
TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use
Document ID PMC-1991288 Issue 2

PM5363

TUPP+622
SONET/SDH TRIBUTARY UNIT PAYLOAD PROCESSOR

DRIVER MANUAL

DOCUMENT ISSUE 2
ISSUED: FEBRUARY, 2001

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 2
Document ID PMC-1991288 Issue 2

ABOUT THIS MANUAL AND TUPP+622

This manual describes the TUPP+622 device driver. It describes the driver’s functions, data
structures, and architecture. This manual focuses on the driver’s interfaces to your application,
Real-Time Operating System, and the devices. It also describes in general terms how to modify
and port the driver to your software and hardware platform.

Audience

This manual was written for people who need to:

• Evaluate and test the TUPP+622 devices

• Modify and add to the TUPP+622 driver’s functions

• Port the TUPP+622 driver to a particular platform.

References

For more information about the TUPP+622 driver, see the driver’s release notes. For more
information about the TUPP+622 device, see the documents listed in Table 1 and any related
errata documents.

Table 1: Related Documents

Document Name Document Number

TUPP+622 Telecom Standard Product Data Sheet PMC-1981421

SONET/SDH Tributary Unit Payload Processor / Monitor
for 622 Mbit/s Interfaces (TUPP+622) Short Form Data
Sheet

PMC-1981272

Note: Ensure that you use the document that PMC-Sierra issued for your version of the device
and driver.

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 3
Document ID PMC-1991288 Issue 2

Revision History

Issue No. Issue Date Details of Change

Issue 1 January 2000 Document created

Issue 2 February
2001

1) Modified the alarm, status and statistics architecture
(structures and APIs):
a) removed MSB and DSB structures as well as
tuppClearStats() API since statistics are no longer
accumulated inside the driver.
b) Added sTUP_STATUS_XX and sTUP_CNT_XX structures to
add granularity.
c) replaced tuppGetStats() API with tuppGetCnt() and
tuppGetStatus() APIs.

2) Fixed various typos and formatting issues.”

Legal Issues

None of the information contained in this document constitutes an express or implied warranty by
PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such
information or the fitness, or suitability for a particular purpose, merchantability, performance,
compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any
portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all
representations and warranties of any kind regarding the contents or use of the information,
including, but not limited to, express and implied warranties of accuracy, completeness,
merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or
consequential damages, including, but not limited to, lost profits, lost business or lost data
resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has
been advised of the possibility of such damage.

The information is proprietary and confidential to PMC-Sierra, Inc., and for its customers’
internal use. In any event, no part of this document may be reproduced in any form without the
express written consent of PMC-Sierra, Inc.

© 2001 PMC-Sierra, Inc.

PMC-1991288 (R2), ref PMC-990877 (R2)

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 4
Document ID PMC-1991288 Issue 2

Contacting PMC-Sierra

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000
Fax: (604) 415-6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: http://www.pmc-sierra.com

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 5
Document ID PMC-1991288 Issue 2

TABLE OF CONTENTS

About this Manual and TUPP+622..2
Audience...2
References ...2
Revision History..3
Legal Issues ...3
Contacting PMC-Sierra...4

Table of Contents...5

List of Figures ..10

List of Tables.. 11

1 Driver Porting Quick Start ..12

2 Driver Functions and Features ..13

3 Software Architecture...15

3.1 Driver External Interfaces ...15
Application Programming Interface ..15
Real-Time OS Interface..16
Driver Hardware Interface ..16

3.2 Main Components ...16
Alarms, Status and Statistics ..17
Input / Output (IO)...17
Tributary Payload Processor (VTPP) ...18
Tributary Path Overhead Processor (RTOP)..18
Tributary Trace Buffer (RTTB) ..18
Module Data Block (MDB)..18
Device Data Blocks (DDB) ...18
Interrupt-Service Routine ...18
Deferred-Processing Routine ...19

3.3 Software States ...19
Module States...20
Device States..21

3.4 Processing Flows ..22
Module Management..22
Device Management ..23

3.5 Interrupt Servicing ...24
Calling tuppISR...24
Calling tuppDPR...25
Calling tuppPoll...26

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 6
Document ID PMC-1991288 Issue 2

