
PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

PM5347

AUTOMATIC PROTECTION SWITCHING
(APS) SOFTWARE REFERENCE DESIGN

PRELIMINARY

ISSUE 2:FEBUARY 1997

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

i

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

CONTENTS

1 INTRODUCTION.. 1

1.1 AUDIENCE.. 1

2 DESIGN OVERVIEW ... 2

3 FUNCTIONAL DESCRIPTION... 7

3.1 OCTAL PLUS CONFIGURATION.. 7

3.2 SD TIMER ISR .. 8

3.3 BERM CLEARING ISR.. 10

3.4 WTR TIMER ISR ... 11

3.5 OCTAL PLUS INTERRUPT SERVICE ROUTINE........................ 12

3.6 EVALUATE NEW REQUESTS... 13

3.7 GENERATE K1 AND K2 BYTES... 14

3.8 SELECT AND BRIDGE CHANNEL TRAFFIC 18

4 IMPLEMENTATION .. 19

4.1 DEVELOPMENT TOOLS ... 19

4.2 PROGRAM STRUCTURE AND ROUTINES 20

5 REFERENCES... 26

6 APPENDIX A ... 27

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

1

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

1 INTRODUCTION

Automatic Protection Switching allows the recovery of a failed channel link
between two nodes by switching traffic to a redundant protection channel. APS
utilizes the K1 and K2 bytes in the SONET line overhead to implement a bit-
oriented protocol for switching operation. The APS architecture consists of
selectors, and bridges for each channel and a central controller.

This document describes the design, functionality, and implementation of an APS
controller interfaced to PMC S/UNI-PLUS devices. This design is an extension
to the Octal PLUS with APS reference design. The Octal PLUS reference with
APS design document, PMC-960553, describes the hardware implementation of
APS using S/UNI-PLUS devices.

Please refer to PMC-960505 for a tutorial on APS system operation and
architecture.

1.1 Audience

This software reference design document has been prepared for customers who
are implementing Automatic Protection Switching using PMC-Sierra S/UNI or
SONET/SDH family chipsets.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

2

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

2 DESIGN OVERVIEW

The APS Controller is implemented by an interrupt driven software program
written for the Motorola HC16Z1 series microcontroller. The microcontroller sits
on the SWAN reference design board (PMC-970127) which is interfaced to the
Octal PLUS board. The Octal PLUS consists of eight OC-3 ports, containing
APS Bridge and Select hardware on board. Figure 1 depicts the APS setup
using the SWAN and the Octal PLUS boards. Channel eight is used as the
redundant channel to provide protection for the remaining seven working
channels.

Figure 1: Automatic Protection Switching Setup

The APS controller monitors the SONET line overhead K1 and K2 bytes and
controls the bridging and selecting of traffic to and from the protection channel.
It updates the transmit K1 and K2 bytes according to the status of the local node
and requests services from the remote node if needed.

For linear APS, two automatic switch initiation criteria are defined in Bellcore GR-
253-CORE. The first criteria is associated with a hard failure and is labeled as
Signal Fail (SF). SF is declared when any of the following conditions has been
detected: Loss of Signal (LOS), Loss of Frame (LOF), Line Alarm Indication

OPTICS
I/F #1

OPTICS
I/F #8

SWAN

Octal PLUS

MCHC16Z1

B
rid

ge
 &

 S
el

ec
to

r

Protection
Channel

PMC970127

PMC960553

PMC
S/UNI-
 155-PLUS

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

3

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Signal (AIS-L), or a Line BER threshold exceeding a range of 10-3 to 10-5. The
second criteria is associated with a soft failure and is called Signal Degrade
(SD). SD is declared when a BER exceeding a user-provisionable range of 10-5

to 10-9 has been detected. After a failure condition due to either SD or SF has
been detected, Bellcore GR-253-CORE requires the APS controller to complete
an automatic switch within 50 ms. The software design in this application note
will meet the 50 ms requirement and takes into account the APS bytes signaling
time and software execution time.

The S/UNI-PLUS device provides all the hardware required to detect both SF
and SD criteria. For the SF criteria, the S/UNI-PLUS generates a hardware
interrupt when any of LOS, LOF, and AIS-L conditions has been declared. The
integral BERM block can be programmed to detect a SF BER range of 10-4 to
10-5. For the SD criteria, the S/UNI-PLUS’s 20-bit BIP counter can used to
detect a BER range of 10-5 to 10-9. The APS controller polls the BIP counter at a
defined interval to check if accumulated BIP error has exceed a maximum
threshold calculated based on the BER defined.

In addition, the S/UNI-PLUS supports extraction and insertion of APS K1/K2
bytes and detection of APS byte failure. The APS controller can insert K1 and
K2 bytes in the transmit stream by writing to the transmit K1 and K2 registers.
The S/UNI-PLUS filters and captures the K1 and K2 bytes allowing them to be
read via the receive K1 and K2 registers.

Figure 2 shows the flowchart for the APS controller software program. The
software design is implemented as an interrupt driven program. The controller
stays in the main loop until it is interrupted by a hardware or software interrupt.
The interrupt service routines then perform the APS controller functions.

The configuration step sets up the S/UNI-PLUS for BERM detection, enables
interrupts to detect LOS, LOF, AIS-L failures. The eighth S/UNI-PLUS is setup
to detect change in the received K1/K2 bytes and APS bytes failure. After
configuring the Octal PLUS, the program goes into a continuous loop and waits
for interrupts to occur.

Four types of interrupts are defined for the controller program:

• SD Timer Software Interrupt

• BERM Timer Software Interrupt

• WTR Timer Software Interrupt

• Octal PLUS Hardware Interrupt

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

4

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Each of the above four interrupts is serviced by its respective interrupt service
routine (ISR). Note, the S/UNI-PLUS BERM block is configured to detect an SF
condition. Therefore, this condition is incorporated in the interrupts generated
from the Octal PLUS board.

Figure 2: Flowchart of the APS Controller

Configure
Octal PLUS

Main Loop

N

Select and Bridge
Channel Traffic

Y

Generate APS
K1 and K2 Bytes

Y

Evaluate New
Request

Priority of New
Request ≥ Current

Request?

New APS
Request?

N

SD Timer
ISR

SD Timer
Interrupt

BERM Clearing
ISR

BERM Clearing
Interrupt

WTR Timer
ISR

WTR Time r
Interrupt

Octal PLUS
ISR

Octal PLUS
Interrupt

User Request
ISR

External User
Request

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

5

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

The SD Timer interrupt service routine polls the BIP count to check if it has
exceeded the SD threshold. If the BIP count exceeds the preset threshold, SD
condition is declared and a new APS request is initiated.

The BERM Clearing interrupt service routine checks whether a previously
declared excessive SF BER has been cleared. The S/UNI-PLUS BERM block
does not generate a clearing interrupt when the failure link has recovered from
an excessive BER. To solve this problem, the APS controller polls the BERM
block to determine whether a clearing threshold has been reached. If clearing
has been detected, a new APS request is initiated.

The WTR Timer interrupt service routine keeps track of the wait time required for
switching back to a working channel. The WTR Timer is only activated when a
clearing condition for SF or SD has been declared. If WTR period has timed out,
a new APS request is initiated.

The Octal PLUS interrupt service routine determines the source of the hardware
interrupt from the Octal PLUS board. An interrupt from the Octal PLUS board
indicates that one of the LOS, LOF, AIS-L, SF (BERM), APS bytes failure, or
change in APS bytes conditions have occurred. Upon receiving an interrupt the
controller will check the registers of all the S/UNI-PLUS devices and determine
the source of the interrupt. It initiates a new APS request based on the result of
the check.

At the end of each interrupt service routine, if a new APS request is initiated, the
controller evaluates the new APS request and determine their priority level
according to Bellcore GR-253-CORE specification. If the priority level of the new
request is lower than the current request, the new request is logged for later
execution and the controller returns to the main loop. If the new request has a
higher priority, new APS K1 and K2 bytes will be generated and written into the
transmit K1 and K2 registers on the S/UNI-PLUS. The APS signals are
transmitted and received on the protection channel. The protection channel
S/UNI-PLUS is responsible for receiving the APS bytes, checking if the bytes are
valid, and to transmit the bytes out to the remote node.

New K1 and K2 APS bytes are generated for new requests and are written into
the S/UNI-PLUS device to be transmitted over the protection channel. The
controller will then set the selectors and bridges corresponding to the current
transmit and receive K1 and K2 bytes.

After a protection switch has occurred, the eighth S/UNI-PLUS will select the
failure channel line to monitor for line recovery. The protected working channel
S/UNI-PLUS will take over the APS signaling duty from the eighth S/UNI-PLUS.
The APS signaling will still be done through the protection line.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

6

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

The user external request functionality has not been discussed so far. The
external requests include lockout of protection, forced switch, and manual switch
This functionality has not been implemented because this software design is
meant for demonstrating an implementation of APS using PMC S/UNI-PLUS
devices. The user external request routine does not require any hardware
functionality and can be implemented as an extension to this design. The
flowchart shows where the external request can be added to the program.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

7

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3 FUNCTIONAL DESCRIPTION

3.1 Octal PLUS Configuration

The following two register configurations are required for the seven working
channel S/UNI PLUS devices on the Octal PLUS board.

3.1.1 Setting up the BERM Block

The BERM block is setup to monitor Signal Failure (SF) BER conditions of 10-4 or
10-5. Table 1 shows the required values for accumulation period and threshold for
the BERM block registers, 0x72 to 0x75.

Table 1: Accumulation and Threshold Values for BER

BER Accumulation
Period LSB

Accumulation
Period MSB

Threshold LSB Threshold MSB

10-4 0x34 0x00 0x4D 0x00

10-5 0x90 0x01 0x3E 0x00

3.1.2 Enabling S/UNI-PLUS Interrupts

Table 2 lists all the interrupt bits that need to be set to generate interrupts for the
APS controller to detect APS Byte Failure, Change in Received APS Bytes, Loss
of Frame, Loss of Signal, Line AIS and excessive BER conditions.

Table 2: Interrupt Enable Registers

Register Bit Name Value Description

0x10 1 LOFE 1 Enable LOF Interrupt

0x10 2 LOSE 1 Enable LOS Interrupt

0x19 5 LAISE 1 Enable LAIS Interrupt

0x70 0 BERE 1 Enable BERM interrupt

0x70 7 BERTEN 1 Enable BERM Monitoring

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

8

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.1.3 Protection Channel S/UNI-PLUS Setting

Table 3 lists the interrupt bits needed to be set for the protection channel S/UNI-
PLUS. The APS bytes are sent and received on the protection channel. Thus,
only the protection channel S/UNI-PLUS needs to monitor the change in APS
bytes and APS byte failures. The transmit K1 byte is set to “0F” to indicate extra
channel traffic is being carried on the protection channel and K2 byte is set to
“FD” to indicate bidirectional 1:N linear APS.

Table 3: Interrupt Enable Register for the eighth S/UNI-PLUS

Register Bit Name Value Description

0x0B 6 COAPSE 1 Enable Change in APS bytes Interrupt

0x0B 7 PSBFE 1 Enable APS Failure Byte Interrupt

3.1.4 Octal PLUS Configuration Register

The configuration registers are set to their default values during initialization. For
default settings, the APS Control/Status register in the configuration register is
set to “00H”. At default, the protection channel is used to carry extra channel
traffic to and from the eighth S/UNI-PLUS at default. The extra channel traffic is
unprotected and will be lost when the protection channel is used for protecting a
failed working channel.

3.2 SD Timer ISR

The Signal Degrade (SD) condition is detected and cleared by polling the Line
BIP registers of all the S/UNI-PLUS’s to check if the accumulated error has
exceeded a preset threshold. The polling period or integration period for the SD
software timer is set to half of the APS initiation time criterion defined by Bellcore
GR-253-CORE. This is explained in the APS application note, PMC-960505.

3.2.1 Detecting SD

To select a proper threshold count, Gaussian statistics are used to ensure 95%
probability of detecting an excessive BER. Details regarding this calculation can
be found in a application note, programming the Bit Error Rate Monitor (BERM),

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

9

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

on the PMC web site (PMC-950820). Table 4 lists the integration period and the
threshold value associated with BER of 10-5, 10-6, and 10-7.

The APS controller checks the BIP count for each S/UNI-PLUS device when it
has been interrupted by the SD timer at the end of each integration period. It
checks the accumulated errors in BIP registers, 0x1A, 0x1B, and 0x1C. If the
polled BIP error exceeds the calculated threshold shown in the table, an SD
condition is declared and a new APS request is initiated. If polled BIP error is
within threshold set, the routine returns to the program to wait for the end of the
next integration period.

Table 4: Integration Period and Threshold Count for SD Timer

BER
(SD)

Switching Initiation Time
Criteria (sec)

Integration Period (sec) Threshold Count

10-5 0.1 0.05 62

10-6 1 0.5 62

10-7 10 5.0 62

3.2.2 Clearing SD

After an SD condition has been declared, the APS controller uses the SD Timer
for clearing the SD condition. Bellcore GR-253-CORE requires that clearing SD
BER value be 1/10 of the declaring SD BER. Table 5 lists the threshold for
clearing a SD BER. As soon as the polled accumulated BIP error falls within the
threshold, the controller declares SD Clearing and issues a new APS request.

