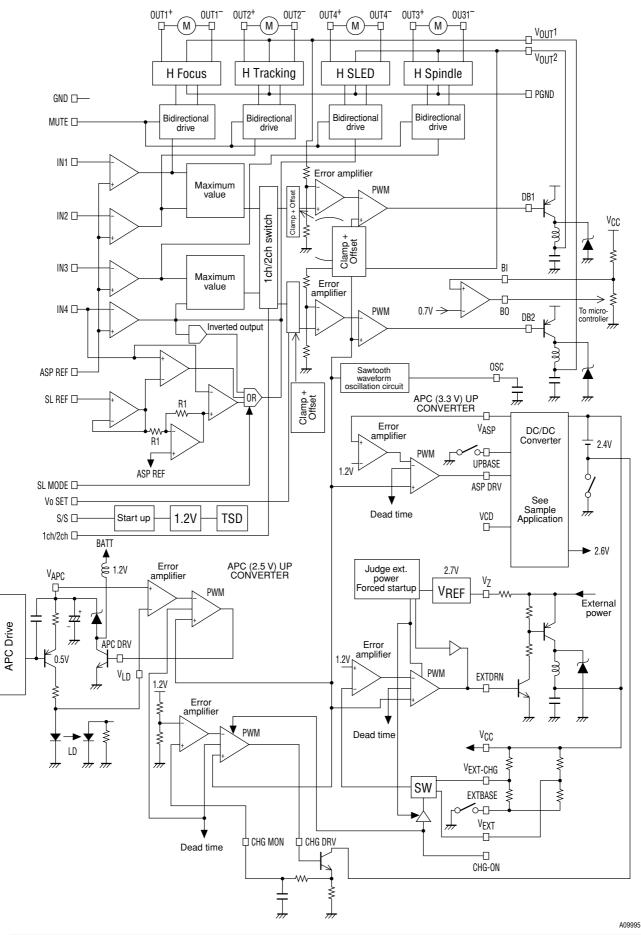
Parameter	Symbol	Conditions	min	typ	max	Unit
[H Bridge Output Block, PWM Bl	,			-78		
Output saturation voltage	V _H sat	I _O = 200 mA, TOP + BOTTOM		0.30	0.45	V
Maximum output voltage	VPWM max	Vout 1		1.95	2.25	V
PWM applied offset voltage	VPWMOFF	Each VIN = VASPREF	0.14	0.17	0.22	V
DNB-1,2 pins output voltage	Io DNB1,2		0.11	Vout/60	0.22	mA
Load regulation	RLD PWM	V _{OUT} = 2.25 V, L = 30 µH		1001/00	1000	mV/A
Line regulation		$V_{OUT} = 2.25 \text{ V}, \text{ L} = 30 \mu\text{H}$			100	mV/V
[Drive Control Block]		V001 - 2.20 V, 2 - 00 μΠ			100	111 0/ 0
CH1 to 4 input voltage range	VIN1–4		0.5	Vcd	-0.5	V
Input bias current	IBIN	Each VIN = VASPREF	0.0	•00	2	μA
ASPREF input voltage range	VASPR	Each $V_{IN} = V_{ASPREF}$	1.2	VCD	-1.3	V
CH1,2,4 transfer gain	G124 _{IN}	$R_L = 10$	6.8	8.0	9.2	dB
CH3 L side transfer gain	G3LIN	$R_{L} = 10$	8.5	10.0	11.5	dB
Negative/positive transfer gain	GOLIN		0.0	10.0	11.0	ub
difference	G in	R _L = 10	-1	0	+1	dB
Input dead zone voltage range	V _{DZ}	R _L = 10	0		30	mV
[SLED Drive Circuit]						
SLREF pin input voltage range	VSLREF		VASPREF+0.1	V _{CD}	-1.0	V
SLREF pin input bias current	IB SLREF				200	nA
Positive side setting offset	0.02.12.					
voltage between IN4	Voff SLREF	V _{SLREF} = 2.3 V, V _{ASPREF} = 2 V	-20		+20	mV
and SLREF						
Dual side step width difference voltage	V _{SLDIF}	V _{SLREF} = 2.3 V, V _{ASPREF} = 2 V	-20		+25	mV
SL MODE pin high voltage	VH SL MODE		2			V
SL MODE pin low voltage	VL SL MODE				+1	v
[OSC Block]	VE SE NODE		20			•
Maximum oscillation frequency	Fosc max				100	kHz
Source current	Is osc	V _{OSC} = 0.0 V		46	100	μΑ
[S/S Pin Function]	13 030	V03C - 0.0 V		-0		μΛ
S/S start voltage	Vss on			Vcc	-1.0	V
S/S off voltage	VSS OFF		0.5	•00	1.0	V
[External Voltage Input Block]	▼35 OFF		0.5			v
Minimum operating input						
voltage when external voltage	V _{EXT} min	R _{IN} = 1 k	3.8			v
input is applied						•
EXTDRV pin output current	IO EXT DRV		160	200	240	μA
VZ pin voltage	Vz	V _{EXT} = 4.5 V, R _{IN} = 1 k		2.6	2.8	V
VZ pin inflow current	IVz				20	mA
VEXT, VEXT-CHG pin	IB EXTCHG					
Input bias current	IB EXTCHG				200	nA
EXTBASE pin saturation						
voltage	VEXTBASE	$I_O = 1 \text{ mA}$			0.2	V
[Muting Block]						
Mute on voltage	VON MUTE				1	V
Mute off voltage	VOFF MUTE		2			v
[Pulse Charging Function]						-
Internal reference voltage	VCHGREF		0.32	0.35	0.38	V
CHG-ON pin ON voltage	VCHGHEP VCHG-ON		2	0.00	0.00	V
CHG-ON pin OFF voltage	VCHG-ON VCHG-OFF		2		1	V
·	VCHG-UFF				1	v
CHG-MON pin input bias current	IB CHGMON				200	nA
CHGDRV pin output current	IO CHGDRV		2.4	3.0	3.6	mA