4 Data Structures ..27

4.1 Constants ..28

4.2 Structures Passed by the Application..28
Module Initialization Vector: MIV ..28
Device Initialization Vector: DIV ...29
Initialization Profile: INIT_PROF...30
ISR Enable/Disable Mask...33
Device and Alarm Status ..34
Statistic Counters: CNT ..36
Statistic Counter Configuration: CFG_CNT..37

4.3 Structures in Allocated Memory ..37
Module Data Block ...37
Device Data Block ..38

4.4 Structures Passed Through RTOS Buffers ...40
Interrupt-Service Vector: ISV..40
Deferred-Processing Vector: DPV..40

4.5 Global Variable..41

5 Application Programming Interface ...42

5.1 Module Initialization...42
Opening the Driver Module: tuppModuleOpen...42
Closing the Driver Module: tuppModuleClose..42

5.2 Module Activation ..43
Starting the Driver Module: tuppModuleStart ...43
Stopping the Driver Module: tuppModuleStop..43

5.3 Initialization Profile Management ..44
Creating an Initialization Profile: tuppAddInitProfile ...44
Retrieving an Initialization Profile: tuppGetInitProfile ...44
Deleting an Initialization Profile: tuppDeleteInitProfile..45

5.4 Device Addition and Deletion ..45
Adding a Device: tuppAdd..45
Deleting a Device: tuppDelete..46

5.5 Device Initialization ...46
Initializing a Device: tuppInit...46
Updating the Configuration of a Device: tuppUpdate...47
Resetting a Device: tuppReset...47

5.6 Device Activation and De-Activation ...48
Activating a Device: tuppActivate ...48
DeActivating a Device: tuppDeActivate..48

5.7 Device Reading and Writing ...49
Reading from a Device Register: tuppRead...49

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 7
Document ID PMC-1991288 Issue 2

Writing to a Device: tuppWrite..49
Reading a Block of Registers: tuppReadBlock ..50
Writing a Block of Registers: tuppWriteBlock ...50

5.8 Input/Output ..51
Configuring Auto-Responses: tuppAutoResponse...51

5.9 Tributary Payload Processor...52
Configuring Position of the J1 Byte: tuppVTPPConfigJ152
Inserting all 0s in H4: tuppVTPPSquelchH4...52
Forcing Path AIS: tuppVTPPForcePAIS...53
Forcing Path IDLE: tuppVTPPForceIDLE ..53
Forcing Loss of Pointer: tuppVTPPDiagLOP ...54

5.10 Tributary Path Overhead Processors..54
Forcing PDIV Output High: tuppRTOPForcePDIVHigh..54
Getting/Setting Path Signal Label: tuppRTOPPathSigLabel................................55
Configuring Tributary AIS Auto-Responses: tuppAutoResponseTribAIS56
Configuring In-Band Error Reporting: tuppAutoResponseTribIBER56

5.11 Tributary Trace Buffer..57
Getting/Setting Tributary Trace Messages: tuppTributaryTraceMsg57

5.12 Interrupt Service Functions ...58
Getting the Interrupt Mask: tuppGetMask ..58
Setting the Interrupt Mask: tuppSetMask ...58
Clearing the Interrupt Mask: tuppClearMask..58
Polling Interrupt Status Registers: tuppPoll ..59
Interrupt-Service Routine: tuppISR ..59
Deferred-Processing Routine: tuppDPR ..60

5.13 Alarm, Status and Statistics Functions..60
Configuring Statistical Counts: tuppCfgStats..60
Getting the Current Status: tuppGetStatus ...61
Reading the Device Counters: tuppGetCnt..61

5.14 Device Diagnostics..62
Verifying Register Access: tuppTestReg ..62

5.15 Callback Functions..62
IO Section Callbacks: cbackTuppIO...63
VTPP Section Callbacks: cbackTuppVTPP ...63
RTOP Section Callbacks: cbackTuppRTOP ..64
RTTB Section Callbacks: cbackTuppRTTB ...64