Table 5: SD Clearing Integration Period and Threshold Settings

BER
(SD)

Clearing BER
required

Switching Initiation
Time Criteria (sec)

Integration Period
(sec)

Threshold Count

10-5 10-6 1 0.5 62

10-6 10-7 10 5 62

10-7 10-8 83 41 51

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

10

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.3 BERM Clearing ISR

The BERM Timer is enabled when BERM block has declared a SF condition.
Bellcore GR-253-CORE requires that the clearing SF BER value be 1/10 of the
declaring SF BER. After an SF has been declared due to excessive BER, the
controller will write new values into the BERM block as shown in table 5. The
BERM block will stop generating interrupts only if BER falls below the clearing
threshold.

Table 5: BERM Clearing Period and Threshold Settings

BER
(SF)

Clearing BER
required

Accumulation
Period LSB

Accumulation
Period MSB

Threshold
LSB

Threshold
MSB

10-4 10-5 0x90 0x01 0x3E 0x00

10-5 10-6 0xA0 0x0F 0x3E 0x00

Since the BERM block interrupt bit is cleared when it is read, it is difficult to
ascertain if the SF condition has been cleared by just checking that bit within the
BERM clearing ISR. Figure 3 shows the process used for clearing the SF status
declared by the BERM block implemented in this design. The Octal PLUS
Interrupt Service Routine uses a BERM_STATUS flag to indicate the current SF
BER status and uses a BERM_TOGGLE flag to indicate if a new interrupt has
arrived since the last integration period. The BERM clearing ISR uses a counter,
BT_COUNT, to keep track and wait for a preset number of integration periods
during which no further BERM interrupts have been detected before clearing the
SF status. The BT_TOGGLE flag is used by the BERM ISR to check if interrupts
are still being generated by comparing to the BERM_TOGGLE flag. For the first
BERM interrupt, BERM_STATUS will be set to 1, BERM_TOGGLE to 0,
BT_COUNT to 0, and BT_TOGGLE to 0. The BERM clearing timer will be
enabled to interrupt with the same period as the BERM integration period.

The BERM block will continuously generate an interrupt if the detected threshold
is higher than the clearing threshold set. The controller toggles BERM_TOGGLE
every time it enters the Octal PLUS ISR. When the program enters the BERM
Clearing ISR, the controller compares the value of BT_TOGGLE to the
BERM_TOGGLE bit. If they are the same, it implies that no interrupt has
occurred since the last check. The controller will increment BT_COUNT by one.
If the toggle bits are different, it suggests that a new interrupt has occurred. The
BT_TOGGLE bit will be set to the current BERM_TOGGLE bit and BT_COUNT
will be reset to zero. When the BT_COUNT counter has reached 2, SF clearing
is declared and a new APS request is generated.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

11

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Bellcore GR-253-CORE specifies that to reduce the chance of rapid switch
between channel during SD or SF clearing due to intermittent failure conditions,
a maximum delay of 10 seconds can be allotted for clearing. For this example, a
delay of two integration period is employed to ensure the failure condition has
been cleared. This delay counter can be set to any value within the 10 sec by
the user.

Figure 3: BERM Clearing Process

3.4 WTR Timer ISR

The WTR Timer is enabled when a SD and SF condition has recovered and the
controller is waiting for a preset duration before initiating to switch back to the
working channel. The WTR Timer ISR counts and keeps track of the WTR period
and generates a request when the WTR timer has expired. The WTR timer
period can be user provisioned from 5 to 12 minutes at 1 minutes interval.

BERM_STATUS = 0
BERM_TOGGLE = X

First BERM Interrupt

No BERM Interrupt

BERM_STATUS = 1
BERM_TOGGLE = 0

BERM_STATUS = 1
BERM_TOGGLE = 1

No BERM Interrupt

BERM Interrupted at
the next integration

Octal PLUS ISR BERM Timer ISR

BT_COUNT = 0
 BT_TOGGLE=0/1

BT_COUNT = 1
BT_TOGGLE = 0/1

BT_COUNT = 2
BT_TOGGLE = 0/1

BT_TOGGLE =
BERM_TOGGLE

BT_TOGGLE =
BERM_TOGGLE

BT_TOGGLE ≠
BERM_TOGGLE

(Set BT_COUNT=0,
BT_TOGGLE =
BERM_TOGGLE)

Clear SF BER Status

Enable BERM Clearing Timer
Set BT_TOGGLE = BERM_TOGGLE

(Condition: BERM Interrupt Detected) (Condition: BERM Clearing Timer Interrupted)

* BERM_TOGGLE bit changes status everytime a
BERM interrupt occurs

* BT_TOGGLE = BERM_TOGGLE signifies that no
BERM interrupt has come in since last check

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

12

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.5 Octal PLUS Interrupt Service Routine

The Octal PLUS ISR examines all the interrupt status bits in all the S/UNI-PLUS
devices to determine the source of the interrupt. For the working channel
S/UNI-PLUS, the controller checks the interrupt registers for SF conditions. Table
6 lists all the registers and interrupt bits for SF declaration. By examining
register 0x02, the APS controller can tell if an interrupt occurred for RSOP (LOS,
LOF), RLOP (AIS-L), APS bytes, or BERM. All the failure conditions with the
exception of the BERM block, generates both a detection and clearing interrupt.
The ISR generates a new APS request based on the status of the interrupt bit
read. The BERM clearing routine within the Octal PLUS ISR is discussed in the
BERM clearing ISR section.

 Table 6: Interrupt Status Bits for Working Channel S/UNI-PLUS

Register Bit Bit Name Description

0x02 0 RSOPI Logic one when interrupt occurred in RSOP

0x02 1 RLOPI Logic one when interrupt occurred in RLOP

0x02 7 MISCI Logic one when interrupt occurred for BERM

0x11 1 LOFV Logic one when LOF is declared

0x11 2 LOSV Logic one when LOS is declared

0x11 4 LOFI Logic one when change in LOF state occurred

0x11 5 LOSI Logic one when change in LOS state occurred

0x18 1 LAISV Logic one when LAIS is declared

0x19 1 LAISI Logic one when change in AIS state occurred

0x71 0 BERI Logic one when BER exceeded threshold

For the protection channel S/UNI-PLUS, the controller checks for a change of
APS bytes and APS bytes failure as shown in table 7. The received APS bytes
are read from register 0x0C for K1 and 0x0D for K2 bytes in the S/UNI-PLUS.

Table 7: Interrupt Status Bits for Protection Channel S/UNI-PLUS

Register Bit Bit Name Description

0x0B 0 PSBFV Logic one when APS byte failure occurred

0x0B 2 COAPSI Logic one when received new APS bytes

0x0B 3 PSBFI Logic one when change in APS byte failure state
occurred

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

13

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

All the interrupt status bits, PSBFI, LOFI, LOSI, LAISI, and BERI bits are cleared
when read. The controller generates a new APS request for evaluation after
determining the source of the interrupt.

3.6 Evaluate New Requests

After receiving requests from the interrupt service routines, the controller
determines the priority level of the new request based on table 8. Any interrupts
generated due to LOS, LOF, AIS-L, and excessive BER in the BERM block are
considered as signal fail (SF) condition. The SD condition is declared from the
SD timer routine indicating that BIP errors have exceeded the programmed
threshold. Column two lists the requests that are generated locally and column
three displays all the requests associated with received K1 byte. When more
than one channel generates the same request, the lower channel number has
higher priority than the higher channel number.

Table 8: Priority Level for Interrupts Generated

Priority
Level

Conditions Detected Received K1
Bits 8 - 5

Description

Highest 1111 Lockout of Protection

 1110 Forced Switch

LOS, LOF, AIS-L,
BERM Alarm

 1101 SF : Higher Priority

 1100 SF : Lower Priority

BIP > Threshold 1011 SD : Higher Priority

 1010 SD : Lower Priority

 1000 Manual Switch

SF and SD clearing 0110 Wait-to-restore

 0010 Reverse Request

 0001 Do not revert

WTR Timed Out

 Lowest 0000 No Request

The priority of a new request due to a local failure condition or received K1/K2
bytes is compared with the current local request. A received “Reverse Request”

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

14

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

will not be considered in the comparison since it assumes the same priority as
the request that has been previously sent. The new request is ignored if the
current local request has a higher priority. If priorities are the same, it implies
the channel is in the process of being switched to the protection channel or the
status has not changed. If new request has a higher priority, the current local
request will be replaced by it.

3.7 Generate K1 and K2 Bytes

APS bytes K1 and K2 are generated for new requests evaluated to be valid. The
new APS bytes are written to the transmit K1 and K2 registers, 0x22 and 0x23,
on the S/UNI-PLUS to be inserted into the transmit stream. Figure 4 shows the
structure of the K1 and K2 bytes.

Figure 4: K1 and K2 Bytes Structure

Bits 5 to 8 in the transmit K1 byte indicates the type of request sent by local site.
Table 4 shows the value associated with each specific request. The LSB nibble
in the K1 byte indicates the channel requesting the switching. The default
request channel will be “1111” when the protection channel is not used for
switching. The MSB nibble in K2 byte represents the channel currently bridged
on the protection channel. Again, “1111” or extra traffic channel will be the
default value. The LSB nibble in the K2 byte will always be set to “1101” for l:N
bidirectional APS.

The K1 and K2 values generated are based on three factors: the current received
APS bytes, the current transmitting APS bytes, and any local failure or clearing
request. The next section lists the APS K1 and K2 bytes generated for both
local and remote requests.

8 7 6 5 4 3 2 1

Type of Request

1) Failure Condition
2) State Request
3) External Request

Request Source
Channel Number

0 -> Null Channel
1-7 -> Working Channel
15 -> Extra Traffic Channel

K1 Byte

8 7 6 5 4 3 2 1

Bridged Channel
Number

For Bidirectional
Linear 1:N APS

“1101”

K2 Byte

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

15

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.7.1 Local Detected Conditions and Requests

3.7.1.1 Signal Fail (SF) and Signal Degrade (SD) Request

For SF and SD condition, the generated K1 and K2 byte will be the following:

K1 Byte K2 Byte

SF/SD Code SF/SD Channel # No Change 1101

3.7.1.2 Signal Failure and Signal Degrade Clearing Request

For revertive switching, when a local condition that caused an automatically
initiated switch clears, the Wait-to-Restore (WTR) state is activated. The
generated K1 and K2 byte is:

K1 Byte K2 Byte

0110 WTR Channel # No Change 1101

3.7.1.3 Wait-To-Restore Timed Out Request

After the WTR times out, the APS controller will issue “No Request” request on
the K1 Byte and requests to switch the protected traffic back to the working
channel.

K1 Byte K2 Byte

No Request 1111 (Default) No Change 1101

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

16

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.7.2 Remote Received Requests

3.7.2.1 Received SF or SD Request

When the controller evaluates the received SF or SD request to be the highest
priority request, the transmit K1 byte will be set to Reverse Request to
acknowledge the SF or SD request.

K1 Byte K2 Byte

0010 Same as Received K1 Same as K1 Channel # 1101

3.7.2.2 Received Reverse Request

The Reverse Request indicates that the remote node has acknowledged the
local switch request. The controller will perform the bridge and select action.

K1 Byte K2 Byte

No Change No Change Change to Request Channel 1101

3.7.2.3 Received Wait-To-Restore Request

The received “Wait-to-Restore” request indicates that the remote site is initiating
a wait period before requesting to switch back to the working channel. The local
site does not have to take any actions and should still transmit the same APS
bytes.

K1 Byte K2 Byte

No Change No Change No Change 1101

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

17

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.7.2.4 Received No-Request Request

The received “No Request” request indicates that the remote site is ready to
switch traffic from the protection channel back to the working channel. The local
site will issue a “No Request” to acknowledge the request and bridge the extra
channel traffic back to the protection channel.

K1 Byte K2 Byte

0000 Same as Received K1 1111 1101

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

18

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

3.8 Select and Bridge Channel Traffic

The selector and bridge are controlled through on board configuration registers
of the Octal PLUS. The APS control/status register is located in address x782.
All the bits in the APS register can be either read or written.

Table 9: APS Control/Status Register x782

Bit Bit Name Description

7 unused

6 APSS[2]

5 APSS[1]

4 APSS[0]

Control the selector to each
of the seven working

channels

3 unused

2 APSB[2]

1 APSB[1]

0 APSB[0]

Control the bridge

“000” => Extra Traffic

The values for the control signals are determined from the receive and the
transmit APS K1 and K2 bytes.

Bridging takes place whenever the received K1 bytes requests a bridge unless
the request is invalid. The channel to be bridged will be indicated in the lower
nibble of the received K1 byte. The upper nibble of the transmit K2 byte will
indicate the channel currently bridged on the protection channel.

