
PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM7364

FREEDM-32

FREEDM SOFTWARE
REFERENCE DESIGN

ISSUE 2

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

i
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

CONTENTS

1 INTRODUCTION.. 1
1.1 Scope .. 1
1.2 Audience ... 1
1.3 Objective ... 1
1.4 References .. 1

2 DESIGN OVERVIEW ... 3
2.1 Reference Design Testbed .. 3
2.2 FREEDM Software Interfaces ... 3

2.2.1 PCI Hardware Interface .. 4
2.2.2 RTOS Services Interface .. 4
2.2.3 Protocol Software Interface .. 5

2.3 Overview of Software Features ... 5
2.4 Software State Diagram .. 6

3 PROTOCOL SOFTWARE INTERFACE ... 9
3.1 Data Structures and Constants ... 9
3.2 Request Routines.. 16

3.2.1 Add FREEDM ... 16
3.2.2 Remove FREEDM .. 18
3.2.3 Reset FREEDM .. 19
3.2.4 Initialize FREEDM... 21
3.2.5 Activate FREEDM... 26
3.2.6 De-activate FREEDM ... 28
3.2.7 Provisioning .. 29
3.2.8 Unprovisioning.. 35
3.2.9 Transmit .. 41

3.3 Confirm and Indication Routines ... 42
3.3.1 Transmit Confirm... 42
3.3.2 Receive Indication .. 42
3.3.3 Counter Status Indication ... 43
3.3.4 Critical Error Indication ... 43

4 PCI HARDWARE INTERFACE .. 44
4.1 Register Access Routines ... 44

4.1.1 Normal Register Access ... 44
4.1.2 PCI Configuration Register Access 44

4.2 Interrupt Service Routine .. 45

5 RTOS SERVICES INTERFACE ... 47

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

ii
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5.1 Service Requests .. 47
5.1.1 Install/Remove Timer .. 47
5.1.2 Allocate/Deallocate Memory... 47
5.1.3 Virtual/Physical Address Translation................................. 47
5.1.4 Install/Remove ISR ... 47
5.1.5 Deferred Processing Routine.. 48
5.1.6 Buffer Management .. 48

5.2 Service Callbacks.. 48
5.2.1 Deferred Processing Routine.. 48
5.2.2 Counters Polling ... 51
5.2.3 Activity Polling... 53
5.2.4 Queues Processing .. 54

APPENDIX A: DATA TYPES AND CONSTANTS ... 55

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

1
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

1 INTRODUCTION

1.1 Scope

This document describes the routines and data structures which are necessary
to interface a FREEDM to a PCI bus host. The routines are written and tested
while running in a VxWorks real-time operating system (RTOS) environment.
Source code for the software reference design is made available to customers
using the FREEDM in their own designs. The source code can be used with any
RTOS because the routines are written in C language and the software
interfaces are designed to be independent of the RTOS.

The routines are tested on Pentium based motherboards with revision 2.1
compliant PCI local buses. The routines are intended to demonstrate the
interface between the FREEDM and the host. The software reference design
version 1.22 is described in this document, but the software for other devices on
the reference design card and software work-arounds for any hardware
functional deficiencies are not described.

1.2 Audience

The intended audience for this document is customers and engineers who want
to make use of software routines, written and tested by PMC-Sierra, for
interfacing the FREEDM to their system software.

1.3 Objective

The purpose of the FREEDM software reference design is to provide an example
of the software interfaces for a typical application of the FREEDM. The source
code is tested and debugged so that it can be readily used in any application that
makes use of the FREEDM.

1.4 References

• PMC-960758, FREEDM-32 Data Sheet, October 1997, Issue 3

• PCI Special Interest Group, PCI BIOS Specification, August 26, 1994,
Revision 2.1

• PMC-970281, FREEDM Programmer's Guide, February 1997, Issue 1

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

2
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• PMC-970240, FREEDM-32 With TOCTL Reference Design, February 1997,
Issue 1

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

3
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

2 DESIGN OVERVIEW

2.1 Reference Design Testbed

The reference design testbed in which the reference design software runs is
shown in figure 1. The host is a Pentium based motherboard equipped with
multiple PCI bus slots, each slot is capable of supporting a FREEDM reference
design card. Since the interrupt pin of all PCI bus slots are multiplexed onto a
single interrupt line of the host's Programmable Interrupt Controller, interrupt
service routines of multiple reference design cards share the same interrupt line.
Please refer to the hardware reference design document, PMC-970240, for
details of the reference design card.

Figure 1. Simplified Block Diagram of Testbed

Pentium PC
running
Tornado

development
tools

Pentium PC with m ultiple PCI bus slot
running VxW orks kernel

Seria l link

Host

FREEDM
Reference
Design Card

2.2 FREEDM Software Interfaces

The FREEDM software reference design provides routines and data structures
that are tightly coupled to the system software via the interfaces defined in this
document. The routines do not run as a separate task within the RTOS but are
callable by any task which makes use of them. For this reason they are designed
to be re-entrant.

The following interfaces are defined (see figure 2):

• PCI hardware Interface

• RTOS services

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

4
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• Protocol software Interface

Figure 2. FREEDM Software Interfaces

FREEDM Hardware

RTOS

Protocol Software

Register
Access Interrupt

Request
Routine

RTOS
Serv ice
Routine

FREEDM Software

RTOS
Serv ice
Callback

Confirm Routine/Indication Routine

2.2.1 PCI Hardware Interface

The PCI hardware interface provides routines to read or write FREEDM registers
within the PCI configuration space or the memory mapped address space. It also
defines the template for an interrupt service routine which is called when an
interrupt occurs on the PCI bus. The PCI BIOS functions are responsible for the
operations in PCI configuration space, please refer to the PCI BIOS Specification
for details of the functions.

2.2.2 RTOS Services Interface

The reference design software makes use of the following RTOS services:

• system timer

• memory allocation/deallocation

• translation between virtual and physical addresses

• installation and removal of an interrupt service routine

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

5
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• deferred processing of interrupts

2.2.3 Protocol Software Interface

The protocol software interfaces to the FREEDM via request, confirm and
indication primitives. These are defined in this document as the request, confirm
and indication routines.

A request routine is simply a function called by the protocol software, whereby
the FREEDM software carries out the request and returns a status. If the request
is completed then the confirm primitive is included with return of the function call.

The confirm routines are necessary for the FREEDM software to return the
status of a request to the protocol software when the status could not be
provided during return from the request routine.

The indication routines are necessary for the FREEDM software to notify the
protocol software of an event within the FREEDM hardware.

2.3 Overview of Software Features

Reset:

• Software reset of the FREEDM and the software.

Initialization:

• Initializes the FREEDM and software data structures (including queues and
descriptor tables) that are associated with the FREEDM.

Activation/De-activation:

• Activation places the FREEDM in a state ready to transmit/receive packets
across the PCI bus and enables the host to respond to interrupts generated
by the FREEDM.

• De-activation disables the FREEDM and the interrupts.

Provisioning/Unprovisioning:

• Provision/unprovision FREEDM channels that are necessary to transmit and
receive packets.

Transmit:

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

6
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

• Transmits packets by queuing packet references on ready queues. Free
transmit buffers and descriptors on completion of data transfer across the PCI
bus.

Receive:

• Receives packets by polling of packet references on ready queues or
processing of receive interrupts. Replenish free receive buffers and
descriptors after the host finishes reading the data from the buffers.

Interrupt Servicing:

• Clears the interrupt and passes the interrupt status to a deferred processing
routine.

Interrupt Processing:

• Processing of the interrupt status within the deferred processing routine.

Diagnostics:

• Enables/disables internal diagnostic loopback on channel basis.

• Enables/disables external line loopback.

• Monitors the link activities.

Performance Monitor Statistics:

• Polls the counters to prevent them from overflow. The counts are then sent to
the protocol software for accumulation.

For descriptions of the configurable features and operation of a FREEDM from a
programmer's perspective, please refer to the FREEDM Programmer's Guide,
PMC-970281.

2.4 Software State Diagram

Figure 3 shows the software state diagram. A state transition can occur only
when a request routine successfully completes. The valid set of functions that
can be called while the software is in each state is shown in table1.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

7
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Figure 3. FREEDM State Diagram

INIT

EXIST

RESET

ACTIVE

addFREEDM(...)

rem oveFREEDM(...)

resetFREEDM(...)

initFREEDM(...)

activateFREEDM(...)

rxProv(...)/txProv(...)

transm it(...)

FREEDMISR(...)

rxUnprov(...)/txUnprov(...)

START/
END

resetFREEDM(...)

resetFREEDM(...)

deactivateFREEDM(...)

resetFREEDM(...)