6 Hardware Interface ..65

6.1 Device I/O ...65
Reading Registers: sysTuppRead..65
Writing Values: sysTuppWrite...65

6.2 Interrupt Servicing ...66
Installing the ISR Handler: sysTuppISRHandlerInstall ...66

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 8
Document ID PMC-1991288 Issue 2

ISR Handler: sysTuppISRHandler..66
Removing Handlers: sysTuppISRHandlerRemove ..67
DPR Task: sysTuppDPRTask ...67

7 RTOS Interface..68

7.1 Memory Allocation / De-Allocation ..68
Allocating Memory: sysTuppMemAlloc ..68
Freeing Memory: sysTuppMemFree ..68

7.2 Buffer Management...69
Starting Buffer Management: sysTuppBufferStart ..69
Getting DPV Buffers: sysTuppDPVBufferGet...69
Getting ISV Buffers: sysTuppISVBufferGet ..70
Returning DPV Buffers: sysTuppDPVBufferRtn...70
Returning ISV Buffers: sysTuppISVBufferRtn ..70
Stopping Buffer Management: sysTuppBufferStop ..71

7.3 Preemption..71
Disabling Preemption: sysTuppPreemptDisable ..71
Re-Enabling Preemption: sysTuppPreemptEnable..72

7.4 Timers 72
Suspending a Task Execution: sysTuppTimerSleep ..72

8 Porting Drivers ...73

8.1 Driver Source Files..73

8.2 Driver Porting Procedures...74
Step 1: Porting the RTOS interface ..75
Step 2: Porting the Hardware Interface ..76
Step 3: Porting the Application-Specific Elements..77
Step 4: Building the Driver..77

Appendix A: Driver Return Codes ...79

Appendix B: Coding Conventions..80
Variable Type Definitions ..80
Naming Conventions ..80
Macros..81
Constants..81
Structures ...82
Functions ..82
Variables...82
File Organization ..83
API Files ...83
Hardware Dependent Files...84
RTOS Dependent Files ..84
Other Driver Files ...84

Acronyms...85

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 9
Document ID PMC-1991288 Issue 2

List of Terms ..86

Index..87

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 10
Document ID PMC-1991288 Issue 2

LIST OF FIGURES

Figure 1: Driver Interfaces...15

Figure 2: Driver Architecture ...17

Figure 3: Driver Software States ...20

Figure 4: Module Management Flow Diagram ..22

Figure 5: Device Management Flow Diagram...23

Figure 6: Interrupt Service Model ..24

Figure 7: Polling Service Model...26

Figure 8: Simplified SDH/Sonet Multiplexing Structures ...27

TUPP+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 11
Document ID PMC-1991288 Issue 2

LIST OF TABLES

Table 1: Driver Functions and Features..13

Table 2: Module Initialization Vector: sTUP_MIV..28

Table 3: Device Initialization Vector: sTUP_DIV ...29

Table 4: Initialization Profile: sTUP_INIT_PROF ..30

Table 5: Initialization Data: sTUP_INIT_DATA_NORM ..30

Table 6: Initialization Data: sTUP_INIT_DATA_COMP...31

Table 7: Initialization Data: sTUP_INIT_DATA_FRM..32

Table 8: ISR Mask: sTUP_MASK..33

Table 9: Alarm Status (sTUP_STATUS) ...34

Table 10: Input/Output Status (sTUP_STATUS_IO)...34

Table 11: VTPP Status (sTUP_STATUS_VTPP)..35

Table 12: RTOP Status (sTUP_STATUS_RTOP) ..35

Table 13: RTTB Status (sTUP_STATUS_RTTB)..36

Table 14: Statistic Counters (sTUP_STAT_CNT) ...36

Table 15: Counters Config (sTUP_CFG_CNT)...37

Table 16: Module Data Block: sTUP_MDB ...38

Table 17: Device Data Block: sTUP_DDB ..38

Table 18: Interrupt-Service Vector: sTUP_ISV ...40

Table 19: Deferred-Processing Vector: sTUP_DPV ...41

Table 20: Return Codes ..79

Table 21: Variable Type Definitions ..80

Table 22: Naming Conventions ...80

Table 23: File Naming Conventions ..83

Tupp+622 (PM5363) Driver Manual
Driver Porting Quick Start

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 12
Document ID PMC-1991288 Issue 2

1 DRIVER PORTING QUICK START

This section summarizes how to port the TUPP+622 device driver to your hardware and
operating system (OS) platform. For more information about porting the TUPP+622 driver, see
Section 8 (page 73). Since each platform and application is unique, this manual can only offer
guidelines for porting the TUPP+622 driver.