Selecting takes place when there is a match between the transmitted K1 and
received K2 bytes. The controller will select the channel indicated in the APS
bytes by writing values into the APS register.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

19

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4 IMPLEMENTATION

4.1 Development Tools

The APS controller program is written in FORTH and HC16 Assembly languages
using polyFORTH software development system from Forth, Inc.
(www.forth.com). Some basic knowledge of FORTH is helpful in understanding
the code. FORTH was chosen as the programming environment because it is
well suited for code development for microcontrollers such as the HC16 sitting on
the SWAN board. FORTH provides easy tools for development and debugging
without the need for any extra program tools such as compilers and linkers. The
polyFORTH environment is also interactive so there is no need to recompile the
code for each change implemented.

Each FORTH program is defined and constructed from words. There are a
number of core words that are common in every FORTH, and by using these
words more words can be constructed. Routines in FORTH are a collection of
words. In contrast to other programming languages like C and FORTRAN,
FORTH operates in reverse polish notation (RPN). This requirement arises from
the simple architecture of FORTH; built on the concept of a parameter stack and
a return stack. This architecture lends itself well to microcontroller environments.

The majority of the APS controller program has been written in assembly to
minimize software execution time. The SWAN board uses a 16.78 MHz HC16
microcontroller. Each instruction cycle is 30 ns and each write or read to the
Octal PLUS boards takes approximately 200 ns. New APS bytes require three
frames to be captured and filtered by the S/UNI-PLUS devices. A complete
protection switch requires a total of three APS bytes changes to take place.
Actual measurement of switching time was taken from the implemented APS
setup as described. The measurement was taken from when a failure has been
detected to when the local site has finished selecting the protected line. The
measured time was within the Bellcore GR-253-CORE switching requirement of
50 ms.

Appendix A contains the entire code listing in both assembly and forth. Because
the assembly code was developed in the FORTH RPN environment, the
assembly operand precedes the mnemonic. The '\' character suppresses
compilation and is used to add comments to the code. In addition, FORTH
comments are also demarcated by '(' and ')'. These are used interchangeably
throughout the code.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

20

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4.2 Program Structure and Routines

The controller program is implemented by various interrupt service routines as
described in the functional description. This section goes through the names
and functions of the main routines implemented for the program. The naming
convention used in this program for labeling routines is with “<” and “>”. Figure 5
shows the overall program structure of the controller software.

All the interrupts generated from the Octal PLUS board are processed by the
interrupt service routine, <PLUS-INT>. The interrupt service routines are
defined as labels and are defined by the interrupt vector number and the word
“EXCEPTION”. The <PLUS-INT> ISR checks the interrupts bits of all the S/UNI-
PLUS devices when executed. A 500 µs delay is introduced within the ISR
before reading the interrupt registers. This ensures that all the interrupts
generated from the Octal-PLUS board are detected and cleared when exiting
from the ISR. The <PLUS-INT> routine sets either the SF_INT or APS_INT flag
to indicate change in SF status or change in APS bytes. The <PLUS-INT> calls
the <CHK-INT> routine to check whether the new interrupt warrants a new
request.

The SD Timer Routine derives its timing from the IC1 input of the HC16
microcontroller. The SWAN board supplies a 250 µs pulse to the HC16’s IC1
port. At 250 µs interval, IC1 generates a software timer interrupt. The SD
Interrupt service routines, <SD-INT>, which services the IC1 interrupt,
accumulates a time counter (SD_COUNT) until it reaches the integration period
of BER detection. At this point, the routine polls the line-BIP counter to check if
threshold has exceeded. By the same token, if a SD condition has been
previously defined, the <SD-INT> will change its parameters to generate a
clearing status when BER reaches a level 1/10th of declaring BER. The SD_INT
will be asserted when <SD-INT> has detected either SD declaring or clearing
condition. Again, the <CHK-INT> will be called to carry out the SD interrupt.

The periodic timer within the HC16 System Integration Module (SIM) is used for
two purposes: clearing SF conditions generated by the BERM block and timing
out the WTR period. The periodic timer interrupt service routine, <PT-ISR>,
either performs BERM clearing action and set BERM_INT flag or WTR time out
action and set WTR_INT flag based on the BERM_ENABLE flag. The <WTR>
subroutine within <PT-ISR> accumulates the WTR counter until it reaches a pre-
set period. The BERM clearing part of the <PT-ISR> performs the BERM
clearing process as described in the functional description.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

21

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Figure 5: Program Structure

< PLUS-ISR > < SD-ISR >< PT-ISR >

BERM_INT =1
or

WTR_INT = 1

SD_INT = 1
SF_INT = 1

or
APS_INT = 1

< CHK-INT >

< CHK-REQ >

Local Request
Subroutines

< Local-SF-Declare >
< Local-SD-Declare >
< Local-WTR-Declare >
< Local-No-Request >
< Clearing >

Remote Request
Subroutines

< Remote-SF-SD >
< Remote-WTR >
< Remote-RR >
< Remote-NR >

Local Requests Remote Requests

Interrupt Check
Subroutines

< SF-INT >
< SD-INT >
< APS-INT >
< WTR-INT >
< BERM-INT >

< SWITCHING >

 BERM Clearing or
 WTR Time Out

Check interrupt bits
for all S/UNI-PLUS

Check BIP Error

SF_REQ =1
or

SD_REQ = 1
Or

REMOTE_REQ =1

Write K1, K2
APS Bytes

< WR-K1-K2>

< SELECT>

<BRIDGE>

<SET-RX-APS>

<WR-APS-REG>

Check interrupt flags

Check request flags

Generate new K1/K2
bytes

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

22

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

The <CHK-INT> routine checks interrupt status flags, SF_INT, SD_INT,
BERM_INT, APS_INT, and WTR_INT and it calls the corresponding subroutines
for issuing requests. After a request flag has been set, <CHK-INT> calls <CHK-
REQ> to carry out requests. Table 10 shows interrupt check subroutines called
as discussed above.

Table 10: Interrupt Check Subroutines

 Interrupt Check Subroutines Action

 < SF - INT > Set SF_REQ flag if interrupt result in a valid request

< SD – INT > Set SD_REQ flag if interrupt result in a valid request

< APS - INT > Load Received K1, K2 Bytes, Set REMOTE_REQ flag

< BERM - INT > Reset BERM Values, calls < SF – INT > to evaluate

< WTR – INT > Jumps to issue No Request subroutine

The <CHK-REQ> routine checks three request flags: SF_REQ, SD_REQ, and
REMOTE_REQ. Based on the current status, <CHK-REQ> determines
whether the SF_REQ or SD_REQ is a declaring or a clearing request. For a
valid REMOTE_REQ, <CHK-REQ> calls <REMOTE-PRI> to determine the
priority of received APS bytes. Once the priority of the remote request has been
determined, <CHK-REQ> calls <REMOTE-REQ> to evaluate and carry out
requests.

For local requests, <CHK-REQ> either declares a new SF or SD condition clears
an existing condition. For declaration, local request subroutines are called to
carry out generation of K1/K2 bytes and perform switching. For clearing,
<CLEARING> routine is called to check if outstanding failure exist on other
channel. <CLEARING> enables the WTR timer to time out the WTR period if no
other failures exists else it calls local request subroutines, <LOCAL-SF-
DECLARE>, or <LOCAL-SD-DECLARE> to generate a new switching request.

Table 11 lists all the local request subroutines in the controller program. Each of
the request subroutines updates TX_K1 and TX_K2 to reflect current status, calls
<SWITCHING> subroutine to perform bridging and selecting, and calls <WR-K1-
to write K1 and K2 byte to the transmit APS channel.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

23

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Table 11: Local Request Subroutines

Local Request Subroutines Action

 < LOCAL – SF – DECLARE > Set TX_K1 to send “D” as request

< LOCAL – SD – DECLARE > Set TX_K1 to send “B” as request

< LOCAL – WTR – DECLARE > Set TX_K1 to send “6” as request

< LOCAL – NO – REQUEST > Set TX_K1 to send “0” as request

For remote request, <REMOTE-REQ> evaluates the received K1 byte’s upper
nibble to determine the request it has received. Based on this, <REMOTE-REQ>
calls one of the remote request subroutines listed below in table 12.

Table 12: Remote Request Subroutines

Remote Request Subroutines Action

 < REMOTE – SF – SD > Set TX_K1 to send Reverse Request (2)

< REMOTE – WTR > Declare SD,SF if any local SF,SD outstanding

< REMOTE – RR > Acknowledge Reverse Request, Perform Switch

< REMOTE – NR > Set TX_K1 to send No Request (0)

The <SWITCHING> routine looks at the current transmitting K1, K2 bytes and
received K1, K2 bytes to determine bridging and selecting actions as described
in the functional description. The <SWITCHING> routine, calls four subroutines
that will update the channel address map after a bridge and a select has taken
place, and enable and disable appropriate interrupt bits in each of the S/UNI-
PLUS. Section 4.2.2 discusses in detail the addressing convention used for the
program.

Table 13: Switching Subroutines

Switching Subroutines Function

 < BRIDGE > Set up the transmit APS channel, APS_TX, address

< SELECT > Set up the Octal PLUS logic address map

< SET-RX-APS > Enable APS byte detection interrupt for the current APS
receive (APS_RX) channel

< WR-APS-REG > Write bridge and select values into Octal-PLUS APS
Control and Status Register

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

24

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

4.2.1 Conventions Used

In the APS controller program implemented, SF condition is represented by “D”
(higher priority) and SD condition is represented by “B” (higher priority). For
carrying extra channel traffic, K1 is set to “0F” and K2 to “FD”.

4.2.2 Channel Addressing

After a working channel has been switched to the protection channel, the
protection channel S/UNI-PLUS will select the failure channel to listen for
recovery and the protected working channel S/UNI-PLUS will perform APS
signaling. As a result, the logic channel address need to be changed when a
protection switch has occurred. Figure 5 shows the addressing of the Octal
PLUS logic channels during a switch.

A total of eight chip selects are used to control and monitor the 8 S/UNI-PLUS
devices on the Octal PLUS board. During configuration, address C0000H to
C3800H are assigned to the eight chip selects at a spacing of 800H bytes. The
left address map in figure 5 shows the normal addressing setup with CH1 at
C0000H and proceeds up to C3000 for CH7. As for the APS channel, the
addressing is separate into two components: transmit APS channel (APS_TX)
and receive APS channel (APS_RX). Both TX_APS and RX_APS are assigned
to address C3800H (8th S/UNI-PLUS) during configuration. At this point, both
transmit and receive APS K1 and K2 bytes signaling are done through the eighth
channel S/UNI-PLUS.

When a channel failure has occurred, the local site bridges the working channel’s
transmit traffic over the protection channel. The change in addressing is shown
in figure 5 as the middle address map. The TX_APS address has changed to 2nd

S/UNI-PLUS’s address (C0800H). This allows the second S/UNI-PLUS now to
act as the TX_APS channel. This addressing change is transparent to the
remote site, since it continues to receive APS bytes signaling on the protection
channel line. The right hand address map shows the addressing after a selection
has taken place. RX_APS has been changed to 2nd S/UNI-PLUS since it will now
act as the receive APS channel. Logical channel 2 address has been changed
to C3800H to reflect that the 8th S/UNI-PLUS is listening to channel 2 line for
recovery. When the 8th S/UNI-PLUS has detected that the channel 2 line has
recovered, the address map will revert back to the original logic channel to
physical address mapping shown in figure 5.

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

25

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

Figure 5: Address Map after Bridge and Selection

Logic Channel Physical Address

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

RX_APS

C0000

C0800

C1000

C1800

C2000

C2800

C3000

TX_APS C3800

C3800

Logic Channel Physical Address

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

RX_APS

C0000

C0800

C1000

C1800

C2000

C2800

C3000

TX_APS C0800

C3800

Bridge CH2 traffic
onto protection
channel

Select Protection
Channel traffic for
CH2 S/UNI-PLUS,
route link 2 traffic
to protection
channel 8th S/UNI-
PLUS

Logic Channel Physical Address

CH 1

CH 2

CH 3

CH 4

CH 5

CH 6

CH 7

RX_APS

C0000

C3800

C1000

C1800

C2000

C2800

C3000

TX_APS C0800

C0800

CH2 Fibre Failure

NORMAL PROTECTEDBRIDGED

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

26

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

5 REFERENCES

• PMC-Sierra, Inc., PM5347 S/UNI-PLUS Data Sheet, Issue 5, September
1996

• PMC-Sierra, Inc., Network Survivability Using Automatic Protection
Switching(APS) Over SONET/SDH Point-to-Point & Ring Networks, Issue 2,
June 1996

• Bell Communication Research – SONET Transport Systems: Common
Generic Criteria, GR-253-CORE, Issue 2, December 1995

• ANSI, Synchronous Optical Network (SONET) Automatic Protection
Switching, ANSI T1.105.01-1994

• Fiber Network Survivability, Tsong-Ho Wu

• Motorola Inc., M68HC16 Z Series User’s Manual, MC68HC16ZUM/AD, 1997

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

27

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

6 APPENDIX A

Automatic Protection Switching Program Code

\ AUTOMATIC PROTECTION SWITCHING (APS) PROGRAM
\
\
\ This program provides APS controller functionality to the
\ Octal-PLUS with APS Reference Design Board
\
\ This program runs on the HC16 on the SWAN reference board
\
\
\
\
\ Edward Chen
\ Applications
\ PMC-Sierra, Inc.
\ January 1998

\ SIM DEFINITIONS

 HOST HEX
 FFA00 CONSTANT SIMMCR \ Module Configuration Register
 FFA04 CONSTANT SYNCR \ System Clock Control Register Byte
 FFA11 CONSTANT PORTE \ Port E data reg.
 FFA15 CONSTANT DDRE \ Port E data direction reg.
 FFA17 CONSTANT PEPAR \ Port E pin assignment reg.
 FFA1B CONSTANT PORTF \ Port F data reg.
 FFA1D CONSTANT DDRF \ Port F data direction reg.
 FFA1F CONSTANT PFPAR \ Port F pin assignment reg.