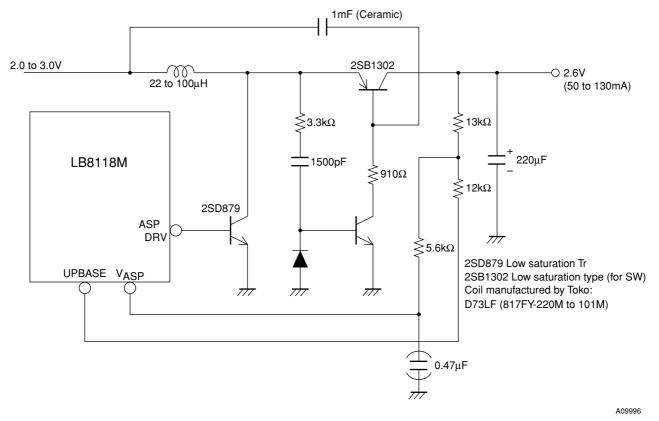
Parameter	Symbol	Conditions	min	typ	max	Unit
[H Bridge 1-channel/2-channel dr	ive switch]					
1-channel/2-channel switching, 2-channel on voltage	V 1ch/2ch				1	V
1-channel/2-channel switching, 1-channel on voltage	V 1ch/2ch		2			V
[TSD Block]						
Operating temperature	T _{TSD}	Design target value, Note 1		180		°C
Temperature hysteresis width	T _{TSD}	Design target value, Note 1		20		°C
[Battery Check Block]						
Input bias current	IBIN				200	nA
Output saturation voltage	VBO	l _O = 100 μA			0.3	V
Battery detection voltage	Vdet			0.7		V

Note 1: For parameters which have an entry of "design target value" in the "Conditions" column, no measurements are made.