The code for the TUPP+622 driver is organized into C source files. You may need to modify the
code or develop additional code. The code is in the form of constants, macros, and functions. For
ease of porting, the code is grouped into source files (src) and includes files (inc). The source
files contain the functions and the include files contain the constants and macros.

To port the TUPP+622 driver to your platform:

1. Port the driver’s OS extensions (page 75):

° Data types
° OS-specific services
° Utilities and interrupt services that use OS-specific services

2. Port the driver to your hardware interface (page 76):

° Port low-level device read-and-write macros.
° Define hardware system-configuration constants.

3. Port the driver’s application-specific elements (page 77):

° Define the task-related constants.
° Code the callback functions.

4. Build the driver (page 77).

Tupp+622 (PM5363) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 13
Document ID PMC-1991288 Issue 2

2 DRIVER FUNCTIONS AND FEATURES

This section describes the main functions and features supported by the TUPP+622 driver.

Table 1: Driver Functions and Features

Function Description

Open / Close
Driver Module

(page 42)

Opening the driver module allocates all the memory needed by the driver
and initializes all module level data structures.

Closing the driver module shuts down the driver module gracefully after
deleting all devices that are currently registered with the driver, and
releases all the memory allocated by the driver.

Start / Stop Driver
Module

(page 43)

Starting the driver module involves allocating all RTOS resources needed
by the driver such as timers and semaphores (except for memory, which is
allocated during the Open call).

Stopping the driver module involves de-allocating all RTOS resources
allocated by the driver without changing the amount of memory allocated
to it.

Add / Delete
Device

(page 45)

Adding a device involves verifying that the device exists, associating a
device Handle to the device, and storing context information about it. The
driver uses this context information to control and monitor the device.

Deleting a device involves shutting down the device and clearing the
memory used for storing context information about this device.

Device
Initialization

(page 46)

The initialization function resets then initializes the device and any
associated context information about it. The driver uses this context
information to control and monitor the TUPP+622 device.

Activate / De-
Activate Device

(page 48)

Activating a device puts it into its normal mode of operation by enabling
interrupts and other global registers. A successful device activation also
enables other API invocations.

On the contrary, de-activating a device removes it from its operating state,
disables interrupts and other global registers.

Read / Write
Device Registers

(page 49)

These functions provide a ‘raw’ interface to the device. Device registers
that are both directly and indirectly accessible are available for both
inspection and modification via these functions. If applicable, block reads
and writes are also available.

Tupp+622 (PM5363) Driver Manual
Driver Functions and Features

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 14
Document ID PMC-1991288 Issue 2

Function Description

Interrupt Servicing
/ Polling

(page 58)

Interrupt Servicing is an optional feature. The user can disable device
interrupts and instead poll the device periodically to monitor status and
check for alarm/error conditions.

Both polling and interrupt driven approaches detect a change in device
status and report the status to a Deferred-Processing Routine (DPR). The
DPR then invokes application callback functions based on the status
information retrieved. This allows the driver to report significant events
that occur within the device to the application.

Statistics
Collection

(page 60)

Functions are provided to retrieve a snapshot of the various counts that are
accumulated by the TUPP+622 device. Routines should be invoked often
enough to avoid letting the counters to rollover.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 15
Document ID PMC-1991288 Issue 2

3 SOFTWARE ARCHITECTURE

This section describes the software architecture of the TUPP+622 device driver. This includes a
discussion of the driver’s external interfaces and its main components.

3.1 Driver External Interfaces

Figure 1 illustrates the external interfaces defined for the TUPP+622 device driver.