\ SIM DEFINITIONS CONT'D
HOST EDATE HEX
FFA44 CONSTANT CSPAR0 FFA46 CONSTANT CSPAR1
FFA48 CONSTANT CSBARBT FFA4A CONSTANT CSORBT
FFA4C CONSTANT CSBAR0 FFA4E CONSTANT CSOR0
FFA50 CONSTANT CSBAR1 FFA52 CONSTANT CSOR1
FFA54 CONSTANT CSBAR2 FFA56 CONSTANT CSOR2
FFA58 CONSTANT CSBAR3 FFA5A CONSTANT CSOR3
FFA5C CONSTANT CSBAR4 FFA5E CONSTANT CSOR4
FFA60 CONSTANT CSBAR5 FFA62 CONSTANT CSOR5
FFA64 CONSTANT CSBAR6 FFA66 CONSTANT CSOR6
FFA68 CONSTANT CSBAR7 FFA6A CONSTANT CSOR7
FFA6C CONSTANT CSBAR8 FFA6E CONSTANT CSOR8
FFA70 CONSTANT CSBAR9 FFA72 CONSTANT CSOR9
FFA74 CONSTANT CSBAR10 FFA76 CONSTANT CSOR10

\ INITIALIZE CHIP SELECTS (S/UNI-PLUS #1 TO #4)
 HOST DEFINITIONS HEX
 : INIT-CHIP-SELECTS1
 AAAA CSPAR0 F E!
 02AA CSPAR1 F E!

 FC00 CSBAR2 F E! (PLUS-X0, C0000, CH1)
 5B70 CSOR2 0F E!
 FC08 CSBAR3 F E! (PLUS-X1, C0800, CH2)
 5B70 CSOR3 0F E!
 FC10 CSBAR4 F E! (PLUS-X2, C1000, CH3)
 5B70 CSOR4 0F E!
 FC18 CSBAR5 F E! (PLUS-X3, C1800, CH4)
 5B70 CSOR5 0F E!
 ;

\ INITIALIZE CHIP SELECTS (S/UNI-PLUS #5 TO #8)
 HOST DEFINITIONS HEX
 : INIT-CHIP-SELECTS2
 FC20 CSBAR7 F E! (PLUS-Y0, C2000, CH5)
 5B70 CSOR7 0F E!
 FC28 CSBAR8 F E! (PLUS-Y1, C2800, CH6)
 5B70 CSOR8 0F E!
 FC30 CSBAR9 F E! (PLUS-Y2, C3000, CH7)
 5B70 CSOR9 0F E!
 FC38 CSBAR1 F E! (PLUS-Y3, C3800, CH8 APS)
 5B70 CSOR1 0F E!

 FFF8 CSBAR10 F E! (IRQ3 IACK)
 4841 CSOR10 0F E! ;

\ SERIAL OUTPUT ROUTINE
 VARIABLE CH-SEND
 HOST HEX
 CREATE ASC
 30 C, 31 C, 32 C, 33 C, 34 C, 35 C, 36 C, 37 C,
 20 C, 0D C, 0A C,

\ 0, 1, 2, 3, 4, 5, 6, 7,
\ SP, CR, LF,

 HOST DEFINITIONS HEX
 : INIT-SCI
 0037 SCCR0 F E!
 0008 SCCR1 F E!
 ;
\ INITIALIZE PORTE AND PORTF
 HOST DEFINITIONS HEX
 : INIT-PORTF (---) (Initializes port F)
 (MODCLK/PF0=RED LED; IRQ1/PF1=YELLOW LED; IRQ2/PF2=GREEN LED)
 (rest are set as inputs)
 00 PORTF F EC! (all zero at port outputs)
 08 PFPAR F EC! (all I/O , CONFIGURE IRQ3)
 07 DDRF F EC! (PF0,1,2 = o/p ; rest i/p)
 ;

 HOST HEX
 : INIT-PORTE (---) (Initializes port E)
 EF PORTE F EC! (all ones at port outputs)
 10 PEPAR F EC! (PE five for xilinx, all I/O except PE4 -)
 E2 DDRE F EC! (PE1,PE5,PE6,PE7 O/P, rest I/O)
 ;
 \ on-chip RAM (30 Nov 1997)
 HOST DEFINITIONS HEX
 FFB00 CONSTANT RAMMCR
 FFB04 CONSTANT RAMBAH
 FFB06 CONSTANT RAMBAL

 HOST DEFINITIONS HEX
 : INIT-ON-CHIP-RAM (---)
 (initialize on chip ram to sit in FF0000 TO FF03FF)
 (0000 RAMMCR F E!) (unlock base addres registers)
 00FF RAMBAH F E! (base address high word)
 0000 RAMBAL F E! (base address low word)
 0800 RAMMCR F E! (lock RAM base address so it can not be ch)
 400 0 DO 0 I F E! 2 +LOOP ;

\ GENERAL PURPOSE TIMER DEFINITIONS
HOST EDATE HEX
FF900 CONSTANT GPTMCR FF904 CONSTANT GPTICR
FF906 CONSTANT DDRGP FF907 CONSTANT PDR
FF908 CONSTANT OC1M FF90A CONSTANT TCNT
FF90C CONSTANT PACTL FF90D CONSTANT PACNT
FF90E CONSTANT TIC1 FF910 CONSTANT TIC2
FF912 CONSTANT TIC3 FF914 CONSTANT TOC1
FF916 CONSTANT TOC2 FF918 CONSTANT TOC3
FF91A CONSTANT TOC4 FF91C CONSTANT TI4/O5
FF91E CONSTANT TCTL1 FF91F CONSTANT TCTL2
FF920 CONSTANT TMSK1 FF921 CONSTANT TMSK2
FF922 CONSTANT TFLG1 FF923 CONSTANT TFLG2
FF924 CONSTANT CFORC FF925 CONSTANT PWMC
FF926 CONSTANT PWMA FF927 CONSTANT PWMB

\ GENERAL PURPOSE TIMER DEFINITIONS CONT'D
HOST EDATE HEX
(GENERAL-PURPOSE TIMER MODULE REGISTERS)
FF928 CONSTANT PWMCNT
FF92A CONSTANT PWMBUFA FF92B CONSTANT PWMBUFB
FF92C CONSTANT PRESCL

\ INITIALIZE GPT FOR IC1 INPUT
 HOST EDATE HEX
 CODE INIT-GPT
 D ,E ,X ,Y ,Z ,K PSHM
 0F # LDAB TBEK 0083 # LDD GPTMCR STD \ interr. arbitration
 0450 # LDD GPTICR STD \ vectr base addr 50 , req. level
 0001 # LDD TCTL1 STD \ IC1 on RISING edge only
 0106 # LDD TMSK1 STD \ enable IC1, /256
 0000 # LDD TFLG1 STD \ clear IC1 flag
 00 # LDAB TBEK
 D ,E ,X ,Y ,Z ,K PULM
 NEXT

\ ROUTINE FOR SELECTING CURRENT S/UNI-PLUS

 VARIABLE NDEV
 HOST HEX DEFINITIONS
 : DEV
 CR ." DEVICE SET TO ADDR: " NDEV @ U. CR
 ;
 : SET
 800 * 800 - NDEV !
 ;

\ SHOWS S/UNI-PLUS # 1 REGISTERS

 HOST DEFINITIONS HEX
: Z1 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST HEX
 : WX0 (b a ---) C EC! ;
 HOST HEX : RX0 (a ---) C EC@ . ;
 HOST HEX : RMX0 (m a ---) C EC@ AND . ;
 HOST HEX : RSX0 (A ---) C EC@ ;

\ SHOWS S/UNI-PLUS # 2 REGISTERS

 HOST DEFINITIONS HEX
: Z2 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 800 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WX1 (b a ---)
 800 + C EC! ;
 HOST
 : RX1 (a ---) 800 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 3 REGISTERS

 HOST DEFINITIONS HEX
: Z3 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 1000 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WX2 (b a ---)
 1000 + C EC! ;
 HOST
 : RX2 (a ---) 1000 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 4 REGISTERS

 HOST DEFINITIONS HEX
: Z4 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 1800 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WX3 (b a ---)
 1800 + C EC! ;
 HOST
 : RX3 (a ---) 1800 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 5 REGISTERS

 HOST DEFINITIONS HEX
: Z5 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 2000 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WY0 (b a ---)
 2000 + C EC! ;
 HOST
 : RY0 (a ---) 2000 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 6 REGISTERS

 HOST DEFINITIONS HEX
: Z6 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 2800 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WY1 (b a ---)
 2800 + C EC! ;
 HOST
 : RY1 (a ---) 2800 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 7 REGISTERS

 HOST DEFINITIONS HEX
: Z7 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 3000 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WY2 (b a ---)
 3000 + C EC! ;
 HOST
 : RY2 (a ---) 3000 + C EC@ . ;

\ SHOWS S/UNI-PLUS # 8 REGISTERS

 HOST DEFINITIONS HEX
: Z8 (---) (read all S/UNI-PLUS registers)
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + 3800 + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST
 : WY3 (b a ---)
 3800 + C EC! ;
 HOST

 : RY3 (a ---) 3800 + C EC@ . ;

\ SHOWS CURRENT S/UNI-PLUS REGISTERS

HOST DEFINITIONS HEX EDATE
: ZZ (---) (read all S/UNI-PLUS registers)
 CR CR ." S/UNI-PLUS CHANNEL " NDEV @ 800 + 800 / .
 CR ." S/UNI-PLUS REGISTERS " CR
 ." 0 1 2 3 4 5 6 7 8 9 A B C D E F "
CR 80 0 DO I 2 U.R ." --- "
 10 0 DO I J + NDEV @ + C EC@ ." " 2 U.R LOOP
 CR 10 +LOOP ;
 HOST HEX : WDZ (b a ---) NDEV @ + C EC! ;
 HOST HEX : RDZ (a ---) NDEV @ + C EC@ . ;
 HOST HEX : RDMZ (m a ---) NDEV @ + C EC@ AND . ;
 HOST HEX : RDSZ (a ---) NDEV @ + C EC@ ;

\ DISABLE AND ENABLE INTERRUPTS

HOST DEFINITIONS HEX
 CODE EI (---) \ ENABLE INTERRUPTS
 FF1F # ANDP \ CPU lowest priority , everybody disturbs
 NEXT
 CODE DI (---) \ DISABLE INTERRUPTS
 00C0 # ORP \ CPU highest priority , nobody can disturb
 NEXT

\ STATUS MONITOR 15:39 12-01-97
HEX DEFINITIONS HEX
: STAT
 CR CR ." S/UNI-PLUS CHANNEL " NDEV @ 800 + 800 / .
CR
." SUNI_INTR (02) " FF 02 RDMZ ." RLOPI: " 02 02 RDSZ AND 0
 > ABS . ." RSOPI: " 01 02 RDSZ AND 0 > ABS . CR
." APS_STATS (0B) " 1D 0B RDMZ CR
." RSOP_INTR (11) " 7F 11 RDSZ AND DUP DUP . ." LOSV : " 04
AND 0 > ABS . ." LOFV: " 02 AND 0 > ABS . CR
." RLOP_INTR (19) " 0F 19 RDMZ CR
." RLOP_STAT (18) " 03 18 RDMZ ." LAISV: " 02 18 RDSZ AND 0
 > ABS . CR
." BERM_INTR (71) " 01 71 RDMZ CR
CR ;

\ PERFORMANCE MONITORING 12:23 12-01-97
HOST DEFINITIONS HEX

: PMON
 CR CR ." S/UNI-PLUS CHANNEL " NDEV @ 800 + 800 / .
CR 00 00 WDZ
." RSOP_BIP = " 13 RDZ 12 RDZ CR
." RLOP_BIP = " 0F 1C RDMZ 1B RDZ 1A RDZ CR
." RLOP_FEBE = " 0F 1F RDMZ 1E RDZ 1D RDZ CR
." RPOP_BIP = " 39 RDZ 38 RDZ CR
." RPOP_FEBE = " 3B RDZ 3A RDZ CR
." RCELL_CNT = " 1F 5B RDMZ 5A RDZ 59 RDZ CR

." TCELL_CNT = " 1F 66 RDMZ 65 RDZ 64 RDZ CR
CR
;