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

8
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Table 1. Software State Definition

STATE Description Valid Functions
START/

END
The FREEDM hardware does not
exist.

addFREEDM()

EXIST The FREEDM hardware is found on
the PCI bus.

resetFREEDM(),
removeFREEDM()

RESET The FREEDM hardware and the
software is reset.

resetFREEDM(), initFREEDM(),
removeFREEDM()

INIT The data structures (descriptor
tables, reference queues) are
initialized.

activateFREEDM(),
resetFREEDM()

ACTIVE The FREEDM is activated and is
ready to provision/unprovision
channels, transmit/receive packets,
process interrupts.

rxProv/txProv(),
rxUnprov/txUnprov(), transmit(),
FREEDMIsr(),
deactivateFREEDM(),
resetFREEDM()

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

9
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3 PROTOCOL SOFTWARE INTERFACE

3.1 Data Structures and Constants

Software data structures are defined for code management and debugging
purpose. They are optional. Customizations to the following data structures are
necessary for different applications and systems specifications.

FREEDM Context Structure

The FREEDM context structure is allocated by the protocol software. Each
structure contains the context of one FREEDM reference design card. The fields
of the FREEDM context structure are defined as follows (data types and
constants are included in Appendix A):

typedef struct{
UBYTE uState;
DWORD dInstance;
DeviceHandle dPCIHandle;
DWORD dTxDTSize;
DWORD dRxDTSize;
DWORD dRxSmallBufSize;
DWORD dRxLargeBufSize;
TxPacketDescriptor *pTxDTBase;
DWORD *pTxQBase;
DWORD *pTxAQBase;
RxPacketDescriptor *pRxDTBase;
DWORD *pRxQBase;
DWORD *pRxAQBase;
TxPacket *pTxPacketBase;
DWORD *pRxPacketBase;
Block *pTxBlkBase;
Block *pRxBlkBase;
Block *pTxHeadBlk[MAX_CHANNELS];
Block *pRxHeadBlk[MAX_CHANNELS];
Block *pFreeTxBlk;
Block *pFreeRxBlk;
FREEDMQueue TxAvailableQ;
FREEDMQueue TxFreeQ;
FREEDMQueue TxReadyQ;
FREEDMQueue RxAvailableQ;
FREEDMQueue RxLargeFreeQ;
FREEDMQueue RxSmallFreeQ;
FREEDMQueue RxReadyQ;
TxChannelInfo *pTxChannelInfo[MAX_CHANNELS];
RxChannelInfo *pRxChannelInfo[MAX_CHANNELS];
RegInfo Registers;
DWORD dClockMon;
DWORD dLinkMon;
DWORD dOFCounter;
DWORD dUFCounter;

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

10
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

DWORD dC1Counter;
DWORD dC2Counter;
DWORD dPMONStatus;
DWORD dCounterTimerID;
DWORD dActivityTimerID;
DWORD dProcessTimerID;
BYTE dCounterDelay;
BYTE dActivityDelay;
BYTE dProcessDelay;

} FREEDMContext;

/* Description of variables: */
/* uState– software state */
/* dInstance– device instance number */
/* dPCIHandle– device handle number */
/* dTxDTSize– size of the Tx descriptor table */
/* dRxDTSize– size of the Rx descriptor table */
/* dRxSmallBufSize– size of the Rx small data buffer */
/* dRxLargeBufSize– size of the Rx large data buffer */
/* *pTxDTBase– pointer to the base of Tx descriptor table */
/* *pTxQBase- pointer to the base of Tx queue space */
/* *pTxAQBase- pointer to the base of Tx available queue */
/* *pRxDTBase- pointer to the base of Rx descriptor table */
/* *pRxQbase- pointer to the base of Rx queue space */
/* *pRxAQBase- pointer to the base of Rx available queue */
/* *pTxPacketBase- pointer to the base of Tx packet ID table */
/* *pRxPacketBase- pointer to the base of Rx packet ID table */
/* *pTxBlkBase- pointer to the base of the Tx block structures */
/* *pRxBlkBase- pointer to the base of the Rx block structures */
/* *pTxHeadBlk[MAX_CHANNELS]- array of pointers to the first block*/
/* of Tx partial packet buffer */
/* *pRxHeadBlk[MAX_CHANNELS}- array of pointers to the first block*/
/* of Rx partial packet buffer per channel */
/* *pFreeTxBlk- pointer to the next free Tx block */
/* *pFreeRxBlk- pointer to the next free Rx block */
/* TxAvailableQ- Tx available queue structure */
/* TxFreeQ- Tx descriptor free queue structure */
/* TxReadyQ- Tx descriptor ready queue structure */
/* RxAvailableQ- Rx available queue structure */
/* RxLargeFreeQ- Rx packet descriptor large buffer free queue */
/* structure */
/* RxSmallFreeQ- Rx packet descriptor small buffer free queue */
/* structure */
/* RxReadyQ- Rx packet descriptor ready queue structure */
/* *pTxChannelInfo[MAX_CHANNELS]- array of pointers to Tx channel */
/* provisioning information */
/* *pRxChannelInfo[MAX_CHANNELs}- array of pointers to Rx channel */
/* provisioning information */
/* Registers- registers structure */
/* dClockMon- register value of the clock activity monitor */
/* dLinkMon- register value of the link activity monitor */
/* dOFCounter- register value of PMON overflow counter */
/* dUFCounter- register value of PMON underflow counter */
/* dC1Counter- register value of PMON user configured counter 1 */
/* dC2Counter- register value of PMON user configured counter 2 */
/* dPMONStatus- register value of PMON status */
/* dCounterTimerID- ID of the PMON counters polling timer */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

11
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

/* dActivityTimerID- ID of the link activity polling timer */
/* dProcessTimerID- ID of the queue processing timer */
/* dCounterDelay- period of time (in ticks) to poll the PMON */
/* dActivityDelay- period of time (in ticks) to poll the link */
/* activity monitor */
/* dProcessDelay- period of time (in ticks) to process the queues */

The Tx and Rx available queues are software queue structures used as central
pools of queue elements. They are implemented for queue element
management.

The Tx and Rx packet ID tables are used to relate a packet ID to a descriptor
reference. The packet ID of a Tx packet is assigned by the host and the ID of a
Rx packet is assigned sequentially upon reception.

Provision Channel Info Structure

This structure contains information needed to provision a transmit/receive
channel. It is allocated by the protocol software, a pointer to it is a parameter of
the provision request. A pointer to the structure is dedicated for each channel
and is valid until the removeFREEDM() call or the txUnprov()/rxUnprov() call. A
total of 256 pointers (128 for transmit channels and 128 for receive channels) are
contained within each FREEDM context structure. An invalid or undefined pointer
assignment is NULL.

The fields of the transmit provision channel info are defined as follows:

typedef struct{
UBYTE uTxChannel;
UBYTE uLink;
DWORD dTimeSlot;
DWORD dTHDLChannelDataReg1Flag;
DWORD dTHDLChannelDataReg2Flag;
DWORD dTHDLChannelDataReg3;
WORD dNoOfBlocks;
WORD dUnderflow;

}TxChannelInfo;

/* Description of variables: */
/* uTxChannel- Tx channel number to be provisioned */
/* uLink- Tx link mapped to uTxChannel */
/* dTimeslot- Tx timeslots of uLink mapped to uTxChannel */
/* dTHDLChannelDataReg1Flag- CRC[1:0], IDLE and DELIN of */
/* THDL Indirect Channel Data #1 register */
/* dTHDLChannelDataReg2Flag- 7BIT, PRIORITYB, INVERT and DFCS of */
/* THDL Indirect Channel Data #2 register */
/* dTHDLChannelDataReg3- value of THDL Indirect Channel Data #3 */
/* register */
/* dNoofBlocks- length of the Tx partial packet buffer */
/* dUnderflow- underflow status from the Tx descriptor reference */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

12
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

The fields of the receive provision channel info are defined as follows:

typedef struct{
UBYTE uRxChannel;
UBYTE uLink;
DWORD dTimeSlot;
UBYTE uCDLBEN;
DWORD dRHDLChannelDataReg1Flag;
DWORD dRHDLChannelDataReg2;
WORD dNoOfBlocks;

}RxChannelInfo;

/* Description of variables: */
/* uRxChannel- Rx channel number to be provisioined */
/* uLink- Rx link mapped to uRxchannel */
/* dTimeSlot- Rx timeslots of uLink mapped to uRxChannel */
/* uCDLBEN- diagnostic loopback enable bit */
/* dRHDLChannel1DataReg1Flag- CRC[1:0], STRIP and DELIN of */
/* RHDL Indirect Channel Data Register #1 */
/* dRHDLChannelDataReg2- value of RHDL Indirect Channel Data */
/* Register #2 */
/* dNoOfBlocks- length of the Rx partial packet buffer */

For a channelised T1 link, time-slots 1 to 24 are valid. For a channelised E1 link,
time-slots 1 to 31 are valid. For unchannelised links, only time-slot 0 is valid.
Each time-slot corresponds to a bit in the dTimeSlot field. For example, when
time-slot 0 is configured, the least significant bit in dTimeSlot is set to 1 .