Figure 1: Driver Interfaces

RTOS

 Function Calls Application Callbacks

Hardware
Interrupts

Service Callbacks

Application

TUPP+622 Device Driver

TUPP+622 Devices

Service Calls

Register
Accesses

Application Programming Interface

The driver’s API is a collection of high level functions that can be called by application
programmers to configure, control, and monitor the TUPP+622 device, such as:

• Initializing the device

• Validating device configuration

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 16
Document ID PMC-1991288 Issue 2

• Retrieving device status and statistics information.

• Diagnosing the device

The driver API functions use the driver library functions as building blocks to provide this system
level functionality to the application programmer (see below).

The driver API also consists of callback functions that notify the application of significant events
that take place within the device and driver, including alarms reporting.

Real-Time OS Interface

The driver’s RTOS interface module provides functions that let the driver use RTOS services. The
TUPP+622 driver requires the memory, interrupt, and preemption services from the RTOS. The
RTOS interface functions perform the following tasks for the TUPP+622 device and driver:

• Allocate and deallocate memory

• Manage buffers for the ISR and DPR

• Disable and enable preemption

The RTOS interface also includes service callbacks. These are functions installed by the driver
using RTOS service calls, such as installing the ISR handler and the DPR task. These service
callbacks are invoked when an interrupt occurs or the DPR is scheduled.

Note: You must modify RTOS interface code to suit your RTOS.

Driver Hardware Interface

The TUPP+622 hardware interface provides functions that read from and write to
device-registers. The hardware interface also provides a template for an ISR that the driver calls
when the device raises a hardware interrupt. You must modify this function based on the interrupt
configuration of your system.

3.2 Main Components

Figure 2 illustrates the top level architectural components of the TUPP+622 device driver. This
applies in polled and interrupt driven operation. In polled operation the ISR is called periodically.
In interrupt operation the interrupt directly triggers the ISR.

The driver includes the following main components:

• Module and Device(s) Data-Blocks

• Interrupt-Processing Routine

• Deferred-Processing Routine

• Alarm, Status and Statistics

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 17
Document ID PMC-1991288 Issue 2

• Input/Output

• Tributary Payload Processor (VTPP)

• Tributary Path Overhead Processor (RTOP)

• Tributary Trace Buffer (RTTB)

Figure 2: Driver Architecture

 Function
Calls

Register
Accesses

Hardware
Interrupts

Application

TUPP+622 Devices

Deferred
Processing

Routine

Interrupt
Service
Routine

Interrupt
Context

 R
TO

S
In

te
rfa

ce
Hardware Interface

Application
Callbacks Driver API

Alarm, Status &
Statistics

Tributary Path
Overhead Processor

(RTOP)

Tributary Payload
Processor (VTPP)Module

Data Block

Device Data Blocks

....... Tributary Trace Buffer
(RTTB)

Input/Output (IO)

Se
rv

ic
e

C
al

ls

R
TO

S

Se
rv

ic
e

C
al

lb
ac

ks

Alarms, Status and Statistics

Alarm, Status and Statistics is responsible for monitoring alarms, tracking devices status
information and reading the statistical counts for each device registered with (added to) the driver.

Input / Output (IO)

The Input / Output is responsible for configuring the input de-multiplexer and output multiplexer.
Functions are provided for monitoring the major TUPP+622 inputs.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 18
Document ID PMC-1991288 Issue 2

Tributary Payload Processor (VTPP)

The Tributary Payload Processor (VTPP) detects and reports the path overhead errors. Functions
are provided for configuring the J1 position. For diagnostics purposes at the tributary level,
functions are also provided to force insertion of path AIS, path Idle, as well as inversion of the
NDF field in the outgoing payload.

Tributary Path Overhead Processor (RTOP)

The Tributary Path Overhead Processor (RTOP) detects and report REI, RDI and RFI. Functions
are provided to monitor the tributary performance by giving access to the REI and BIP-2 error
counts. A function is also provided to give an easy read/write access to the Path Signal Label for
each tributary.

Tributary Trace Buffer (RTTB)

Functions are provided to read and write the expected and captured tributary path trace message
(J2).