\ INIT-PROGRAM 12:23 12-01-97
HOST DEFINITIONS HEX
 0 17 THRU
HOST DEFINITIONS HEX
 : INIT-MICRO
 DI INIT-ON-CHIP-RAM
 INIT-CHIP-SELECTS1
 INIT-CHIP-SELECTS2
 INIT-PORTF
 INIT-PORTE
 EI
 ;

\

\ REGISTER DEFINITIONS FOR S\UNI-PLUS
HOST DEFINITIONS HEX
 0000 CONSTANT MASTER_RESET (0x00)
 0002 CONSTANT MASTER_INTERRUPT (0x02)

 0B CONSTANT APS_CONTROL_STATUS (0x0B)
 0C CONSTANT RECEIVE_K1 (0x0C)
 0D CONSTANT RECEIVE_K2 (0x0D)
 10 CONSTANT RSOP_CONTROL (0x10)
 11 CONSTANT RSOP_STATUS (0x11)
 19 CONSTANT RLOP_INTERRUPT (0x19)
 1A CONSTANT RLOP_BIP_LSB (0x1A)
 1B CONSTANT RLOP_BIP_ISB (0x1B)
 1C CONSTANT RLOP_BIP_MSB (0x1C)
 20 CONSTANT TLOP_CONTROL (0x20)

\ PLUS REG'S CONT
HOST DEFINITIONS HEX
 22 CONSTANT TRANSMIT_K1 (0x22)
 23 CONSTANT TRANSMIT_K2 (0x23)

 70 CONSTANT BERM_CONTROL (0x70)
 71 CONSTANT BERM_INTERRUPT (0x71)
 72 CONSTANT BERM_LINE_BIP_LSB (0x72)
 73 CONSTANT BERM_LINE_BIP_MSB (0x73)
 74 CONSTANT BERM_LINE_BIP_THR_LSB (0x74)
 75 CONSTANT BERM_LINE_BIP_THR_MSB (0x75)

 82 CONSTANT OCTAL_APS_CONTROL (0x82)

\ APS VARIABLE LIST (02 Dec 1997)
 HOST HEX
 VARIABLE PLUS_LOS 9 ALLOT \ LOS STATUS
 VARIABLE PLUS_LOF 9 ALLOT \ LOF STATUS
 VARIABLE PLUS_AISL 9 ALLOT \ AISL STATUS
 VARIABLE PLUS_BERM 9 ALLOT \ BERM STATUS
 VARIABLE SF_VAL 9 ALLOT
 VARIABLE SD_VAL 9 ALLOT

 VARIABLE SF_INT VARIABLE SD_INT \ INTERRUPT FLAGS
 VARIABLE BERM_INT VARIABLE WTR_INT
 VARIABLE APS_INT

 VARIABLE SF_REQ VARIABLE BERM_REQ \ REQUESTS FLAGS
 VARIABLE SD_REQ VARIABLE WTR_REQ

\ APS VARIABLE LIST CONT'D 10:39 21/11/97
 HOST HEX
 VARIABLE CUR_REQ_PRI VARIABLE NEW_REQ_PRI \ PRIORITY VARS
 VARIABLE REQ_CHAN

 VARIABLE BERM_ENABLE VARIABLE BERM_TOGGLE \ BERM VARIABLES

 VARIABLE TEMP1 VARIABLE TEMP2
 VARIABLE TEMP3 VARIABLE TEMP

 VARIABLE TX_K1 VARIABLE TX_K2 \ STORES K1/K2 BYTES
 VARIABLE RX_K1 VARIABLE RX_K2
 VARIABLE SF_SUM
 VARIABLE REMOTE_REQ VARIABLE REMOTE_CMD
 VARIABLE APS_REG

\ APS VARIABLE LIST CONT'D (01 Dec 1997)
 VARIABLE SD_COUNT VARIABLE SD_LIMIT
 VARIABLE BIP_COUNT VARIABLE SD_THR
 VARIABLE SD_CLEAR_WAIT
 VARIABLE SD_CLEAR_CNT 9 ALLOT

 VARIABLE PICRV VARIABLE PITRV
 VARIABLE WTR_LIMIT VARIABLE WTR_COUNT
 VARIABLE BT_FLAG
 VARIABLE BT_COUNT VARIABLE BT_LIMIT
 VARIABLE BT_TOGGLE
 VARIABLE SD_CHK VARIABLE SF_CHK
 VARIABLE CLEAR_CHAN
 VARIABLE CNT VARIABLE PT_USED
 VARIABLE PLUS_ADDR 20 ALLOT
 VARIABLE APS_RX VARIABLE APS_TX
\ INITIALIZE S/UNI-PLUS REGISTERS TO DETECT ERROR

HOST DEFINITIONS HEX
 : INIT-APS-REG
 CR ." INITIALIZING APS" CR
 06 RSOP_CONTROL WDZ
 (BERM SETUP TO DETECT 1e-4 BER)
 81 BERM_CONTROL WDZ
 34 BERM_LINE_BIP_LSB WDZ
 00 BERM_LINE_BIP_MSB WDZ

 4D BERM_LINE_BIP_THR_LSB WDZ
 00 BERM_LINE_BIP_THR_MSB WDZ
 20 TLOP_CONTROL WDZ
;

\ INITIALIZE REGISTER FOR APS SIGNALLING AND DETECTION
HOST DEFINITIONS HEX
 : INIT-APS-REGA
 CR ." INITIALIZING APS SUNI-PLUS " CR
 40 APS_CONTROL_STATUS WDZ
 20 TLOP_CONTROL WDZ
 ;

\ PHYSICAL PERMENENT ADDRESS OF S/UNI-PLUS
 HOST HEX
 CREATE ADDR_MAP
 0000 , 0000 , 800 , 1000 , 1800 , 2000 ,
 2800 , 3000 , 3800 ,

 \ INITIALIZE VARIABLES
 HOST HEX DEFINITIONS
 : INIT-APS-VAR1
 8 0 DO 0 PLUS_LOS I + ! 0 PLUS_LOF I + !
 0 PLUS_BERM I + ! 0 PLUS_AISL I + !
 0 SF_VAL I + ! 0 SD_VAL I + !
 0 SD_CLEAR_CNT I + ! LOOP
 00 SF_INT !
 00 APS_INT ! 00 WTR_INT !
 00 BERM_TOGGLE ! 00 BERM_INT !
 00 TEMP1 ! 00 TEMP2 ! 00 TEMP3 !
 00 REMOTE_CMD !
 00 REMOTE_REQ !
 00 CUR_REQ_PRI !
 00 APS_REG C!
 ;
 \ INITIALIZE VARIABLE CONT'D
 HOST DEFINITIONS HEX
 : INIT-APS-VAR2
 0F TX_K1 C! FD TX_K2 C!
 00 SF_SUM C!
 00 SF_REQ ! 00 BT_COUNT !
 00 SD_REQ !
 00 RX_K1 C! 00 RX_K2 C!
 01 REQ_CHAN C!
 00 NEW_REQ_PRI C!
 00 TEMP C!
 00 SF_CHK ! 00 SD_CHK !
 00 PT_USED ! 00 CLEAR_CHAN !
 9 0 DO -800 800 I * + PLUS_ADDR I 2 * + ! LOOP
 00 PLUS_ADDR ! 3800 APS_TX ! 3800 APS_RX !
 ;
 \ INIT-APS (05 Dec 1997)
 HOST DEFINITIONS HEX
 : INIT-APS
 INIT-APS-VAR1
 INIT-APS-VAR2
 INIT-APS-REG
 ;

 HOST DEFINITIONS HEX

 : INIT-VARS
 INIT-APS-VAR1
 INIT-APS-VAR2
 ;

 \ DISPLAY APS STATUS
 HOST DEFINITIONS HEX
 : SHOW-OCTAL-STATUS
 CR
 ." APS CONTROL STATUS REGISTER [SELECT | BRIDGE]: "
 APS_REG C@ U. CR
 CR
 ." TRANSMIT K1 BYTE: " TX_K1 C@ U.
 CR ." K2 BYTE: " TX_K2 C@ U.
 CR CR
 ." RECEIVED K1 BYTE: " RX_K1 C@ U. CR
 ." K2 BYTE: " RX_K2 C@ U.
 CR
 CR
 ;

\ INITIALIZE IC1 USE FOR SD DETECTION

 HOST DEFINITIONS HEX
 CODE INIT-SD
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK
 00C8 # LDD SD_LIMIT STD (0.05 SEC, BER => -5)
 0000 # LDD SD_COUNT STD
 003E # LDD SD_THR STD (62, for -5, -6, -7)
 0000 # LDD SD_INT STD
 0014 # LDAB SD_CLEAR_WAIT STAB (WAIT 5 SEC TO CLEAR)
 D ,E ,X ,Y ,Z ,K PULM
 NEXT

\ PERIODIC INTERRUPT TIMER ROUTINE
HOST DEFINITIONS HEX
LABEL <E-PT> \ ENABLE PERIODIC TIMER
 00 # LDAB TBEK
 PICRV LDE 0F # LDAB TBEK PICR STE
 00 # LDAB TBEK
 PITRV LDE 0F # LDAB TBEK PITR STE
 00 # LDAB TBEK
 RTS

HOST DEFINITIONS HEX
LABEL <D-PT> \ DISABLE PERIODIC TIMER
 0F # LDAB TBEK
 0040 # LDD PICR STD
 00 # LDAB TBEK
 RTS
\ <CLEAR-BERM> (06 Jan 1998)
\ RESET THRESHOLD VALUES TO 1/10 OF ORIGINAL
 HOST DEFINITIONS HEX
 LABEL <CLEAR-BERM> (RECOVERS BER 1e-4)
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK TBYK 0C # LDAB TBXK
 PLUS_ADDR # LDY REQ_CHAN LDAB ASLB ABY 0 ,Y LDX
\ 90 # LDAB BERM_LINE_BIP_LSB ,X STAB

\ 01 # LDAB BERM_LINE_BIP_MSB ,X STAB
\ 3E # LDAB BERM_LINE_BIP_THR_LSB ,X STAB
 00 # LDAB TBEK 01 # LDD BERM_ENABLE STD
 0540 # LDD PICRV STD
 0101 # LDD PITRV STD (0.0625 SEC INTERVAL)
 0005 # LDD BT_LIMIT STD
 0000 # LDD BT_COUNT STD

\ <CLEAR-BERM> CONT'D
 HEX
 00 # LDD BT_COUNT STD 01 # LDD PT_USED STD
 00 # LDD BT_TOGGLE STD
 <E-PT> JSR D ,E ,X ,Y ,Z ,K PULM RTS
\ SET THRESHOLD BACK TO ORIGINAL VALUES
HOST DEFINITIONS HEX
 LABEL <RESET-BERM> \ SET IT BACK TO DETECTING 1e-4
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK TBYK 0C # LDAB TBXK
 PLUS_ADDR # LDY REQ_CHAN LDAB 2 # LDAA MUL ABY 0 ,Y LDD XGDX
 34 # LDAB BERM_LINE_BIP_LSB ,X STAB
 00 # LDAB BERM_LINE_BIP_MSB ,X STAB
 4D # LDAB BERM_LINE_BIP_THR_LSB ,X STAB
 00 # LDD PT_USED STD D ,E ,X ,Y ,Z ,K PULM
 RTS
\ ENABLE PT TO RUN WAIT-TO-RESTORE ROUTINE
 HOST DEFINITIONS HEX
 LABEL <RUN-WTR>
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK
 0540 # LDD PICRV STD
 0108 # LDD PITRV STD (0.5 SEC INTERVAL)

 000A # LDD WTR_LIMIT STD (20 COUNT = 10 SEC)
 0000 # LDD WTR_COUNT STD (RESET COUNTER)

 0000 # LDD BERM_ENABLE STD
 <E-PT> JSR
 D ,E ,X ,Y ,Z ,K PULM
 RTS

 \ CLEAN ALL REGISTERS
 HOST HEX DEFINITIONS
 : CLR
 1 SET STAT PMON
 2 SET STAT PMON
 3 SET STAT PMON
 4 SET STAT PMON
 8 SET STAT PMON

 ;

 \ SET FLAG VALUES
 HOST DEFINITIONS HEX
 : SFLAG
 1 PLUS_LOS 1 + C!
 1 PLUS_LOF 1 + C!
 ;

 HOST DEFINITIONS HEX
 : CFLAG
 0 PLUS_LOS 1 + C!
 0 PLUS_LOF 1 + C!
 ;

 \ DEBUG OUTPUT
 HOST DEFINITIONS HEX
 : PLUSV
 CR ." REQ_CHAN: " REQ_CHAN C@ U. CR
 ." TEMP1: " TEMP1 @ U. CR
 ." BERM_INT: " BERM_INT @ U. CR
 ." TEMP2: " TEMP2 @ U. ." TEMP3: " TEMP3 @ U. CR
 ." SF_INT: " SF_INT @ U.
 ." APS_INT: " APS_INT @ U. CR
 ." SF_SUM: " SF_SUM C@ U. ." WTR_INT: " WTR_INT @ U.
 CR ." SD_REQ: " SD_REQ @ U. ." SF_REQ: " SF_REQ @ U.
 CR ." REMOTE_REQ: " REMOTE_REQ @ U. ." REMOTE_CMD: "
 REMOTE_CMD @ U. CR
 ." NEW_REQ_PRI: " NEW_REQ_PRI C@ U. ." CUR_REQ_PRI: "
 CUR_REQ_PRI C@ U. CR ." APS REGISTER: " APS_REG C@ U. CR ;