FREEDM Queue Structure

The FREEDM queue structure is allocated by the protocol software but
initialized during transition to the INIT state. It contains the virtual memory
address of the queue base, the virtual memory addresses of the queue index
registers, and the values of these registers. This queue structure is contained
within the FREEDM context structure. The fields of the FREEDM queue are
defined as follows:

typedef struct{
WORD dHeadroom;
WORD dBatchSize;
BYTE dReadCount;
BYTE dWriteCount;
DWORD dQSize;

 DWORD *pQBase;
DWORD *pStartReg;
DWORD *pWriteReg;
DWORD *pReadReg;
DWORD *pEndReg;
DWORD dStart;
DWORD dWrite;
DWORD dRead;
DWORD dEnd;

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

13
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

}FREEDMQueue;

/* Description of variables: */
 /* dReadRoom- number of references to be read */

/* dWriteRoom- number of spaces to be written */
/* dBatchSize- for PCI bus performance, read and write index */
/* registers are written in batch */
/* dReadCount- counter of reads before accessing registers */
/* dWriteCount- counter of writes before accessing registers */
/* dQSize- size of the queue */
/* *pQBase- pointer to the queue base register */
/* *pStartReg- pointer to the start index register */
/* *pWriteReg- pointer to the write index register */
/* *pReadReg- pointer to the read index register */
/* *pEndReg- pointer to the end index register */
/* dStart- shadow of start index in the host */
/* dWrite- shadow of write index in the host */
/* dRead- shadow of read index in the host */
/* dEnd- shadow of end index in the host */

FREEDM Block Structure

The FREEDM block structure contains information necessary to identify the
partial packet buffer blocks within the RDHL and TDHL of each channel. This
structure is used as a software copy of the partial packet buffer blocks within the
internal RAM of the FREEDM. There are 512 blocks for receive and 512 blocks
for transmit direction. The head pointer for each partial packet buffer list is
contained within the FREEDM context structure in fields:
pTxHead[MAX_CHANNELS] and pRxHead[MAX_CHANNELS]. These pointers
are NULL until they are assigned to form a partial packet buffer during channel
provisioning. The fields of a FREEDM block are defined as follows:

typedef struct BlockStruct{
DWORD dBlockNum;
struct BlockStruct *pNext;

}Block;

/* Description of variables: */
/* dBlockNum- 1<=block number<=512 */
/* *pNext- pointer to the next block, if there is any */

FREEDM Descriptor Structure

The FREEDM descriptor structure is allocated by the protocol software. The
descriptors are found in the descriptor tables. A pointer to this structure is used
in transmit request/confirm and receive indication routine. The field of the
descriptor structure is an array of the four DWORDS of a descriptor:

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

14
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

typedef struct {
DWORD dTDArray[4];

} TxPacketDescriptor;

/* Description of variable: */
/* dTDArray[4]- an array of four DWORDS of a Tx descriptor */

typedef struct {
DWORD dRDArray[4];

} RxPacketDescriptor;

/* Description of variable: */
/* dRDArray[4]- an array of four DWORDS of a Rx descriptor */

FREEDM Packet Structure

The FREEDM packet structure is allocated by the protocol software. A pointer to
this structure is used in transmit request/confirm and receive indication routine.
The fields of the packet structure are defined as follows:

typedef struct{
DWORD dPacketID;
Buffer *pHeadAddr;
UBYTE uTxChannel;
BYTE dStatus;
WORD dPriorityFlag;
WORD dABTIOCFlag;

}TxPacket;

/* Description of variables: */
/* dPacketID- ID of a packet that transmitted by user */
/* *pHeadAddr- pointer to the first buffer structure */
/* uTxChannel- channel number that the packet to be transmitted to*/
/* dStatus- status to indicate result of Tx */
/* dPriorityFlag- set priority bit on Bit 10 of 2 nd DWORD of Tx */
/* descriptor */
/* dABTIOCFlag- set ABT bit on Bit 15 and IOC bit on Bit 14 of 3 rd */
/* DWORD of Tx descriptor */

typedef struct{
DWORD dPacketID;
Buffer *pHeadAddr;
UBYTE uRxChannel;
BYTE dStatus;
BYTE dOffset;

}RxPacket;

/* Decription of variables: */
/* dPacketID- ID of a packet received */
/* *pHeadAddr- pointer to the first buffer structure */
/* uRxChannel- channel number that the packet is received from */
/* dOffset- byte offset of data packet from the start of buffer */
/* dStatus- status of the Rx packet decriptor reference */

The fields of the buffer structure are defined as follows:

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

15
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

typedef struct BufferStruct{
WORD dBufSize;
BYTE *pData;
struct BufferStruct *pNext;

}Buffer;

/* Description of variables: */
/* dBufSize- size of buffer */
/* *pData- pointer to the buffer data location */
/* *pNext- pointer to the next buffer, if there is any */

FREEDM Interrupt Context Structure

The FREEDM interrupt context structure is allocated during initialization when
the routine installISR is called. It contains information needed for the interrupt
process. A pointer to this structure is passed into the interrupt service routine
and the deferred process routine as an argument. The fields of the interrupt
context are defined as follows:

typedef struct{
FREEDMContext *pFreedm;
DWORD dIntStatus;

}IntContext;

/* Description of variables: */
/* *pFreedm- pointer to the FREEDM context structure */
/* dIntStatus- value of the interrupt status register */

FREEDM Register Info Structure

The FREEDM register info structure is allocated by the protocol software. It
contains registers values needed for FREEDM initialization. This structure is
contained within the FREEDM context structure. The fields of the register info
are defined as follows:

typedef struct{
DWORD dIntEnable;
DWORD dRCASLink[MAX_LINKS];
DWORD dTCASLink[MAX_LINKS];
DWORD dRCASFrameBitThres;
DWORD dTCASFrameBitThres;
DWORD dTCASIdleTSFillData;
DWORD dRMACCtrl;
DWORD dTMACCtrl;
DWORD dGPICCtrl;
DWORD dRHDLMaxLength;
DWORD dRHDLConfig;
DWORD dTHDLConfig;
DWORD dPerfMonCtrl;

}RegInfo;

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

16
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

/* Description of variables: */
/* dIntEnable- interrupts to be enabled */

/* dRCASLink[MAX_LINKS]- value of RCAS Link #n Configuraton */
/* register */
/* dTCASLink[MAX_LINKS]- value of TCAS Link #n Configuration */
/* register */
/* dRCASFrameBitThres- threshold used to detect framing bits/bytes*/
/* dTCASFrameBitThres- threshold used to detect framing bits/bytes*/
/* dTCASIdleTSFillData- data to be written to disabled time-slots */
/* dRMACCtrl- configuration of RMAC Control register */
/* dTMACCtrl- configuration of TMAC Control register */
/* dGPICCtrl- configuration of GPIC Control register */
/* dRHDLMaxLength- configuration of RHDL Maximum packet length */
/* dRHDLConfig- value of RHDL Configuration register */
/* dTHDLConfig- value of THDL Config register */
/* dPerfMonCtrl- counters to be configured for PMON control */

3.2 Request Routines

Variable that is global to all the request routines:

typedef enum {SUCCESS, PENDING, FAILURE}RC;

When FAILURE is returned, a global integer errno is set to propagate error
information.

3.2.1 Add FREEDM

The function addFREEDM adds the FREEDM context to the software. The
FREEDM changes from START/END state to EXIST state.

Function Prototype:

RC addFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be added.

Return Value:

RC (return code):
SUCCESS or FAILURE if the FREEDM is not in START/END state or if the

routine addPCIDevice fails or if the installTimer fails .

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

17
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Modified Value:

The PCI handle for the FREEDM and the state of the FREEDM.

Side Effects:

None.

Caveat:

The FREEDM must be physically plugged into the host to complete the
addFREEDM function. The protocol software must have initialized the
following fields within the FREEDM context before calling addFREEDM:

UBYTE uState,
BYTE dInstance

Pseudo-Code:

RC addFREEDM(
FREEDMContext *pFreedm)

{
pFreedm->dPCIHandle <- addPCIDevice(pFreedm->dInstance, DEVICE_ID,

VENDOR_ID)
If pFreedm->dPCIHandle is less than 0, return FAILURE
Install pollCounter and queueProcess timers
If installTimer fails, clean up and return FAILURE
Assign timer ID within the FREEDM context
Modify the state of FREEDM to EXIST
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

18
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.2 Remove FREEDM

The function removeFREEDM removes the FREEDM context from the software .

Function Prototype:

RC removeFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be removed.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is in the INIT or ACTIVE state.

Modified Value:

None.

Side Effects:

None.

Caveat:

The FREEDM must be in the EXIST or the RESET state before this function
is run.

Pseudo-Code:

RC removeFREEDM(
FREEDMContext *pFreedm)

{
If FREEDM is in INIT or ACTIVE state, set errno and return FAILURE
Remove the timers set for the FREEDM
If fail to remove timers, return FAILURE
Else return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

19
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.3 Reset FREEDM

The function resetFREEDM is responsible for resetting the FREEDM under
software control.