Module Data Block (MDB)

The Module Data Block (MDB) is the top-layer data structure, created by the TUPP+622 device
driver to keep track of its initialization and operating parameters, modes and dynamic data. The
MDB is allocated via an RTOS call, when the driver module is opened and contains all the device
structures

Device Data Blocks (DDB)

The Device Data Blocks (DDB) are contained in the MDB and they are allocated when the
module is opened. They are initialized by the TUPP+622 device driver for each device that is
registered, to keep track of that device’s initialization and operating parameters, modes and
dynamic data. There is a limit on the number of devices that can be registered with the driver
module. This number is set when the driver module is opened.

Interrupt-Service Routine

The TUPP+622 driver provides an ISR called tuppISR that checks if there is any valid interrupt
conditions present for the device. This function can be used by a system-specific interrupt-handler
function to service interrupts raised by the device.

The low-level interrupt-handler function that traps the hardware interrupt and calls tuppISR is
system and RTOS dependent. Therefore, it is outside the scope of the driver. Example
implementations of an interrupt handler and functions that install and remove it are provided as a
reference on page 66. You can customize these example implementations to suit your specific
needs.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 19
Document ID PMC-1991288 Issue 2

Deferred-Processing Routine

The DPR provided by the TUPP+622 driver (tuppDPR) clears and processes interrupt conditions
for the device. Typically, a system specific function, which runs as a separate task within the
RTOS, executes the DPR.

See page 24 for a detailed explanation of the DPR and interrupt-servicing model.

3.3 Software States

Figure 3 shows the software state diagrams for the TUPP+622 module and device(s) as
maintained by the driver. State transitions occur on the successful execution of the corresponding
transition functions shown. State information helps maintain the integrity of the driver’s DDB by
controlling the set of device operations allowed in each state.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 20
Document ID PMC-1991288 Issue 2

Figure 3: Driver Software States

Idle

Present

Inactive
tuppActivate

tuppDeActivate

Start

tuppAdd tuppDelete

Ready

tuppModuleClosetuppModuleStart

tuppModuleOpen

tuppModuleClose

tuppModuleStop

Start

PER-DEVICE STATES

MODULE STATES

tuppReset

tuppInit

tuppReset

Active

Module States

The following is a description of the TUPP+622 module states. See sections 5.1 and 5.2 for a
detailed description of the API functions that are used to change the module state.

Start

The driver module has not been initialized. In this state the driver does not hold any RTOS
resources (memory, timers, etc); has no running tasks, and performs no actions.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 21
Document ID PMC-1991288 Issue 2

Idle

The driver module has been initialized successfully. The Module Initialization Vector (MIV) has
been validated, the Module Data Block (MDB) has been allocated and loaded with current data,
the per-device data structures have been allocated, and the RTOS has responded without error to
all the requests sent to it by the driver.

Ready

This is the normal operating state for the driver module. This means that all RTOS resources have
been allocated and the driver is ready for devices to be added. The driver module remains in this
state while devices are in operation.

Device States

The following is a description of the TUPP+622 per-device states. The state mentioned here is the
software state as maintained by the driver, and not as maintained inside the device itself. See
sections 5.4, 5.5 and 5.6 for a detailed description of the API functions that are used to change the
per-device state.

Start

The device has not been initialized. In this state the device is unknown by the driver and performs
no actions. There is a separate flow for each device that can be added, and they all start here.

Present

The device has been successfully added. A Device Data Block (DDB) has been associated to the
device and updated with the user context, and a device handle has been given to the user. In this
state, the device performs no actions.

Inactive

In this state the device is configured but all data functions are de-activated including interrupts
and alarms, status and statistics functions.

Active

This is the normal operating state for the device. In this state, interrupt servicing or polling is
enabled.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 22
Document ID PMC-1991288 Issue 2

3.4 Processing Flows

This section describes the main processing flows of the TUPP+622 driver modules.

The flow diagrams presented here illustrate the sequence of operations that take place for
different driver functions. The diagrams also serve as a guide to the application programmer by
illustrating the sequence in which the application must invoke the driver API.

Module Management

The following diagram illustrates the typical function call sequences that occur when initializing
or shutting down the TUPP+622 driver module.

Figure 4: Module Management Flow Diagram

De-register an initialization profile previously registered with the driver.

Performs Module level shutdown of the driver. This involves deleting all
devices currently installed and de-allocating all timers and semaphores as
well as removing the ISR handler and DPR task.