\ SHOW SF AND SD STATUS FOR EIGHT CHANNELS

 HOST HEX DEFINITIONS
 : SHOW-OCTAL-REG
 CR ." PLUS_LOS: " 8 1 DO PLUS_LOS I + C@ U. ." " LOOP
 CR
 CR ." PLUS_LOF: " 8 1 DO PLUS_LOF I + C@ U. ." " LOOP
 CR
 CR ." PLUS_BERM: " 8 1 DO PLUS_BERM I + C@ U. ." " LOOP
 CR
 CR ." SF_VAL: " 8 1 DO SF_VAL I + C@ U. ." " LOOP
 CR
 CR ." SD_VAL: " 8 1 DO SD_VAL I + C@ U. ." " LOOP
 CR
 ;

\ SHOW APS STATUS

 HOST DEFINITIONS HEX
 : ILOOP
 CR CR ." S/UNI-PLUS 1 2 3 4 5 6 7 "
 CR ." --------------------------------- "

 SHOW-OCTAL-REG
 CR
 ;

 HOST HEX
 : APS
 SHOW-OCTAL-STATUS
 ILOOP
 ;

 \ PLUS-ADDR OUTPUT
 HOST DEFINITIONS HEX
 : ADDRV
 CR ." PLUS ADDRESS " CR
 ." 1 2 3 4 5 6 7 " CR
 ." ------------------------------------- " CR
 ." " PLUS_ADDR 2 + @ . ." "
 PLUS_ADDR 4 + @ . PLUS_ADDR 6 + @ . PLUS_ADDR 8 + @ .
 PLUS_ADDR A + @ . PLUS_ADDR C + @ . PLUS_ADDR E + @ .
 CR CR ." APS_TX: " APS_TX @ U. CR
 CR ." APS_RX: " APS_RX @ U. CR
 ;
 HOST DEFINITIONS HEX
 : OCTAL
 ILOOP
 ADDRV ;
\ WTR VARIABLES OUTPUT

 HOST DEFINITIONS HEX
 : WTRV
 CR ." PICRV: " PICRV @ U. CR
 ." PITRV: " PITRV @ U. CR
 ." PICR: " PICR F E@ U. CR ." PITR: " PITR F E@ U. CR
 ." WTR_COUNT: " WTR_COUNT @ U. CR ." WTR_LIMIT: " WTR_LIMIT @
 U. CR ;

\ BERM VARIABLES OUTPUT

 HOST DEFINITIONS HEX
 : BERMV
 CR ." PICRV: " PICRV @ U. ." PITRV: " PITRV @ U. CR
 ." PICR: " PICR F E@ U. ." PITR: " PITR F E@ U. CR
 ." BT_COUNT: " BT_COUNT @ U. ." BT_LIMIT: " BT_LIMIT @
 U. CR
 ." BERM_ENABLE " BERM_ENABLE @ U. CR
 ." BERM_TOGGLE " BERM_TOGGLE @ U. ." BT_TOGGLE " BT_TOGGLE @
 U. CR ." PT_USED " PT_USED @ U. CR
 ;

\ DISPLAY SD ISR VARIABLE VALUES

 HOST DEFINITIONS HEX
 : SDV
 CR ." SD_LIMIT: " SD_LIMIT @ . ." SD_COUNT: " SD_COUNT

 @ . CR ." SD_THR: " SD_THR @ . ." SD_VAL: " SD_VAL C@
 U. CR ." SD_INT: " SD_INT @ U. CR
 ." SD_CLEAR_WAIT: " SD_CLEAR_WAIT C@ U. CR
 ." SD_VAL: " SD_VAL C@ U. CR
 CR ." CHANNEL 1 2 3 4 5 6 7 "
 CR ." --------------------------------- "
 CR ." SD_VAL: " SD_VAL 8 DUMP
 CR ." SD CLEAR_CNT: " SD_CLEAR_CNT 8 DUMP CR
 ;

\ READ OUT REGISTERS 08:15 12-01-97
 HOST DEFINITIONS HEX
 : KOUT
 CR ." TX_K1: " TX_K1 C@ U.
 ." TX_K2: " TX_K2 C@ U. CR
 ." RX_K1: " RX_K1 C@ U.
 ." RX_K2: " RX_K2 C@ U. CR
 ." REQ_CHAN: " REQ_CHAN C@ U.
 CR ." SF_CHK: " SF_CHK C@ U.
 CR ." SD_CHK: " SD_CHK C@ U.
 CR ;

\ <INT-OFF> : TURNS OFF INTERRUPT ENABLE BITS

 HOST HEX
 LABEL <CLEAR-REG>
 00 # LDAB RSOP_CONTROL ,X STAB
 BERM_CONTROL ,X STAB
 APS_CONTROL_STATUS ,X STAB
 RTS

 HOST HEX
 LABEL <INT-OFF>
 00 # LDAB TBEK 0C # LDAB TBXK 00 # LDX
 00 # LDX <CLEAR-REG> JSR
 3800 # LDX <CLEAR-REG> JSR
 RTS

\ <INT-ON> : TURN ON INTERRUPT ENABLE BITS

 HOST HEX
 LABEL <SET-REG>
 06 # LDAB RSOP_CONTROL ,X STAB
 81 # LDAB BERM_CONTROL ,X STAB
 \ APS_CONTROL_STATUS ,X STAB
 RTS

 HOST HEX

 LABEL <INT-ON>
 00 # LDAB TBEK 0C # LDAB TBXK 00 # LDX
 00 # LDX <SET-REG> JSR
 3800 # LDX <SET-REG> JSR
 RTS

\ ROUTINE TO WRITE K1, K2 VALUES TO REGISTERS

 HOST DEFINITIONS HEX
 LABEL <WR-K1-K2>
 00 # LDAB TBEK 0C # LDAB TBXK \ SET BANKS
 APS_TX LDX
 TX_K2 LDAA TRANSMIT_K2 ,X STAA
 TX_K1 LDAA TRANSMIT_K1 ,X STAA
 RTS

\ CLEARS INTERRUPTS AFTER SWITCHING (28 Dec 1997)
HOST HEX LABEL <CLEAR-INT>
 0C # LDAB TBXK
 MASTER_INTERRUPT ,X LDAA \ CLEAR INTERRUPTS
 RSOP_STATUS ,X LDAA
 RLOP_INTERRUPT ,X LDAA
 BERM_INTERRUPT ,X LDAA
 APS_CONTROL_STATUS ,X LDAA
 TEMP3 STX
 TEMP3 STX
 00 # LDAB MASTER_RESET ,X STAB
 RLOP_BIP_LSB ,X LDAA
 RLOP_BIP_ISB ,X LDAA
 RLOP_BIP_MSB ,X LDAA
 RTS

\ WRITE VALUES TO APS CONTROL REGISTER AND CLEAR INTERRUPTS
HOST HEX
 LABEL <WR-APS-REG>
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK TBZK 0C # LDAB TBXK 3800 # LDX
 OCTAL_APS_CONTROL ,X LDAB LSRB LSRB LSRB LSRB
 0= IF 08 # LDAB THEN
 ASLB ADDR_MAP # LDZ ABZ 0 ,Z LDE TEMP1 STE
 APS_REG LDAB LSRB LSRB LSRB LSRB 0= IF 08 # LDAB THEN
 ASLB ADDR_MAP # LDZ ABZ 0 ,Z LDE TEMP2 STE
 APS_REG LDAB OCTAL_APS_CONTROL ,X STAB
 300 # LDZ BEGIN -1 # AIZ 0= UNTIL
 TEMP1 LDX <CLEAR-INT> JSR \ CLEAR INTERRUPTS AND BIP
 TEMP2 LDX <CLEAR-INT> JSR \ ERROR COUNTERS
 3800 # LDX <CLEAR-INT> JSR
 D ,E ,X ,Y ,Z ,K PULM RTS
\ SET UP ADDRESS FOR RX APS
\ CLEAR THE REST S/UNI-PLUS FROM DETECTING NEW APS BYTES

HOST HEX
 LABEL <SET-RX-APS>
 00 # LDAB TBEK 0C # LDAB TBXK 00 # LDAB TBYK
 0000 # LDX 00 # LDAB 08 # LDAA CNT STAA
 BEGIN APS_CONTROL_STATUS ,X STAB 800 # AIX
 CNT LDAA 1 # SUBA CNT STAA 0= UNTIL

 APS_RX LDX 40 # LDAB APS_CONTROL_STATUS ,X STAB

 RTS

\ <SELECT>
\ SETUP ADDRESS MAP FOR SELECTION
 HOST HEX
 LABEL <SELECT>
 00 # LDAB TBEK TBZK TBYK 0C # LDAB TBXK 3800 # LDX
 APS_REG LDAB LSRB LSRB LSRB LSRB 07 # ANDB TEMP1 STAB
 OCTAL_APS_CONTROL ,X LDAA LSRA LSRA LSRA LSRA 07 # ANDA
 CBA 0= NOT IF 00 # LDAB CNT STAB
 BEGIN PLUS_ADDR # LDZ ADDR_MAP # LDY
 CNT LDAB 1 # ADDB CNT STAB ASLB ABY
 ABZ 0 ,Y LDD 0 ,Z STD CNT LDAB 5 # SUBB 0= UNTIL
 TEMP1 LDAB 0= IF 3800 # LDE APS_RX STE
 ELSE TEMP1 LDAB ASLB ADDR_MAP # LDZ ABZ
 0 ,Z LDE APS_RX STE PLUS_ADDR # LDY TEMP1
 LDAB ASLB ABY 3800 # LDE 0 ,Y STE THEN THEN
 RTS
 \ <BRIDGE>
 \ SETUP ADDRESS MAP FOR BRIDGE
 HOST HEX
 LABEL <BRIDGE>
 00 # LDAB TBEK TBZK 0C # LDAB TBXK 3800 # LDX
 APS_REG LDAB 07 # ANDB OCTAL_APS_CONTROL ,X LDAA 07 # ANDA
 NEGA ABA 0= NOT IF \ NOT EQUAL, NEW
 APS_REG LDAA 07 # ANDA 0=
 IF 3800 # LDE APS_TX STE <WR-K1-K2> JSR
 ELSE
 APS_REG LDAB 07 # ANDB ASLB ADDR_MAP # LDZ ABZ
 0 ,Z LDE APS_TX STE <WR-K1-K2> JSR
 THEN
 THEN
 RTS

 \ <SWITCHING> : DETERMINE IF TO SELECT & BRIDGE
 HOST DEFINITIONS HEX
 LABEL <SWITCHING> D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK 0C # LDAB TBXK
 RX_K1 LDAB 0F # ANDB 0F # SUBB 0= IF
 00 # LDAA APS_REG STAA
 ELSE RX_K1 LDAB 0F # ANDB APS_REG LDAA F0 # ANDA ABA
 APS_REG STAA
 TX_K1 LDAB ASLB ASLB ASLB ASLB
 RX_K2 LDAA F0 # ANDA CBA 0= IF
 RX_K2 LDAA F0 # ANDA APS_REG LDAB 0F # ANDB ABA
 APS_REG STAA THEN THEN
 <BRIDGE> JSR <SELECT> JSR
 <SET-RX-APS> JSR <WR-APS-REG> JSR
 D ,E ,X ,Y ,Z ,K PULM RTS

\ LOCAL REQUEST SUBROUTINES
 HOST DEFINITIONS HEX
 LABEL <LOCAL-SF-DECLARE> \ SET TO SEND D AS SF
 \ 0F # LDAB TBEK 0040 # LDD PICR STD
 00 # LDAB TBEK \ 0000 # LDD PT_USED STD
 REQ_CHAN LDAA F0 # ORAA DF # ANDA TX_K1 STAA
 <WR-K1-K2> JSR
 RTS

 HOST DEFINITIONS HEX \ SET TO SEND B AS SD
 LABEL <LOCAL-SD-DECLARE>
 \ 0F # LDAB TBEK 0040 # LDD PICR STD
 00 # LDAB TBEK \ 0000 # LDD PT_USED STD
 REQ_CHAN LDAA F0 # ORAA BF # ANDA TX_K1 STAA
 <WR-K1-K2> JSR
 RTS
 \ LOCAL SUBROUTINES CONT'D
 HOST DEFINITIONS HEX
 LABEL <LOCAL-WTR-DECLARE> \ SET TO SEND 6 AS WTR
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK <SWITCHING> JSR
 REQ_CHAN LDAB 60 # ORAB TX_K1 STAB
 <WR-K1-K2> JSR
 D ,E ,X ,Y ,Z ,K PULM
 RTS
 HOST DEFINITIONS HEX
 LABEL <LOCAL-NO-REQUEST> \ SET TO SEND 0 AS NR
 00 # LDAB TBEK
 0F # LDAB TX_K1 STAB <SWITCHING> JSR
 <WR-K1-K2> JSR 00 # LDAB CUR_REQ_PRI STAB
 NEW_REQ_PRI STAB
 RTS