Function Prototype:

RC resetFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be reset.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is in the START/END state

Modified Value:

The state of the FREEDM, from EXIST/INIT/ACTIVE to RESET.

Side Effects:

None.

Caveat:

The FREEDM must not be in the START/END state before this function is
run.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

20
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC resetFREEDM(
FREEDMContext *pFreedm)

{
If FREEDM is in START/END state, set errno and return FAILURE
Disable the interrupts
RMAC control register.ENABLE bit <- 0
TMAC Control register.ENABLE bit <- 0
FREEDM Master Reset and Identity register.RESET bit <- 1
FREEDM Master Reset register.RESET bit <- 0
If FREEDM is in the INIT or ACTIVE state, deallocate the memory space

that has been allocated during initialization
If FREEDM is in the ACTIVE state, remove timers and ISR that have

been installed during activation.
Change the state of the FREEDM to RESET
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

21
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.4 Initialize FREEDM

The initialization routine is responsible for initialization of the FREEDM data
structures.

Function Prototype:

RC initFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be initialized.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is not in the RESET state.

Modified Value:

The state of the FREEDM, from RESET to INIT.

Side Effects:

None.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

22
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Caveat:

The protocol software must have initialized the following fields within
the FREEDM context before calling initFREEDM:

FREEDMContext:
DWORD dTxDTSize; /* at max 16384 */
DWORD dRxDTSize; /* at max 16384 */

FREEDMQueue TxAvailableQ: DWORD dStart;
DWORD dQSize; /* equals to dTxDTSize */

FREEDMQueue TxFreeQ: DWORD ddStart;
DWORD dQSize;

FREEDMQueue TxReadyQ: DWORD dStart;
DWORD dQSize;

FREEDMQueue RxAvailableQ: DWORD dStart;
DWORD dQSize; /* equals to dRxDTSize */

FREEDMQueue RxLargeFreeQ: DWORD dStart;
DWORD dQSize;

FREEDMQueue RxSmallFreeQ: DWORD dStart;
DWORD dQSize;

FREEDMQueue RxReadyQ: DWORD dStart;
DWORD dQSize;

RegInfo Registers: DWORD dIntEnable;
DWORD dTCASLink[MAX_LINKS];
DWORD dRCASLink[MAX_LINKS];
DWORD dTCASFrameBitThres;
DWORD dTCASIdleTSFillData;
DWORD dRCASFrameBitThres;
DWORD dTMACCtrl;
DWORD dRMACCtrl;
DWORD dGPICCtrl;
DWORD dTHDLConfig;
DWORD dRHDLConfig;
DWORD dRHDLMaxLength;
DWORD dPerfMonCtrl;

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

23
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC initFREEDM(
FREEDMContext *pFreedm)

{
If the FREEDM is not in RESET state, set errno and return FAILURE

/* Check the user inputs */
/* for both tx and rx direction - check max queue size*/
queue limit <- pFreedm->pTxQBase + MAX_QUEUE_SPACE (256K)
If any one of the Tx queues exceeds the queue limit, set

errno and return FAILURE

queue limit <- pFreedm->pRxQBase + MAX_QUEUE_SPACE (256K)
If any one of the Rx queues exceeds the queue limit, set

errno and return FAILURE

/* for both tx and rx direction - check overlap */
If start index of the queue overlap another queue space, set errno

and return FAILURE

/* check size of rx large and small free queue */
If both rx large and small free queue size = ZERO, set errno and

return FAILURE

/* Initialization of base addresses */
pTxDTBase <- allocate memory space for Tx descriptor table
pTxQBase <- allocate memory space for Tx reference queues
pTxAQBase <- allocate memory space for Tx available queue
pRxDTBase <- allocate memory space for Rx descriptor table

 pRxQBase <- allocate memory space for Rx reference queues
pRxAQBase <- allocate memory space for Rx available queue
Allocate memory space for TxPacket table and rx packet ID table
Allocate memory space for free block structure

/* covert the virtual address to physical address if the virt addr
is different from the phys addr (it is the same in VxWorks) */

phyTxDTBase <- Convert address of *pTxDTBase to physical address
TMAC Transmit Descriptor Table Base LSW register <- the least
significant word of phyTxDTBase
TMAC Transmit Desciptor Table Base MSW register <- the most
significant word of phyTxDTBase

/* convert the virtual addrss to physical address if the virt addr
is different from the phys addr (it is the same in VxWorks) */

phyTxQBase <- Convert address of *pTxQBase to physical address
TMAC Transmit Queue Base LSW register <- the least significant

word of phyTxQBase
TMAC Transmit Queue Base MSW register <- the most significant

word of phyTxQBase

/* covert the virtual address to physical address if the virt addr
is different from the phys addr (it is the same in VxWorks) */

phyRxDTBase <- Convert address of *pRxDTBase to physical address
RMAC Packet Descriptor Table Base LSW register <- the least
significant word of phyRxDTBase

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

24
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

RMAC Receive Desciptor Table Base MSW register <- the most
significant word of phyRxDTBase

/* covert the virtual address to physical address if the virt addr
is different from the phys addr (it is the same in VxWorks) */

phyRxQBase <- Convert address of *pRxQBase to physical address
RMAC Receive Queue Base LSW register <- the least significant

word of phyRxQBase
RMAC Receive Queue Base MSW register <- the most significant

word of phyRxQBase

/* Rx Ready Queue Initialization */
dRxReadyPhyQSize <- RxReadyQ.dQSize + 1
RxReadyQ.dWrite <- RxReadyQ.dStart
RxReadyQ.dRead <- RxReadyQ.dStart + RxReadyQ.dQSize
RxReadyQ.dEnd <- RxReadyQ.dStart + dRxReadyPhyQSize
RMAC PDRRQ Start <- RxReadyQ.dStart
RMAC PDRRQ Write <- RxReadyQ.dWrite
RMAC PDRRQ Read <- RxReadyQ.dRead
RMAC PDRRQ End <- RxReadyQ.dEnd

/* Rx Small Buffer Free Queue Initialization */
dRxSmallPhyQSize <- RxSmallFreeQ.dQSize + 1
RxSmallFreeQ.dWrite <- RxSmallFreeQ.dStart
RxSmallFreeQ.dRead <- RxSmallFreeQ.dStart + RxSmallFreeQ.dQSize
RxSmallFreeQ.dEnd <- RxSmallFreeQ.dStart + dRxSmallPhyQSize
RMAC PDRSBFQ Start <- RxSmallFreeQ.dStart
RMAC PDRSBFQ Write <- RxSmallFreeQ.dWrite
RMAC PDRSBFQ Read <- RxSmallFreeQ.dRead
RMAC PDRSBFQ End <- RxSmallFreeQ.dEnd

/* Put references on the Rx small buffer free queue */
Use a FOR loop to put references on the Rx small buffer free queue

/* Rx Large Buffer Free Queue Initialization */
dRxLargePhyQSize <- RxLargeFreeQ.dQSize + 1
RxLargeFreeQ.dWrite <- RxLargeFreeQ.dStart
RxLargeFreeQ.dRead <- RxLargeFreeQ.dStart + RxLargeFreeQ.dQSize
RxLargeFreeQ.dEnd <- RxLargeFreeQ.dStart + dRxLargePhyQSize
RMAC PDRLBFQ Start <- RxLargeFreeQ.dStart
RMAC PDRLBFQ Write <- RxLargeFreeQ.dWrite
RMAC PDRLBFQ Read <- RxLargeFreeQ.dRead
RMAC PDRLBFQ End <- RxLargeFreeQ.dEnd

/* Put references on the Rx large buffer free queue */
Use a FOR loop to put references on the Rx large buffer free queue

/* Rx Available Queue Initialization */
dRxAvailablePhyQSize <- RxAvailableQ.dQSize + 1
RxAvailableQ.dWrite <- RxAvailableQ.dStart
RxAvailableQ.dRead <- RxAvailableQ.dStart + RxAvailableQ.dQSize
RxAvailableQ.dEnd <- RxAvailableQ.dStart + dTxAvailablePhyQSize

/* Put references on the Rx available queue */
Use a FOR loop to assign references on the Rx available queue

/* Tx Ready Queue Initialization */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

25
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

dTxReadyPhyQSize <- TxReadyQ.dQSize + 1
TxReadyQ.dWrite <- TxReadyQ.dStart
TxReadyQ.dRead <- TxReadyQ.dStart + TxReadyQ.dQSize
TxReadyQ.dEnd <- TxReadyQ.dStart + dTxReadyPhyQSize
TMAC TDRRQ Start <- TxReadyQ.dStart
TMAC TDRRQ Write <- TxReadyQ.dWrite
TMAC TDRRQ Read <- TxReadyQ.dRead
TMAC TDRRQ End <- TxReadyQ.dEnd