Performs module level shutdown of the driver. De-allocates all the driver's
memory.

Perform all device level functions here (add, init, activate, de-activate,
reset, delete,...)

Register an initialization profile. This allows the user to store pre-defined
parameter vectors that are validated ahead of time. When the device-
initialization function is invoked only a profile number need to be passed.
This method simplifies and expedites the above operations.

Performs module level startup of the driver. This involves allocating RTOS
resources such as semaphores and timers and installing the ISR handler
and DPR task.

Performs module level initialization of the driver. Validates the Module
Initialization Vector (MIV). Allocates memory for the MDB and all its
components (i.e. all the memory needed by the driver) and then initializes
the contents of the MDB with the validated MIV.

tuppAddInitProfile

tuppModuleStart

tuppModuleOpen

tuppDeleteInitProfile

tuppModuleStop

tuppModuleClose

END

START

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 23
Document ID PMC-1991288 Issue 2

Device Management

The following diagram shows the functions and process that the driver uses to add, initialize, re-
initialize, and delete the TUPP+622 device.

Figure 5: Device Management Flow Diagram

De-activates the device and removes it from normal operation. This
involves disabling the device interrupts. ISR routines for this device are
removed using sysTuppISRHandlerRemove when the module is closed.

Applies a software reset to the device to put it in its default startup state.

Removes the device from the list of devices being controlled by the
TUPP+622 driver. This function de-allocates the device context
information for the device being deleted.

In order to re-initialize the device, reset the device using tuppReset and
go through the initialization sequence again.

Prepares the device for normal operation by enabling interrupts and other
global enables. ISR routines are installed when the module is started
using sysTuppISRHandlerInstall. The device is now operational and
all other API can be invoked.

Applies a reset to the device and initializes the device registers and
associated RAMs based on the DIV passed by the user. The user may
only pass a profile number, which corresponds to a previously saved &
validated set of configurations (by using tuppAddInitProfile).

Detects the new device in hardware, assigns a DDB to the new device and
stores the user's context for the device. Returns a device handle to the
user.

tuppInit

tuppAdd

tuppActivate

tuppReset

tuppDeActivate

tuppReset

tuppDelete

END

START

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 24
Document ID PMC-1991288 Issue 2

3.5 Interrupt Servicing

The TUPP+622 driver services device interrupts using an Interrupt-Service Routine (ISR) that
traps interrupts and a Deferred-Processing Routine (DPR) that actually processes the interrupt
conditions and clears them. This lets the ISR execute quickly and exit. Most of the
time-consuming processing of the interrupt conditions is deferred to the DPR by queuing the
necessary interrupt-context information to the DPR task. The DPR function runs in the context of
a separate task within the RTOS.

Note: Since the DPR task processes potentially serious interrupt conditions, you should set the
DPR task’s priority higher than the application task interacting with the TUPP+622 driver.

The driver provides the system-independent functions, tuppISR and tuppDPR. You must fill in
the corresponding system-specific functions, sysTuppISRHandler and sysTuppDPRTask. The
system-specific functions isolate the system-specific communication mechanism (between the
ISR and DPR) from the system-independent functions, tuppISR and tuppDPR.

Figure 6 illustrates the interrupt service model used in the TUPP+622 driver design.

Figure 6: Interrupt Service Model

tuppISR

sysTuppISRHandler

tuppDPR

Interrupt
Context

Information
sysTuppDPRTask Indication

Callbacks
Application

Note: Instead of using an interrupt service model, you can use a polling service model in the
TUPP+622 driver to process the device’s event-indication registers (see page 26).

Calling tuppISR

An interrupt handler function, which is system dependent, must call tuppISR. But first, the
low-level interrupt-handler function must trap the device interrupts. You must implement this
function to fit your own system. As a reference, an example implementation of the interrupt
handler (sysTuppISRHandler) appears on page 66. You can customize this example
implementation to suit your needs.