Pin Assignment

Pin Functions


Pin No.	Symbol	Equivalent circuit	Function
1, 2	IN1, IN2	VCD	Actuator control signals for each
32, 33	IN3, IN4		driver:
		│	IN1: Focus, IN2: Tracking,
			IN3: Spindle, IN4: Sled.
			These signals are input from the
			ASP (DSP).
30	ASPREF		Control reference signal input pin for
			each driver. This signal is input from the
			ASP (DSP).
		777 777 A09980	
43, 42	OUT1+, 1 ⁻		Focus coil actuator drive output pins.
41, 40	OUT2+, 2 ⁻	VCD OUT1/2 VCD	Tracking coil actuator drive output pins.
38, 37	OUT3+, 3 ⁻		Spindle motor drive output pins.
36, 35	OUT4+, 4		Sled motor drive output pins.
			(Each channel includes built-in
			spark killer diodes.)
3	VOUT1		Power supply pins for the H bridge
31	Vout2		driver. V_{OUT} 1 is for the focus/tracking
-	001-		group and VOUT2 is for the spindle/sled
			group.
			Maximum value + α (α : saturation
		PGND A09981	voltage of upper/lower output Tr) of each
			2-channel control output is set by
			external PWM step-down circuit.
4	VCD		Power supply for the actuator driver
	100		controller, maximum value circuit for
			PWM, and sled controller.
5	CHGDRV		Base drive output pin for the external
Ŭ	onabriv		NPN-Tr for the battery pulse charging
			circuit.
-		-	
9	EXTDRV	Constant-current	Base drive output pin for the external
		value of each	step-down NPN-Tr used when external
			voltage input is applied.
14	DNB-1		Base drive output pin for the PNP-Tr for
		HGDRV: 3mA ← ↓ CHGDRV: 3mA ← ↓ ↓ CHGDRV: 3mA	the step-down PWM that generates the
			power supply for the H bridge driver that
		APCDRV : 0.5mA	
			drives the focus/tracking group
			drives the focus/tracking group actuators. (Open when there is one H
		CHGDRV EXTDRV ASPDRV	
15	DNB-2	CHGDRV EXTDRV	actuators. (Open when there is one H bridge power supply.)
15	DNB-2	CHGDRV EXTDRV ASPDRV	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for
15	DNB-2	CHGDRV EXTORV ASPDRV APCDRV	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the
15	DNB-2	APCDRV	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that
15	DNB-2	Constant-current circuit which	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators.
15	DNB-2	APCDRV	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when
		Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.)
15	DNB-2 ASPDRV	Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the
		Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the external NPN-Tr for the step-up
		Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the external NPN-Tr for the step-up circuit that sets the external
	ASPDRV	Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the external NPN-Tr for the step-up circuit that sets the external voltage for the DSP.
		Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the external NPN-Tr for the step-up circuit that sets the external
17	ASPDRV	Constant-current circuit which changes with the input of CH1 A09982	actuators. (Open when there is one H bridge power supply.) Base drive output pin for the PNP-Tr for the step-down PWM that generates the power supply for the H bridge driver that drives the spindle/sled group actuators. (DNB-2 becomes the drive pin when there is one H bridge power supply.) Base drive output pin for the external NPN-Tr for the step-up circuit that sets the external voltage for the DSP.


Symbol CHG MON	Equivalent circuit	Function Constant-current feedback input pin for the charging circuit. Thecharging current is determined by comparing this input voltage and the internal reference voltage (0.35 V typ.).
EXTBASE	1 KΩ 1 100 kΩ 15μ A 0 60μ A 0 77 50 kΩ 5 $10 $ 00 28 100	Connection pin for the resistor that is used to set the voltage for the external step-down circuit. This prevents invalid current at no power supply.
GND		LB8118M GND pin for small-signal block. (GND except output power Tr)
OSC	VCC OSC VCC VCC VCC VCC VCC VCC VCC VCC VCC V	Input pin for the free-running oscillation circuit that is used to operate the PWM step-down circuit and step-up circuit. The oscillating frequency is determined by external capacitors.
Vext		Voltage feedback input pin for the external power supply step-down circuit. V _{cc} for playback is set by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
Vextchg	1.2V - WCEXT-CHG 1.2V - WCEXT-CHG 10k2 10µA 10	Voltage feedback input pin for the external power supply step-down circuit. Vcc for charging is set by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
Vasp	V _{CC} UPBASE	Voltage feedback input pin for the step- up circuit. The step-up voltage is determined by comparing this pin voltage with the internal reference voltage (1.28 V typ.).
UPBASE	V _{ASP} 200Ω 10μA 10μA 10μA 1.2V 1.2V 409866	Connection pin for the resistor that is used to set the voltage of the step-up circuit. This prevents invalid current in standby mode.
	EXTBASE GND OSC VEXT VEXTCHG	EXTBASE GND OSC VEXT VEXTCHG UPBASE UPBASE UPBASE UPBASE CAN D CAN D