/* Tx Free Queue Initialization */
dTxFreePhyQSize <- TxFreeQ.dQSize + 1
TxFreeQ.dWrite <- TxFreeQ.dStart
TxFreeQ.dRead <- TxFreeQ.dStart + TxFreeQ.dQSize
TxFreeQ.dEnd <- TxFreeQ.dStart + dTxFreePhyQSize
TMAC TDRFQ Start <- TxFreeQ.StartÎndex
TMAC TDRFQ Write <- TxFreeQ.dWrite
TMAC TDRFQ Read <- TxFreeQ.dRead
TMAC TDRFQ End <- TxFreeQ.dEnd

/* Tx Available Queue Initialization */
dTxAvailablePhyQSize <- TxAvailableQ.dQSize + 1
TxAvailableQ.dWrite <- TxAvailableQ.dStart
TxAvailableQ.dRead <- TxAvailableQ.dStart + TxAvailableQ.dQSize
TxAvailableQ.dEnd <- TxAvailableQ.dStart + dTxAvailablePhyQSize

/* Put references on the Tx available queue */
Use a FOR loop to assign references on the Tx available queue

Initialize all rx descriptors to default values
Initialize all tx descriptors to default values
Initialize all the ChannelInfo pointers to NULL
Initialize all the free block pointers to NULL
Initialize the packet ID tables
Initialize the interrupt context structures
Configure serial links
Configure GPIC interface
Configure counters for performance monitor
Configure RHDL and THDL
Change the state of the FREEDM to INIT
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

26
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.5 Activate FREEDM

After a successful master reset procedure, the FREEDM needs to be activated to
start operation.

Function Prototype:

RC activateFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be activated.

Return Value:

SUCCESS, or FAILURE if the FREEDM is not in INIT state.

Modified Value:

The state of the FREEDM, from INIT to ACTIVE.

Side Effects:

None.

Caveat:

The FREEDM should be initialized before the function activateFREEDM is
run. The protocol software must have initialized the following fields
within the FREEDM context:

BYTE dCounterDelay;
BYTE dActivityDelay;
BYTE dProcessDelay;

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

27
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC activateFREEDM(
FREEDMContext *pFreedm)

{
If FREEDM is not in INIT state, set errno and return FAILURE
Install the ISR for interrupt processing, if installHandles fails,

return FAILURE
Assign dIntEnable within the FREEDM context to FREEDM Master

Interrupt Enable register
RMAC Control register.ENABLE bit <- 1
TMAC Control register.ENABLE bit <- 1
If dCounterDelay is greater than 0, start timer which callback the

pollCounter routine. If startTimer fails, return FAILURE
If dActivityDelay is greater than 0, start time which callback the

pollActivity routine. If startTimer fails, return FAILURE
If dProcessDelay is greater than 0, start timer which callback the

queueProcess routine. If startTimer fails, return FAILURE
Change the state of the FREEDM to ACTIVE
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

28
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.6 De-activate FREEDM

The state of FREEDM changes from ACTIVE to INIT after deactivation.

Function Prototype:

RC deactivateFREEDM(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be deactivated.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is not in ACTIVE state.

Modified Value:

The state of the FREEDM, from ACTIVE to INIT.

Side Effects:

None.

Caveat:

The FREEDM must be activated before this function is run.

Pseudo-Code:

RC deactivateFREEDM(
FREEDMContext *pFREEDM)

{
If FREEDM is not in ACTIVE state, set errno and return FAILURE
FREEDM Master Interrupt Enable register <- 0x0
Remove the ISR. If removeHandlers fails, return FAILURE
RMAC Control register.ENABLE bit <- 0
TMAC Control register.ENABLE bit <- 0
If dCounterDelay is greater than 0, stop the timer for polling. If

stopTimer fails, return FAILURE
If dActivityDelay is greater than 0, stop the timer for polling. If

stopTimer fails, return FAILURE
If dProcessDelay is greater than 0, stop the timer for queue

processing. If stopTimer fails, return FAILURE
Change the state of the FREEDM to INIT
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

29
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.7 Provisioning

The receive and transmit channels are provisioned separately. Only one channel
can be provisioned at a time.

Receive channels are provisioned as follow:

1. Set the CHDIS bit to 1 and write the channel number CHAN[6:0] that is
being disabled to RCAS Channel Disable 0x10C .

2. Ensure that the BUSY bit of RHDL Indirect Block Select 0x210 is set to
0 before programming channel FIFO. Set the block pointer value
BPTR[8:0] in RHDL Indirect Block Data 0x214 .

3. Writing the block number BLOCK[8:0] which owns the pointer to RHDL
Indirect Block Select 0x210 .

4. Repeat step 2 and 3 to form a circular linked list (with min. 3 blocks and
max. 512 blocks).

5. Ensure that the BUSY bit of RHDL Indirect channel Select 0x200 is set
to 0 before a new indirect RAM access can be started. Set the PROV bit
to 1 and assign one of the block number of the circular linked list as
FPTR[8:0] to RHDL Indirect Channel Data Register #1 0x204 . Setup
CRC, STRIP, DELIN bit to any desired value.

6. Configure RHDL Indirect Channel Data Register #2 0x208 .

7. Set the CRWB bit to 0 and write the channel number CHAN[6:0] to RHDL
Indirect channel Select 0x200 . Poll the BUSY bit to ensure it is 0 before
proceeding.

8. Ensure that the BUSY bit of RCAS Indirect Link and Time-slot Select
0x100 is set to 0 before provisioning RCAS block. Set the PROV bit to 1
and write the channel number CHAN[6:0] to RCAS Indirect Channel
Data 0x104 .

9. Set the RWB bit to 0 and write the link LINK[4:0] and the timeslot
TSLOT[4:0] to RCAS Indirect Link and Time-slot Select 0x100 .

10. In channelised links, if the channel spans multiple timeslots, register
RCAS Indirect Link and Time-slot Select 0x100 needs to be written
once for each time-slot to associate to the channel. Ensure that the BUSY
bit is 0 after each write.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

30
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

11. Set the CHDIS bit to 0 and write the channel number CHAN[6:0] that is
being enabled to RCAS Channel Disable 0x10C to indicate that provision
is complete for that channel.

Function Prototype:

RC rxProv(
FREEDMContext *pFreedm,
RxChannelInfo *pRxProvInfo

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

RxChannelInfo *pRxProvInfo:
A pointer to the provision channel info structure to be used in

provisioning.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is not in ACTIVE state.

Modified Value:

None.

Side Effects:

None.

Caveat:

This function should be run in ACTIVE state. All the fields in the
receive channel info must have initialized by the protocol software
before calling rxProv.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

31
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC rxProv(
FREEDMContext *pFreedm,
RxChannelInfo *pRxProvInfo)

{
If FREEDM is not in ACTIVE state, set errno and return FAILURE
If the channel is provisioned, set errno and return FAILURE
RCAS Channel Disable register <- channel to be disabled for prov
Make the partial packet buffer list from free blocks and update the

first block pointer within the FREEDM context
If the BUSY bit in RHDL Indirect Channel Select register is not set

to 0, poll the bit for a max period of 0.1 sec until it is set to
0, otherwise set errno and return FAILURE

Configure RHDL Indirect Channel Data #1 register
Configure RHDL Indirect Channel Data #2 register
RHDL Indirect Channel Select register <- channel to be provisioned
If the BUSY bit in RHDL Indirect Channel Select register is not set

to 0, poll the bit for a max period of 0.1 sec until it is set to
0, otherwise set errno and return FAILURE

If the BUSY bit in RCAS Indirect Link and Time-slot Select register
is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

RCAS Indirect Channel Data register <- channel to be provisioned
RCAS Indirect Link and Time-slot Select register <- link and

time-slot to be assigned to the provisioned channel, if the
channel spans multiple time-slot, write register once for each
time-slot and check BUSY bit after each write.

RCAS Channel Disable register <- channel to be enabled after prov
Update the channel info pointer within the FREEDM context
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

32
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Transmit channels are provisioned as follow:

1. Set the CHDIS bit to 1 and write the channel number CHAN[6:0] that is
being disabled to TCAS Channel Disable 0x410 .

2. Set the block pointer value BPTR[8:0] in THDL Indirect Block Data
0x3A4 .

3. Ensure that the BUSY bit is set to 0 in THDL Indirect Block Select
0x3A0 before writing the block number BLOCK[8:0] which owns the
pointer BPTW[8:0] (in THDL Indirect Block Data 0x3A4) to it.

4. To form a circular linked list, repeat step 2 and 3. This step is repeated as
necessary (min. 3 blocks and max. 512 blocks).

5. Ensure that the BUSY bit is set 0 in THDL Indirect Channel Select
0x380 before provisioning the THDL block. Set the PROV bit to 1 and set
the FPTR[8:0] as one of the block number of the circular linked list in
THDL Indirect Channel Data #1 0x384 .