 \ CHECK IF OTHER FAILURE CONDITON EXIST WHEN ONE CHANNEL
 \ HAS RECOVERD
 HOST DEFINITIONS HEX
 LABEL <RESTCHK>
 00 # LDAB TBEK TBXK 01 # LDAB CNT STAB
 00 # LDAB SD_CHK STAB SF_CHK STAB
 BEGIN
 SF_VAL # LDX CNT LDAB ABX
 0 ,X LDAB 0= NOT IF
 CNT LDAB REQ_CHAN STAB 08 # LDAB CNT STAB
 1 # LDAB SF_CHK STAB
 ELSE CNT LDAB 1 # ADDB CNT STAB
 THEN CNT LDAB 08 # SUBB
 0= UNTIL

 \ RESTCHK CONT'D
 SF_CHK LDAA 0=

 IF 01 # LDAB CNT STAB
 BEGIN
 SD_VAL # LDX CNT LDAB ABX
 0 ,X LDAB 0= NOT
 IF
 CNT LDAB REQ_CHAN STAB 08 # LDAB CNT STAB
 1 # LDAB SD_CHK STAB
 ELSE CNT LDAB 1 # ADDB CNT STAB
 THEN
 CNT LDAB 08 # SUBB
 0= UNTIL
 THEN
 RTS

 \ <SF-DECLARE> : DETERMINE IF IT'S A NEW LOCAL SF REQ
 HOST DEFINITIONS HEX
 LABEL <SF-DECLARE> 00 # LDAB TBEK
 REQ_CHAN LDAA COMA F0 # ORAA 4F # ANDA \ FIGURE OUT PRI
 NEW_REQ_PRI STAA \ BASED ON PRI & C
 REMOTE_CMD LDD 0= \ NOT REMOTE REQ
 IF CUR_REQ_PRI LDAB 40 # ANDB 0= \ CHK IF IT'S SAME
 IF <LOCAL-SF-DECLARE> JSR
 NEW_REQ_PRI LDAB CUR_REQ_PRI STAB
 THEN THEN
 REMOTE_CMD LDD 0>
 IF NEW_REQ_PRI LDAA CUR_REQ_PRI LDAB CBA 0>
 IF <LOCAL-SF-DECLARE> JSR 0 # LDD REMOTE_CMD STD
 NEW_REQ_PRI LDAB CUR_REQ_PRI STAB
 THEN THEN
 RTS
\ <SD-DECLARE> : DETERMINE IF IT'S A NEW LOCAL SD REQ
 HOST DEFINITIONS HEX
 LABEL <SD-DECLARE>
 00 # LDAB TBEK
 REQ_CHAN LDAA COMA F0 # ORAA 3F # ANDA \ FIGURE OUT PRI
 NEW_REQ_PRI STAA \ BASED ON PRI & C
 REMOTE_CMD LDD 0=
 IF CUR_REQ_PRI LDAB F0 # ANDB 40 # BITB 0=
 IF 30 # SUBB 0= NOT
 IF <LOCAL-SD-DECLARE> JSR NEW_REQ_PRI LDAB
 CUR_REQ_PRI STAB THEN THEN THEN
 REMOTE_CMD LDD 0>
 IF NEW_REQ_PRI LDAA CUR_REQ_PRI LDAB CBA 0>
 IF <LOCAL-SD-DECLARE> JSR NEW_REQ_PRI LDAB
 CUR_REQ_PRI STAB 0 # LDD REMOTE_CMD STD THEN THEN
 RTS
 \ <REMOTE-PRIORITY> : DETERMINE REMOTE REQ PRIORITY
 HOST DEFINITIONS HEX
 LABEL <REMOTE-PRIORITY>
 00 # LDAB TBEK RX_K1 LDAB LSRB LSRB LSRB LSRB
 TBA 0D # SUBA 0= IF 40 # LDAA NEW_REQ_PRI STAA THEN
 TBA 0B # SUBA 0= IF 30 # LDAA NEW_REQ_PRI STAA THEN
 TBA 06 # SUBA 0= IF 20 # LDAA NEW_REQ_PRI STAA THEN
 TBA 02 # SUBA 0= IF 10 # LDAA NEW_REQ_PRI STAA THEN
 TBA 00 # SUBA 0= IF 00 # LDAA NEW_REQ_PRI STAA THEN
 RX_K1 LDAB 0F # ANDB REQ_CHAN STAB COMB 0F # ANDB
 NEW_REQ_PRI LDAA ABA NEW_REQ_PRI STAA

 RTS

 \ <CLEARING> : CHECK TO SEE IF OUTSTANDING SD, SF
 HOST DEFINITIONS HEX
 LABEL <CLEARING> 00 # LDAB TBEK
 REMOTE_CMD LDD 0= \ LOCAL CLEAR
 IF CUR_REQ_PRI LDAA F0 # ORAA COMA \ CHK CH#
 REQ_CHAN LDAB SBA
 0= IF 00 # LDAB CUR_REQ_PRI STAB
 <RESTCHK> JSR
 SF_CHK LDAB 0= NOT
 IF <SF-DECLARE> JSR
 ELSE SD_CHK LDAB 0= NOT IF <SD-DECLARE> JSR
 ELSE ABBA # LDD TEMP1 STD
 <LOCAL-WTR-DECLARE> JSR <RUN-WTR> JSR
 00 # LDAB TBEK REQ_CHAN LDAA COMA F0 # ORAA
 2F # ANDA CUR_REQ_PRI STAA
 THEN THEN THEN THEN RTS
\ REMOTE REQUEST SUBROUTINES

 HOST DEFINITIONS HEX
 LABEL <REMOTE-SF-SD>
 0F # LDAB TBEK 0040 # LDD PICR STD
 00 # LDAB TBEK 0000 # LDD PT_USED STD
 RX_K1 LDAB 0F # ANDB 20 # ORAB TX_K1 STAB
 RX_K1 LDAB 0F # ANDB ASLB ASLB ASLB ASLB 0D # ORAB
 TX_K2 STAB
 <SWITCHING> JSR <WR-K1-K2> JSR
 1 # LDD REMOTE_CMD STD
 RTS

\ REMOTE REQUEST SUBROUTINES CONT'D

 HOST DEFINITIONS HEX
 LABEL <REMOTE-WTR>
 <RESTCHK> JSR
 SF_CHK LDAB 0= NOT
 IF <SF-DECLARE> JSR
 ELSE SD_CHK LDAB 0= NOT
 IF <SD-DECLARE> JSR
 THEN
 THEN
 RTS

\ REMOTE REQUEST SUBROUTINES CONT'D

 HOST DEFINITIONS HEX
 LABEL <REMOTE-RR>
 00 # LDAB TBEK <SWITCHING> JSR
 RX_K1 LDAB 0F # ANDB 10 # LDAA MUL 0D # ORAB
 TX_K2 STAB <WR-K1-K2> JSR
 RTS

\ REMOTE REQUEST SUBROUTINES CONT'D

 HOST DEFINITIONS HEX
 LABEL <REMOTE-NR>
 <SWITCHING> JSR
 0F # LDAB TX_K1 STAB
 RX_K1 LDAB 0F # ANDB 10 # LDAA MUL 0D # ORAB
 TX_K2 STAB
 <WR-K1-K2> JSR
 RTS

\ <REMOTE-REQ> : DETERMINE WHICH REMOTE REQ SUBROUTINE TO CALL

\ ONE OF THE FIVE :
\ 1) SF
\ 2) SD
\ 3) WTR
\ 4) RR
\ 5) NR

\ HELPER FUNCTION
 HOST HEX
 LABEL <NEW-REMOTE-SF-SD>
 <REMOTE-SF-SD> JSR
 NEW_REQ_PRI LDAB CUR_REQ_PRI STAB
 RTS

\ <REMOTE-REQ> : DETERMINE WHICH REMOTE REQ SUBROUTINE TO CALL
 HOST DEFINITIONS HEX
 LABEL <REMOTE-REQ> 00 # LDAB TBEK
 NEW_REQ_PRI LDAA 40 # BITA 0= NOT IF (1)
 REMOTE_CMD LDD 0= NOT IF (2)
 <RESTCHK> JSR
 SF_CHK LDAB 0= NOT IF (3)
 REQ_CHAN LDAA COMA F0 # ORAA 4F # ANDA
 NEW_REQ_PRI LDAB SBA 0> IF (4) 00 # LDAB
 CUR_REQ_PRI STAB NEW_REQ_PRI STAA <SF-DECLARE> JSR
 ELSE <NEW-REMOTE-SF-SD> JSR THEN (4)
 ELSE <NEW-REMOTE-SF-SD> JSR THEN (3)
 ELSE NEW_REQ_PRI LDAA
 CUR_REQ_PRI LDAB SBA 0< NOT IF (5) <NEW-REMOTE-SF-SD> JSR
 01 # LDD REMOTE_CMD STD
 THEN (5) THEN (2) THEN (1)
\ <REMOTE-REQ> CONT'D
 HEX
 NEW_REQ_PRI LDAA F0 # ANDA 30 # EORA 0= IF (1)
 REMOTE_CMD LDD 0= NOT IF (2)
 <RESTCHK> JSR
 SF_CHK LDAB 0= NOT IF (3)
 REQ_CHAN LDAA COMA F0 # ORAA 3F # ANDA 00 # LDAB
 CUR_REQ_PRI STAB NEW_REQ_PRI STAA <SF-DECLARE> JSR
 ELSE
 SD_CHK LDAB 0= NOT IF (4)
 REQ_CHAN LDAA COMA F0 # ORAA 3F # ANDA
 NEW_REQ_PRI LDAB SBA 0> IF (5) 00 # LDAB
 CUR_REQ_PRI STAB NEW_REQ_PRI STAA <SD-DECLARE> JSR

 ELSE <NEW-REMOTE-SF-SD> JSR THEN (5)
 ELSE <NEW-REMOTE-SF-SD> JSR THEN (4)
 THEN (3)
\ <REMOTE-REQ> : DETERMINE WHICH REMOTE REQ SUBROUTINE TO CALL
 HEX

 ELSE
 NEW_REQ_PRI LDAA
 CUR_REQ_PRI LDAB SBA 0< NOT IF (6)
 <NEW-REMOTE-SF-SD> JSR
 01 # LDD REMOTE_CMD STD
 THEN (6)
 THEN (2)
 THEN (1)

 \ <REMOTE-REQ> CONT'D
 HEX
 NEW_REQ_PRI LDAA F0 # ANDA 20 # EORA 0= IF
 00 # LDD REMOTE_CMD STD NEW_REQ_PRI LDAB CUR_REQ_PRI STAB
 <REMOTE-WTR> JSR
 THEN

 NEW_REQ_PRI LDAA F0 # ANDA 10 # EORA 0= IF
 <REMOTE-RR> JSR
 THEN

 NEW_REQ_PRI LDAA F0 # ANDA 0= IF
 00 # LDAB CUR_REQ_PRI STAB NEW_REQ_PRI STAB
 <REMOTE-NR> JSR
 THEN
 RTS
 \ <CHK-REQ> : DETERMINE WHICH REQUEST IS VALID (28 Dec 1997)
 HOST DEFINITIONS HEX
 LABEL <CHK-REQ>
 0F # LDAB TBEK PORTF LDAA COMA PORTF STAA \ TOGGLE LED
 00 # LDAB TBEK TBXK \ BANK 0
 SF_REQ LDD 0= NOT
 IF SF_VAL # LDX REQ_CHAN LDAB ABX 0 ,X LDAB 0=
 IF <CLEARING> JSR
 ELSE <SF-DECLARE> JSR THEN
 00 # LDD SF_REQ STD THEN

 SD_REQ LDD 0= NOT
 IF SD_VAL # LDX REQ_CHAN LDAB ABX 0 ,X LDAB 0=
 IF <CLEARING> JSR
 ELSE <SD-DECLARE> JSR THEN
 00 # LDD SD_REQ STD THEN
 \ <CHK_REQ> (05 Jan 1998)
 HEX
 REMOTE_REQ LDD 0= NOT
 IF <REMOTE-PRIORITY> JSR
 <REMOTE-REQ> JSR
 00 # LDD REMOTE_REQ STD
 THEN
 RTS

 \ <ADD-SF>
 \ FIGURE OUT SUM OF SIGNAL FAILURE CONDITIONS
 HOST DEFINITIONS HEX
 LABEL <ADD-SF>
 PLUS_LOS # LDY REQ_CHAN LDAB ABY
 PLUS_LOF # LDZ REQ_CHAN LDAB ABZ
 0 ,Y LDAB 0 ,Z LDAA ABA SF_SUM STAA
 PLUS_BERM # LDY REQ_CHAN LDAB ABY
 PLUS_AISL # LDZ REQ_CHAN LDAB ABZ
 0 ,Y LDAA SF_SUM ADDA 0 ,Z LDAB ABA SF_SUM STAA
 RTS