Continued	l from preceding p	page.	
Pin No.	Symbol	Equivalent circuit	Function
20	Vz	V _Z Reference voltage startup circuit S/S S/S VZ Reference voltage startup circuit 1.2V VREF VZ External power input Forced startup	Input pin for start-up circuit when an external voltage input is applied. The external voltage input is applied through a resistor inserted in series. The voltage is basically determined 1.2 V + 2V _{BE} ; this pin has a current draining capacity up to 20 mA.
27	S/S		LB8118M start-up input. (Start on a low-level input.)
23	V _{LD}		Laser diode voltage detection pin. The V _{LD} voltage +0.5 V is V _{APC} .
24	VAPC		Voltage feedback input pin for the APC step-up voltage circuit. The step-up power supply voltage is determined by comparing this input voltage with V _{LD} .
16	V _O SET	VCC Voset	H bridge power supply limiter voltage pin for the V _{OUT} 2 side. The voltage is limited at approximately 190% of the V _O SET voltage. The setting is made by a dividing resistor.
13	CHG-ON		Pin for selecting battery charging when external voltage input is applied. This pin is used to determine the drop voltage for the external voltage input. When low, the drop voltage set by VEXT is selected; when high, the drop voltage set by VEXT-CHG is selected.
28	MUTE		Input pin for simultaneously muting the four-channel drivers. Mute when turning the power on. (Low level: mute)
44	1ch/2ch		This pin is used to switch the H bridge power supply between two-channel simultaneous operation and one- channel operation. (Two-channel operation is selected when this pin is low.)
34	SLMODE		Pin for switching the sled driver between V-type control and step control. (High: V-type control; low: step control)

Pin No.	Symbol	Equivalent circuit	Function
26	Vcc		Power supply voltage pin.
29 33	SLREF IN4	VCD VCD IN4 200Ω SLREF 20μA 60μA 20μA 60μA 50kΩ 20μA 60μA 20μA 60μA 309991 A09991	Threshold input pin for driving the sled motor stepwise. Both the positive and negative step levels (with positive- negative symmetry) are determined by thevoltage differential between the pin voltage and the ASPREF pin voltage. (See Supplementary Explanation.)
39	PGND		Output Tr. GND for the four-channel H bridge drivers. This pin is not internally connected to the small-signal system GND.
21	BO	VCC J 50µA VCC 50µA BO GND A09992	Battery check comparator output. Internal output current is 100 µA.
22	BI	VCC	Battery check comparator input. Input bias current is 200 nA or less.

LB8118M Block Diagram

LB8118M Sample Application Circuit

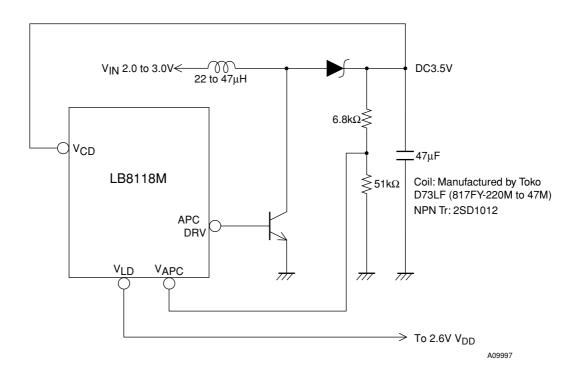
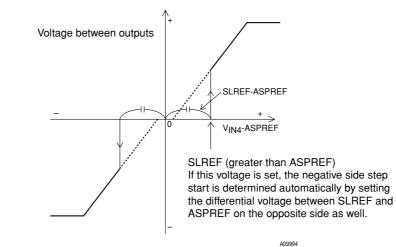


Figure 2 DC 3.5 V Sample Application (when laser power supply is V_{DD})

Supplementary Explanation

1. VCD supply


The V_{CD} line is the power supply for the driver control blocks of channels 1 to 4. The V_{CD} line can be supplied from the DSP or ASP step-up circuit by using a coil with center tap.

However, because the allowable operating range for V_{CD} is 3.6 V to 9.0 V, it is recommended that in order to reduce power dissipation, the voltage should be set to the lower range. (Even if this power supply does not affect the control performance such as the transfer gain.)

2. Sled step drive

Stepping control in this IC for the sled actuator is as described below. Normal V-type control is selected if the SLMODE pin is set high, but by setting this pin low, step drive mode with low power dissipation can be selected. (This only affects channel 4.)

The step drive starting level is input from the SLREF pin (must be higher than ASPREF), and the positive side step start is determined by comparing the input voltage with IN4. For the negative side, the step start is determined automatically by setting the differential voltage between the SLREF and the ASPREF on the opposite side, and then comparing that voltage to IN4. In other words, the control characteristics become as defined by the solid line in the diagram below. (The rise on the positive and negative steps has no hysteresis.)

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of January, 2003. Specifications and information herein are subject to change without notice.