6. Configure THDL Indirect Channel Data #2 0x388 .

7. Configure THDL Indirect Channel Data #3 0x38C .

8. Set the CRWB bit to 0 and write the channel number CHAN[6:0] to THDL
Indirect Channel Select 0x380 . Poll the BUSY bit to ensure it is 0
before proceeding.

9. Ensure that the BUSY bit in TCAS Indirect Channel And Time-Slot
Select 0x400 is set 0 before provisioning the TCAS block. Set the PROV
bit to 1 and write the channel number CHAN[6:0] to TCAS Indirect
Channel Data 0x404 .

10. Set the RWB to 0 and write the link LINK[4:0] and the timeslot TSLOT[4:0]
to TCAS Indirect Channel And Time-Slot Select 0x400 .

11. In channelised links, if the channel spans multiple timeslots, registers
TCAS Indirect Channel And Time-Slot Select 0x400 needs to be written
once for each time-slot to associate to the channel. Poll the BUSY bit until
it is zero after each write.

12. Ensure that the BUSY is set 0 before setting the RWB to 0, setting the
PROV bit to 1 and writing the channel number CHAN[6:0] to TMAC

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

33
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Indirect Channel Provisioning 0x304 . Poll the BUSY bit to ensure
provisioning TMAC has completed.

13. Set the CHDIS bit to 0 and write the channel number CHAN[6:0] that is
being enabled to TCAS Channel Disable 0x410 to indicate that provision
is completed for that channel.

Function Prototype:

RC txProv(
FREEDMContext *pFreedm,
TxChannelInfo *pTxProvInfo

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

TxChannelInfo *pTxProvInfo:
A pointer to the provision channel info structure to be used in

provisioning.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is not in ACTIVE state.

Modified Value:

None.

Side Effects:

None.

Caveat:

This function should be run in ACTIVE state. All the fields in the
transmit channel info must have initialized by the protocol software
before calling txProv.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

34
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC txProv(
FREEDMContext *pFreedm,
TxChannelInfo *ptxProvInfo)

{
If FREEDM is not in ACTIVE state, set errno and return FAILURE
If the channel has been provisioned, set errno and return FAILURE
TCAS Channel Disable register <- channel to be disabled for prov
Make the partial packet buffer list from free blocks and update the

first block pointer within the FREEDM context
If the BUSY bit in THDL Indirect Channel Select register is not set

to 0, poll the bit for a max period of 0.1 sec until it is set to
0, otherwise set errno and return FAILURE

Configure THDL Indirect Channel Data #1 register
Configure THDL Indirect Channel Data #2 register
Configure THDL Indirect Channel Data #3 register
THDL Indirect Channel Select register <- channel to be provisioned
If the BUSY bit in THDL Indirect Channel Select register is not set

to 0, poll the bit for a max period of 0.1 sec until it is set to
0, otherwise set errno and return FAILURE

If the BUSY bit in TCAS Indirect Link and Time-slot Select register
is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

TCAS Indirect Channel Data register <- channel to be provisioned
TCAS Indirect Link and Time-slot Select register <- link and

time-slot to be assigned to the provisioned channel
If the channel spans multiple time-slots, write the register once
for each time-slot and poll the busy bit to ensure it is 0 after
each write

If the BUSY bit in TMAC Indirect Channel Provisioning register is not
set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE.

TMAC Indirect Channel Provisioning register <- channel to be
provisioned

TCAS Channel Disable register <- channel to be enabled after prov
Update the channel info pointer in the FREEDM context
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

35
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.8 Unprovisioning

The receive and transmit channels can be unprovisioned. The unprovisioned
channels can be provisioned again provided that the block pointers are re-written
to properly initialize the channel FIFO. Only one channel can be unprovisioned
at a time.

Receive channels are unprovisioned as follow:

1. Set the CHDIS bit to 1 and write the channel number CHAN[6:0] that is
being disabled to RCAS Channel Disable 0x10C .

2. Ensure that the BUSY bit in RCAS Indirect Link and Time-slot Select
0x100 is set to 0 before unprovisioning the RCAS block. Set the PROV bit
to 0 and write the channel number CHAN[6:0] to RCAS Indirect Channel
Data 0x104 .

3. Set RWB bit to 0 and write the link LINK[4:0] and the timeslot TSLOT[4:0]
to RCAS Indirect Link and Time-slot Select 0x100 .

4. In channelised links, if the channel spans multiple timeslots, registers
RCAS Indirect Link and Time-slot Select 0x100 needs to be written
once for each time-slot to properly unprovision the channel. Poll the
BUSY bit to ensure that it is 0 after each write.

5. Ensure that the BUSY bit of RHDL Indirect Channel Select 0x200 is set
to 0 before unprovisioning the RHDL block. Read the RHDL channel data
by setting CRWB to 1 and writing the channel number CHAN[6:] to RHDL
Indirect Channel Select 0x200 .

6. Read RHDL Indirect Channel Data Register #1 0x204 and proceed until
the TAVAIL bit is zero.

7. Configure RHDL Indirect Channel Data Register #1 0x204 and set the
PROV bit to 0 in order to unprovision.

8. Set the CRWB to 0 and write the channel number CHAN[6:0] that needs
to be unprovisioned to RHDL Indirect Channel Select 0x200 . Poll the
BUSY bit to ensure that it is 0 before proceeding.

9. Ensure that the BUSY bit is set to 0 before setting the RWB to 0, setting
the PROV bit to 0 and writing the channel number CHAN[6:0] to RMAC

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

36
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Indirect Channel Provisioning 0x284 . Poll the BUSY bit to ensure it is 0
before proceeding.

10. Set the CHDIS bit to 0 and write the channel number CHAN[6:0] that is
being enabled to RCAS Channel Disable 0x10C to indicate that
unprovision is complete for that channel.

Function Prototype:

RC rxUnprov(
FREEDMContext *pFreedm,
UBYTE uRxUnprovChannel

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

UBYTE uRxUnprovChannel:
The receive channel to be unprovisioned.

Return Value:

RC (return code):
SUCCESS, or FAILURE if the FREEDM is not in ACTIVE state.

Modified Value:

None.

Side Effects:

None.

Caveat:

This function should be run in ACTIVE state.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

37
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC rxUnprov(
FREEDMContext *pFreedm,
UBYTE uRxUnprovChannel)

{
If FREEDM is not in ACTIVE state, set errno and return FAILURE
If the channel is unused, set errno and return FAILURE
RCAS Channel Disable register <- channel to be disabled for unprov
If the BUSY bit in RCAS Indirect Link and Time-slot Select register

is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

RCAS Indirect Channel Data register <- channel to be unprovisioned
RCAS Indirect Link and Time-slot Select register <- link and

time-slot to be assigned to the unprovisioned channel. For
channelised links, write the register once for each time-slots to
be unprovisioned. Poll the BUSY bit to ensure it is 0 after
each write

If the BUSY bit in RHDL Indirect Channel Select register
is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

Read the RHDL channel data by writing RHDL Indirect Channel Data #1
register. Poll the BUSY bit to ensure it is 0

Read the RHDL indirect channel data and check that the TAVAIL bit is
0 before proceeding

RHDL Indirect Channel Data # 1 register <- set the PROV bit to 0
RHDL Indirect Channel Select register <- channel to be unprovisioned.

Poll the BUSY bit to ensure it is 0 before proceeding
If the BUSY bit in RMAC Indirect Channel Provisioning register

is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

RMAC Indirect Channel Provisioning reg<- channel to be unprovisioned.
Poll the BUSY bit to ensure it is 0 before proceeding

RCAS Channel Disable register <- channel to be enabled after unprov
Set NULL to the pointer pointing to this channel info structure
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

38
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Transmit channels are unprovisioned as follow:

1. Ensure that the BUSY bit is set to 0 before setting the RWB bit to 0,
setting the PROV bit to 0 and writing the channel number CHAN[6:0] to
TMAC Indirect Channel Provisioning 0x304 . Poll the BUSY bit to
ensure that it is 0 before proceeding.

2. Set the CHDIS bit to 1 and write the channel number CHAN[6:0] that is
being disabled to TCAS Channel Disable 0x410 .

3. Ensure that the BUSY bit of TCAS Indirect Channel And Time-Slot
Select 0x400 is set to 0 before unprovisioning the TCAS block. Set the
PROV bit to 0 and write the channel number CHAN[6:0] to be
unprovisioned to TCAS Indirect Channel Data 0x404 .

4. Set the RWB bit to 0 and write the link LINK[4:0] and the timeslot
TSLOT[4:0] to TCAS Indirect Channel And Time-Slot Select 0x400 . For
channelised link, write the register once for each time-slot to be
unprovisioned. Poll the BUSY bit to ensure it is 0 after each write.