\ INTERRUPT CHECK SUBROUTINES 12:31 30/12/97
 HEX
 LABEL <SF-INT>

 SF_VAL # LDX REQ_CHAN LDAB ABX 00 # LDAB TBEK
 <ADD-SF> JSR
 0 ,X LDAA 0= \ CHK IF SF PREV SET
 IF SF_SUM LDAA 0> \ NEW SF DECLARED
 IF 1 # LDAB 0 ,X STAB \ SET FLAGS
 1 # LDD SF_REQ STD THEN

 ELSE \ SF PREV DECLARED
 SF_SUM LDAA 0= \ CLEARED
 IF 0 # LDAB 0 ,X STAB \ SET FLAGS
 1 # LDD SF_REQ STD THEN
 THEN
\ INTERRUPT CHECK SUBROUTINES CONT'D 12:31 30/12/97
HEX
 SF_SUM LDAA 1 # SUBA 0= IF

 PLUS_BERM # LDY REQ_CHAN LDAB ABY
 0 ,Y LDAB TEMP2 STAB 0= NOT
 IF PT_USED LDD 0= IF
 <CLEAR-BERM> JSR
 THEN THEN THEN

 RTS

 \ INTERRUPT CHECK SUBROUTINES
 HEX
 LABEL <SD-INT>
 SF_VAL # LDY REQ_CHAN LDAB ABY
 0 ,Y LDAB 0= IF
 00 # LDAB TBEK
 01 # LDD SD_REQ STD
 THEN
 RTS

 \ INTERRUPT CHECK SUBROUTINES CONT'D

 \ LOAD RECEIVE K1 AND K2 BYTES FROM S/UNI-PLUS
 HOST HEX
 LABEL <APS-INT>
 00 # LDAB TBEK 0C # LDAB TBXK
 APS_RX LDX
 RECEIVE_K1 ,X LDAA RX_K1 STAA
 RECEIVE_K2 ,X LDAA RX_K2 STAA
 1 # LDD REMOTE_REQ STD
 RTS

 \ INTERRUPT CHECK SUBROUTINES CONT'D
 HOST HEX DEFINITIONS HEX
 LABEL <BERM-INT>
 PLUS_BERM # LDY REQ_CHAN LDAB ABY
 0 # LDAB 0 ,Y STAB
 00 # LDD PT_USED STD
 <RESET-BERM> JSR
 <SF-INT> JSR
 RTS
 HOST HEX
 LABEL <WTR-INT>
 00 # LDAB TBEK <RESTCHK> JSR
 SF_CHK LDAB 0= IF SD_CHK LDAB 0= IF
 <LOCAL-NO-REQUEST> JSR 00 # LDAB CUR_REQ_PRI STAB
 THEN THEN 00 # LDD WTR_INT STD
 RTS
\ <CHK-INT> : CHECK WHICH INTERRUPT OCCURED
HOST DEFINITIONS HEX
 LABEL <CHK-INT>
 00 # LDAB TBEK TBXK TBYK TBZK

 SF_INT LDD 0= NOT IF \ SF INTERRUPT
 <SF-INT> JSR
 00 # LDD SF_INT STD
 <CHK-REQ> JSR
 THEN

 APS_INT LDD 0= NOT IF \ RECEIVED APS INTERR
 <APS-INT> JSR
 00 # LDD APS_INT STD
 <CHK-REQ> JSR
 THEN
\ <CHK_INT> CONT'D 04:07 12-02-9
 HEX

 WTR_INT LDD 0= NOT IF \ WTR INTERRUPT OCCURED
 <WTR-INT> JSR
 THEN

 SD_INT LDD 0= NOT IF \ SD INTERRUPT OCCURED
 <SD-INT> JSR
 00 # LDAB SD_INT STD

 <CHK-REQ> JSR
 THEN

 \ <CHK_INT> CONT'D
 HEX

 BERM_INT LDD 0= NOT IF \ BERM INTERRUPT OCCURED
 <BERM-INT> JSR
 00 # LDD BERM_INT STD
 <CHK-REQ> JSR
 THEN

 FF1F # ANDP
 D ,E ,X ,Y ,Z ,K PULM RTI

\ <PLUS-ISR> ISR ROUTINE (28 Dec 1997)
HOST DEFINITIONS HEX
LABEL <PLUS-ISR>
D ,E ,X ,Y ,Z ,K PSHM 00C0 # ORP
 F700 # LDD BEGIN 0001 # ADDD 0= UNTIL \ WAIT ALL INTERRUP
 00 # LDAB TBEK TBYK TBZK
 0C # LDAB TBXK 0000 # LDX
 01 # LDAB CNT STAB 0F # LDAB REQ_CHAN STAB
 BEGIN
 PLUS_ADDR # LDZ CNT LDAB ASLB ABZ 0 ,Z LDX TEMP2 STX
 MASTER_INTERRUPT ,X LDAA PSHA 01 # ANDA 0= NOT \ CHK IF RSOP =
 IF RSOP_STATUS ,X LDAA \ 20 # BITA 0> \ CHK IF LOSI = 1
 \ IF \ CHK IF LOSV = 1
 PLUS_LOS # LDY CNT LDAB ABY

\ <PLUS-ISR> ISR ROUTINE CONT'D
HEX
 04 # BITA 0= NOT
 IF 1 # LDAB 0 ,Y STAB \ WR 1 TO FLAG
 ELSE 0 # LDAB 0 ,Y STAB \ WR 0 TO FLAG
 THEN \ CNT LDAB REQ_CHAN STAB 01 # LDE SF_INT STE
 THEN

 10 # BITA 0>
 IF \ CHK LOFI & LOFV
 PLUS_LOF # LDY CNT LDAB ABY
 02 # BITA 0>
 IF 1 # LDAB 0 ,Y STAB \ WR 1 TO FLAG

 ELSE 0 # LDAB 0 ,Y STAB
 THEN CNT LDAB REQ_CHAN STAB 01 # LDE SF_INT STE
 THEN
\ <PLUS-ISR> ISR ROUTINE CONT'D
\ CHECK BERM REGISTER
 HEX
 PULA 00 # LDAB TBEK
 80 # ANDA 0= NOT
 IF
 BERM_INTERRUPT ,X LDAA 01 # BITA 0>
 IF PLUS_BERM # LDY CNT LDAB ABY
 00 # LDAB TBEK 0 ,Y LDAA 0=
 IF 1 # LDD SF_INT STD 0 ,Y STAB \ WRITE BERM VAL
 CNT LDAB REQ_CHAN STAB \ SET CHAN
 01 # LDD SF_INT STD \ SET INT FLAG
 ELSE BERM_TOGGLE LDD 0001 # EORD BERM_TOGGLE STD
 CNT LDAB REQ_CHAN STAB
 THEN THEN THEN

\ <PLUS-ISR> ISR ROUTINE CONT'D
HEX

 CNT LDAB 1 # ADDB CNT STAB
 CNT LDAB 08 # SUBB
 0= UNTIL

\ <PLUS-ISR> ISR ROUTINE CONT'D

\ CHECK APS_RX REGISTER FOR NEW APS BYTES
 HEX
 00 # LDAB TBEK 0C # LDAB TBXK
 APS_RX LDX APS_CONTROL_STATUS ,X LDAA 04 # BITA 0= NOT
 IF 00 # LDAB TBEK 1 # LDD APS_INT STD
 THEN

\ <PLUS-ISR> ISR ROUTINE CONT'D
 HEX
 00 # LDAB TBXK
 <CHK-INT> BRA

 <PLUS-ISR> 0013 EXCEPTION

\ <PT-ISR> ISR ROUTINE
 HOST DEFINITIONS HEX
 LABEL <WTR>
 0F # LDAB TBEK PORTF LDAA COMA PORTF STAA \ TOGGLE LED
 00 # LDAB TBEK WTR_COUNT LDD 1 # ADDD \ ADD COUNTER
 WTR_COUNT STD WTR_LIMIT LDE \ CHK IF REACHED
 SDE 0= IF 0F # LDAB TBEK 0040 # LDD PICR STD
 00 # LDAB TBEK 1 # LDD WTR_INT STD
 <CHK-INT> BRA
 THEN D ,E ,X ,Y ,Z ,K PULM RTI

 LABEL <PT-ISR>
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK BERM_ENABLE LDD 0=
 IF <WTR> BRA

\ <PT-ISR> ISR ROUTINE CONT'D
 HEX
 ELSE
 00 # LDAB TBEK BT_TOGGLE LDD BERM_TOGGLE LDE
 SDE 0= \ CHK IF =
 IF BT_COUNT LDD 1 # ADDD BT_COUNT STD \ ADD COUNT
 ELSE 0000 # LDD BT_COUNT STD \ CLEAR COUNT
 BERM_TOGGLE LDD BT_TOGGLE STD
 THEN
 BT_LIMIT LDE BT_COUNT LDD SDE 0= \
 IF 0001 # LDD BERM_INT STD
 0F # LDAB TBEK 0040 # LDD PICR STD
 <CHK-INT> BRA
 THEN THEN D ,E ,X ,Y ,Z ,K PULM RTI
 <PT-ISR> 40 EXCEPTION

\ <SD-ISR> ISR ROUTINE
HOST DEFINITIONS HEX
 LABEL <OVER> \ THRESHOLD EXCEEDED
 0 # LDAB TBEK
 SD_VAL # LDY CNT LDAB ABY
 SD_CLEAR_CNT # LDZ CNT LDAB ABZ 00 # LDAB 0 ,Z STAB
 0 ,Y LDAB 0=
 IF 01 # LDAB 0 ,Y STAB
 01 # LDD SD_INT STD
 CNT LDAB REQ_CHAN STAB
 THEN
 RTS

\ <SD-ISR> ISR ROUTINE CONT'D
HOST DEFINITIONS HEX
 LABEL <UNDER> \ CLEARING DETECTED
 0 # LDAB TBEK
 SD_VAL # LDY CNT LDAB ABY 0 ,Y LDAB
 0= NOT IF
 SD_CLEAR_CNT # LDZ CNT LDAB ABZ
 0 ,Z LDAB 0001 # ADDB 0 ,Z STAB
 SD_CLEAR_WAIT LDAA 0 ,Z LDAB SBA 0=
 IF 00 # LDAB 0 ,Z STAB
 01 # LDD SD_INT STD
 00 # LDAB 0 ,Y STAB
 CNT LDAB REQ_CHAN STAB
 THEN
 THEN
 RTS
\ <SD-ISR> ISR ROUTINE CONT'D
 HOST DEFINITIONS HEX
 LABEL <SD-ISR>
 D ,E ,X ,Y ,Z ,K PSHM
 00 # LDAB TBEK 0C # LDAB TBXK
 SD_COUNT LDD 0001 # ADDD SD_COUNT STD SD_LIMIT LDD
 SD_COUNT SUBD 0= \ CHK COUNT
 IF 00 # LDAB TBEK 0000 # LDD SD_COUNT STD \ RESET COUNT
 00 # LDAB TBEK TBYK TBZK 01 # LDAB CNT STAB
 0000 # LDX
 BEGIN
 PLUS_ADDR # LDZ CNT LDAB 2 # LDAA MUL ABZ 0 ,Z LDD XGDX
 00 # LDAB MASTER_RESET ,X STAB \ LOAD BIP
 RLOP_BIP_LSB ,X LDAB RLOP_BIP_ISB ,X LDAA

\ <SD-ISR> ISR ROUTINE CONT'D
 HEX
 TEMP1 STD TDE SD_THR LDD TEMP2 STD NEGD ADE 0>
 IF <OVER> JSR
 ELSE <UNDER> JSR
 THEN

 CNT LDAB 1 # ADDB CNT STAB
 CNT LDAB 08 # SUBB
 0= UNTIL

\ <SD-ISR> ISR ROUTINE CONT'D
 HEX
 THEN
 0F # LDAB TBEK TFLG1 LDD FEFF # ANDD TFLG1 STD

 <CHK-INT> BRA

 <SD-ISR> 51 EXCEPTION

\ 00:54 12/09/97

\ SETUP2 (05 Jan 1998)
 HOST DEFINITIONS HEX
 : SETUP2
 INIT-MICRO
 ZZ
 DI CLR
 1 SET INIT-APS
 2 SET INIT-APS
 3 SET INIT-APS
 (4 SET INIT-APS)
 8 SET INIT-APS-REGA INIT-APS
 (INIT-SD INIT-GPT) 00 82 WDZ
 CLR CLR CLR EI
 ;

 (28 Dec 1997)
 HOST HEX
 18 LOAD
 HOST HEX
 19 76 THRU

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

28

PROPRIETARY AND CONFIDENTIAL TO PMC-SIERRA, INC., AND FOR ITS CUSTOMERS’ INTERNAL USE

NOTES

PRELIMINARY PM5347 S/UNI-PLUS

REFERENCE DESIGN

PMC- 971116 ISSUE 2 APS SOFTWARE REFERENCE DESIGN

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or
suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility
with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly
disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied
warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits,
lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility
of such damage.

© 1998 PMC-Sierra, Inc.

PM-971116 (R2) Issue date: Febuary 1998

PMC-Sierra, Inc. 105 - 8555 Baxter Place Burnaby, BC Canada V5A 4V7 604 .415.6000

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Application Information: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