5. Ensure that the BUSY bit of THDL Indirect Channel Select 0x380 is set
to 0 before unprovisioning the THDL block. Read the THDL channel data
by setting CRWB to 1 and writing the channel number CHAN[6:] to THDL
Indirect Channel Select 0x380 . Poll the BUSY bit until it is 0 before
proceeding.

6. Read THDL Indirect Channel Data #1 0x384 and configure it by setting
the PROV bit to 0.

7. Set the CRWB bit to 0 and write the channel number CHAN[6:0] to THDL
Indirect Channel Select 0x380 . Poll the BUSY bit to ensure that it is 0
before proceeding.

8. Set the CHDIS bit to 0 and write the channel number CHAN[6:0] that is
being enabled to TCAS Channel Disable 0x410 to indicate that
unprovision is completed for that channel.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

39
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype:

RC txUnprov(
FREEDMContext *pFreedm,
UBYTE uTxUnprovChannel

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

UBYTE uTxUnprovChannel:
The transmit channel to be unprovisioned.

Return Value:

RC (return code):
SUCCESS, FAILURE if the FREEDM is not in ACTIVE state.

Modified Value:

None.

Side Effects:

None.

Caveat:

This function should be run in ACTIVE state.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

40
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC txUnprov(
FREEDMContext *pFreedm,
UBYTE uTxUnprovChannel)

{
If FREEDM is not in ACTIVE state, set errno and return FAILURE
If the channel is unused, set errno and return FAILURE
If the BUSY bit in TMAC Indirect Channel Provisioning register

is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

TMAC Indirect Channel Provisioning <- channel to be unprovisioned.
Poll the BUSY bit until it is 0 before proceeding

TCAS Channel Disable register <- channel to be disabled for unprov
If the BUSY bit in TCAS Indirect Link and Time-slot Select register

is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

TCAS Indirect Channel Data register <- channel to be unprovisioned
TCAS Indirect Link and Time-slot Select register <- link and

time-slot to be assigned to the unprovisioned channel. For
channelised link, write the register once for each time-slot to be
unprovisioned. Poll the BUSY bit to ensure it is 0 after each
write

If the BUSY bit in THDL Indirect Channel Select register
is not set to 0, poll the bit for a max period of 0.1 sec until it
is set to 0, otherwise set errno and return FAILURE

Read THDL Indirect Channel Data # 1 register by writing THDL Indirect
Channel Select register

Configure THDL Indirect Channel Data #1 register
THDL Indirect Channel Select register <- channel to be unprovisioned.

Poll the BUSY bit to ensure that it is 0 before proceeding
TCAS Channel Disable register <- channel to be enabled after unprov
Set NULL to the pointer pointing to this channel info structure
Return SUCCESS

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

41
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.2.9 Transmit

This routine is responsible for writing a packet reference to the transmit ready
queue. The status of the transmit request is not known until the TD reference is
read from the transmit free queue. Therefore, the return code of this request
routine is specified as PENDING. The confirmation of the transmit request is
generated at a later time when the transmit confirm routine is called within the
deferred processing routine.

Function Prototype:

RC transmit(
FREEDMContext *pFreedm,
TxPacket *pTxBuffer,

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

TxPacket *pTxBuffer:
A pointer to the link listed buffer to be transmitted.

Return Value:

RC (return code):
PENDING, as the packet is not transmitted until the reference of the

transmit descriptor is read from the transmit free queue. FAILURE if
the FREEDM is not in ACTIVE state or the software has run out of
available references.

Modified Value:

The write index of the transmit ready queue.

Side Effects:

None.

Caveat:
The FREEDM must be in the ACTIVE state before the function transmit
runs. The protocol software must have initialized all the fields within
the tx packet before calling transmit.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

42
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Pseudo-Code:

RC transmit(
FREEDMContext *pFreedm,
TxPacket *pTxBuffer)

{
If the FREEDM is not in ACTIVE state, set errno and return FAILURE
If there is not enough references on the avail queue, set errno and

return FAILURE
Assign the info in the packet structure to the tx descriptor
Queue the first descriptor reference of the packet on the transmit

ready queue
If the reference is not queued successfully, free the descriptors

Back to the Tx available queue, set errno and return
FAILURE

Else return PENDING
}

3.3 Confirm and Indication Routines

The Confirm and Indication routines must be implemented within the protocol
software. The FREEDM software calls these routines when it is in the ACTIVE
state. Function prototypes for these routines are provided below:

3.3.1 Transmit Confirm

Routine confirmTx() is called after the software has read the transmit descriptor
reference (TDR) from the Tx descriptor free queue and finished processing the
TDR status.

void confirmTx(FREEDMContext *pFreedm, TxPacket *pTxBuffer);
/* *pFreedm- pointer to the FREEDM context */
/* *pTxBuffer- pointer to the Tx packet that has been transmitted */

3.3.2 Receive Indication

Routine indRx() is called after the software has read the receive packet
descriptor reference (RPDR) from the Rx packet descriptor ready queue and
finished processing the RPDR status.

void indRx(FREEDMContext *pFreedm, RxPacket *pRxBuffer);
/* *pFreedm- pointer to the FREEDM context */
/* *pRxBuffer- pointer to the Rx packet that has been received */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

43
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.3.3 Counter Status Indication

Routine indCountStat() is called when the PMON counters are polled.

void indCountStat(FREEDMContext *pFreedm);
/* *pFreedm- pointer to the FREEDM context */

3.3.4 Critical Error Indication

Routine indCriticalErr() is called when critical interrupts are generated.

void indCriticalErr(FREEDMContext *pFreedm, DWORD dCriticalInt);
/* *pFreedm- pointer to the FREEDM context */
/* dCriticalInt- value of the interrupt status register (for */
/* critical interrupts only) */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

44
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4 PCI HARDWARE INTERFACE

4.1 Register Access Routines

The functions in the following sections are called by the FREEDM software to
access the FREEDM registers:

4.1.1 Normal Register Access

Routine readRegister() is used to read normal mode registers of the FREEDM.

STATUS readRegister(int dDeviceHandle, int dRegister, DWORD *pValue);
/* dDeviceHandle- device handle number */
/* dRegister- register offset */
/* pValue- pointer to the value read from the register */

Routine writeRegister() is used to write normal mode registers of the FREEDM.

STATUS writeRegister(int dDeviceHandle, int dRegister, DWORD dValue);
/* dDeviceHandle- device handle number */
/* dRegister- register offset */
/* dValue- value to be written to the register */

4.1.2 PCI Configuration Register Access

Routine readPCIRegisterDWord() is used to read individual dwords from the
configuration space of the FREEDM.

STATUS readPCIRegisterDWord(int dDeviceHandle, int dRegister,
DWORD *pValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* *pValue- pointer to the value read from the PCI configuration */
/* register */

Routine writePCIRegisterDWord() is used to write individual dwords from the
configuration space of the FREEDM.

STATUS writePCIRegisterDWord(int dDeviceHandle, int dRegister,
DWORD dRegisterValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* dRegisterValue- value to be written to the PCI configuration */
/* register */

Routine readPCIRegisterWord() is used to read individual words from the
configuration space of the FREEDM.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

45
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

STATUS readPCIRegisterWord(int dDeviceHandle, int dRegister,
DWORD *pValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* *pValue- pointer to the value read from the PCI configuration */
/* register */

Routine writePCIRegisterWord() is used to write individual words from the
configuration space of the FREEDM.

STATUS writePCIRegisterWord(int dDeviceHandle, int dRegister,
DWORD dRegisterValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* dRegisterValue- value to be written to the PCI configuration */
/* register */

Routine readPCIRegisterByte() is used to read individual bytes from the
configuration space of the FREEDM.

STATUS readPCIRegisterByte(int dDeviceHandle, int dRegister,
DWORD *pValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* *pValue- pointer to the value read from the PCI configuration */
/* register */

Routine writePCIRegisterByte() is used to write individual bytes from the
configuration space of the FREEDM.

STATUS writePCIRegisterByte(int dDeviceHandle, int dRegister,
DWORD dRegisterValue);

/* dDeviceHandle- device handle number */
/* dRegister- PCI configuration register offset */
/* dRegisterValue- value to be written to the PCI configuration */
/* register */

4.2 Interrupt Service Routine

This function is implemented within the FREEDM software. It is called in
response to an interrupt on the PCI bus. This function can only be called when
the FREEDM software is in the ACTIVE state. An RTOS service call is made to
install this ISR, and to remove this ISR.

This routine reads the interrupt status register and saves the interrupt status in
the interrupt context structure for later interpretation by the Deferred Processing
Routine (DPR).

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

46
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype:

BOOL FREEDMIsr(
void *pIntContext

);

Function Arguments:

IntConext *pIntContext:
A pointer to the interrupt context which contains information

necessary for interrupt processing.

Return Value:

TRUE if this PCI device has an active interrupt status, otherwise FALSE.

Modified Value:

pInterruptContext is updated with the interrupt status.

Side Effects:

Active interrupt status bits are disabled.

Caveat:

None.

Pseudo-Code:

BOOL FREEDMIsr(
void *pIntContext)

{
BOOL bIsValidInt <- FALSE
Read the FREEDM Master Interrupt Status register
Mask off reserved bits and check if the interrupt is valid
If valid, bIsValidInt <- TRUE
Save the master interrupt status within the Interrupt context for DPR
Disable interrupts
Return bIsValidInt

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

47
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5 RTOS SERVICES INTERFACE

5.1 Service Requests

The Freedm software calls the following RTOS service request functions:

5.1.1 Install/Remove Timer
DWORD installTimer();

STATUS startTimer(DWORD dTimerID, int dDelay, FuncPtr pFunc,
 void *pArg);

/* dTimerID- ID of timer */
/* dDelay- delay count, in ticks */
/* pFunc- routine to call on time-out */
/* *pArg- pointer to parameter with which to call routine */

STATUS stopTimer(DWORD dTimerID);
/* dTimeID- ID of timer */

STATUS removeTimer(DWORD dTimerID);
/* dTimerID- ID of timer */

5.1.2 Allocate/Deallocate Memory
void *malloc(DWORD dBytes);
/* dBytes- number of bytes to be allocated */

void free(void *memoryPtr);
/* *memoryPtr- pointer to the memory to be deallocated */

5.1.3 Virtual/Physical Address Translation
DWORD mapVirtToPhys(DWORD uVirtualAddr);
/* uVirtualAddr- virtual address */

DWORD mapPhysToVirt(DWORD uPhysAddr);
/* uPhysAddr- physcial address */

5.1.4 Install/Remove ISR
STATUS installHandler(DeviceHandle dFreedmHandle, FuncPtr pISRFunc,

FuncPtr pDPRFunc, void *pArg);
/* dFreedmHandle- device handle number */
/* pISRFunc- interrupt service routine to call upon interrupt */
/* pDPRFunc- deferred process routine to call upon interrupt */
/* *pArg- pointer to parameter with which to call ISR and DPR */

STATUS removeHandler(DeviceHandle dFreedmHandle);
/* dFreedmHandle- device handle number */

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

48
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5.1.5 Deferred Processing Routine
void FREEDMDPR(void *pIntContext);
/* *pIntContext- pointer to interrupt context */

5.1.6 Buffer Management
BYTE *getLgBuf();

BYTE *getSmBuf();

Buffer *getPtrBuffer();

TxPacket *getTxPacket();

RxPacket *getRxPacket();

STATUS putLgBuf(BYTE* pBufAddr);
/* *pBufAddr- pointer to the address of larget buffer */

STATUS putSmBuf(BYTE* pBufAddr);
/* *pBufAffr- pointer to the address of small buffer */

STATUS createIntContext(
DeviceHandle dPCIHandle,DWORD dIntContextNumber);

/* dPCIHandle- device handle number */
/* dIntContextNumber- number of interrupt contexts to be allocated*/

BYTE *getIntContext (DeviceHandle dPCIHandle);
/* dPCIHandle- device handle number */

STATUS putIntContext(DeviceHandle dPCIHandle, BYTE* pIntAddr);
/* dPCIHandle- device handle number */
/* *pIntAddr- pointer to the interrupt context to be put away */

void deleteIntContext(DeviceHandle dPCIHandle);
/* dPCIHandle- device handle number */

5.2 Service Callbacks

These callback routines are installed during the service request. They are called
upon timer expiration or interrupt.

5.2.1 Deferred Processing Routine

This function processes the interrupt status that was written to the interrupt
context when servicing the PCI bus interrupt. This function is installed along with
the interrupt service routine via the installHandler() RTOS service request.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

49
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype:

VOID FREEDMDpr(
void *pIntContext

);

Function Arguments:

IntContext *pIntContext:
A pointer to the interrupt context which contains information

necessary for interrupt processing.

Return Value:

None.

Modified Value:

The interrupt context is being read after the DPR.

Side Effects:

None.

Pseudo-Code:

VOID FREEDMDpr(
void *pIntContext)

{
/* interrupts are processed until there is no interrupt */
A while loop to process interrupts until there is no interrupt
Free the interrupt context after processing
Enable the interrupts

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

50
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

VOID intProcess{
Void *pintContext)

{
If the RPQRDYI interrupt bit is set
Restart the process timer
Process the rx ready queue and call the routine indRx for each

packet reference read until the rx ready queue is empty
Write the references to rx available queue for reuse

If the TDQFI or IOCI interrupt bit is set
Restart the process timer
Process the tx free queue and call the routine confirmTx for each

packet reference read until the tx free queue is empty
Write the references to tx available queue for reuse

If the RPQSFI interrupt bit is set
Replenish the rx small free queue from the rx available queue with

new buffers

If the RPQLFI interrupt bit is set
Replenish the rx large free queue from the rx available queue with
new buffers

If one of the severe interrupts have been reported i.e. SERRI, PERRI,
RFCSEI, RABRTI, RPFEI, ROVRI, RPDFQEI, RPDRQEI, TDFQEI, TFUDRI,
call the routine indCriticalErr

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

51
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5.2.2 Counters Polling

This routine performs a constant polling of counters and modifies the values of
counters within the FREEDM context strucutre. Counters are polled as follows:

• Read the count registers, PMON Receive FIFO Overflow Count 0x504 ,
PMON Receive FIFO Underflow Count 0x508 , PMON Configurable Count
#1 0x50C and PMON Configurable Count #2 0x510 .

• Read the PMON Status 0x500 which indicates whether any of the four
internal holding counters has overflowed.

• Write to FREEDM Master Clock/BERT Activity Monitor and Accumulation
Trigger 0x00C to delimit the accumulation intervals in the PMON
accumulation registers.

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

52
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Function Prototype:

void pollCounters(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

Return Value:

None.

Modified Value:

The counters values within the FREEDM context.

Side Effects:

None.

Pseudo-Code:

void pollCounters(
FREEDMContext *pFreedm)

{
Read the corresponding counters and save the values within the FREEDM

context
Read the PMON Status register and check if there is internal overflow
Write to the FREEDM BERT Activity Monitor and Accumulation Trigger

register to reload counters for next read
Call the indCountStat routine
Call the startTimer routine which call pollCounters routine at the

expiration of the timer
}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

53
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5.2.3 Activity Polling

This routine is called periodically to perform a read from the FREEDM master
clock activity monitor and the FREEDM master link activity monitor to detect for
stuck at conditions. Values read from the registers are stored within the
FREEDM context structure and processed by the protocol software.

Function Prototype:

void pollActivity(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

Return Value:

None.

Modified Value:

The activity monitors values within the FREEDM context.

Side Effects:

None.

Pseudo-Code:

void pollActivity(
FREEDMContext *pFreedm)

{
Read the FREEDM Master Clock Activity Monitor register and the

FREEDM Master Link Activity Monitor register and store the values
within the FREEDM context

Call the startTimer routine which call pollActivity routine at the
expiration of the timer.

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

54
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5.2.4 Queues Processing

This routine processes the unread references on the receive ready queue and
the transmit free queue at the process timer expiration. The timer restarts when
RPQRDYI, TDQFI, or IOC interrupt occurs.

Function Prototype:

void queueProcess(
FREEDMContext *pFreedm

);

Function Arguments:

FREEDMContext *pFreedm:
A pointer to the context of FREEDM to be interrogated.

Return Value:

None.

Modified Value:

None.

Side Effects:

None.

Pseudo-Code:

void queueProcess(
FREEDMContext *pFreedm)

{
If the receive ready queue is not empty
Process the rx ready queue and call the indRx routine for each packet

reference read
Write the references to rx available queue for reuse

If the transmit free queue is not empty
Process the tx free queue and call the routine confirmTx for each

packet reference read
Write the references to tx available queue for reuse

Replenish the small/large rx free queue with new buffers

Call the startTimer routine which call queueProcess routine at the
expiration of the timer.

}

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

55
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

APPENDIX A: DATA TYPES AND CONSTANTS

The following data types and constants are defined in the header file:

typedef char BYTE;
typedef uchar UBYTE;
typedef short WORD;
typedef ushort UWORD;
typedef long DWORD;
typedef ulong UDWORD;

#define MAX_CHANNELS 128
#define MAX_BLOCKS 512
#define MAX_LINKS 32
#define MAX_DT_SIZE 16384

All variables that are used in this document follow a naming convention as shown
in the table A1.

Table A1. Variable Type Prefixes

Variable Type Prefix
Boolean b
Pointer p

Signed Integer d
Unsigned Integer u

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

56
PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

NOTES

PM7364 FREEDM-32

REFERENCE DESIGN

PMC-970280 ISSUE 2 FREEDM SOFTWARE REFERENCE DESIGN

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or
suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied
warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility
of such damage.

© 1998 PMC-Sierra, Inc.

PM-970280 (R2) Issue date:

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USEPMC-SIERRA, INC.

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