The interrupt handler that you implement (sysTuppISRHandler) is installed in the interrupt
vector table of the system processor. It is called when one or more TUPP+622 devices interrupt
the processor. The interrupt handler then calls tuppISR for each device in the active state that has
interrupt processing enabled.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 25
Document ID PMC-1991288 Issue 2

The tuppISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the TUPP+622. If at least one valid interrupt condition is found then
tuppISR fills an Interrupt-Service Vector (ISV) with this status information as well as the current
device Handle. The tuppISR function also clears and disables all the device’s interrupts detected.
The sysTuppISRHandler function is then responsible to send this ISV buffer to the DPR task.

Note: Normally you should save the status information for deferred interrupt processing by
implementing a message queue.

Calling tuppDPR

The sysTuppDPRTask function is a system specific function that runs as a separate task within
the RTOS. You should set the DPR task’s priority higher than the application task(s) interacting
with the TUPP+622 driver. In the message-queue implementation model, this task has an
associated message queue. The task waits for messages from the ISR on this message queue.
When a message arrives, sysTuppDPRTask calls the DPR (tuppDPR) with the received ISV.

Then tuppDPR processes the status information and takes appropriate action based on the
specific interrupt condition detected. The nature of this processing can differ from system to
system. Therefore, tuppDPR calls different indication callbacks for different interrupt conditions.

Typically, you should implement these callback functions as simple message posting functions
that post messages to an application task. However, you can implement the indication callback to
perform processing within the DPR task context and return without sending any messages. In this
case, ensure that the indication function does not call any API functions that change the driver’s
state, such as tuppDelete. Also, ensure that the indication function is non-blocking because the
DPR task executes while TUPP+622 interrupts are disabled. You can customize these callbacks to
suit your system. See page 62 for example implementations of the callback functions.

Note: Since the tuppISR and tuppDPR routines themselves do not specify a communication
mechanism, you have full flexibility in choosing a communication mechanism between the two.
A convenient way to implement this communication mechanism is to use a message queue, which
is a service that most RTOS’ provide.

You must implement the two system specific functions, sysTuppISRHandler and
sysTuppDPRTask. When the driver calls sysTuppISRHandlerInstall, the application
installs sysTuppISRHandler in the interrupt vector table of the processor. The
sysTuppDPRTask function is spawned as a task by the application. The
sysTuppISRHandlerInstall function also creates the communication channel between
sysTuppISRHandler and sysTuppDPRTask. This communication channel is most commonly
a message queue associated with the sysTuppDPRTask.

Similarly, during removal of interrupts, the driver removes sysTuppISRHandler from the
microprocessor’s interrupt vector table and deletes the task associated with sysTuppDPRTask.

As a reference, this manual provides example implementations of the interrupt installation and
removal functions on page 66. You can customize these prototypes to suit your specific needs.

Tupp+622 (PM5363) Driver Manual
Software Architecture

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 26
Document ID PMC-1991288 Issue 2

Calling tuppPoll

Instead of using an interrupt service model, you can use a polling service model in the TUPP+622
driver to process the device’s event-indication registers.

Figure 7 illustrates the polling service model used in the TUPP+622 driver design.

Figure 7: Polling Service Model

tuppISR

tuppPoll

tuppDPR

Interrupt
Context

Information
Indication
Callbacks

Application

In polling mode, the application is responsible for calling tuppPoll often enough to service any
pending error or alarm conditions. When tuppPoll is called, the tuppISR function is called
internally.

The tuppISR function reads from the master interrupt-status registers and the miscellaneous
interrupt-status registers of the TUPP+622. If at least one valid interrupt condition is found then
tuppISR fills an Interrupt-Service Vector (ISV) with this status information as well as the current
device Handle. The tuppISR function also clears and disables all the device’s interrupts detected.
In polling mode, this ISV buffer is passed to the DPR task by calling tuppDPR internally.

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 27
Document ID PMC-1991288 Issue 2

4 DATA STRUCTURES

The TUPP+622 driver allows the User to configure the behavior of each tributary. The same
structures are used independently of the mapping currently in use.

Figure 8: Simplified SDH/Sonet Multiplexing Structures

TU-2/VT6

VT-3

TU-12/VT2

TU-3

TU-11/VT1.5

x2

x3

x1

x4

x7

x3

x1x4

TUG-2

AU-3

AU-4STM-1STM-4

x3

TUG-3
x1

myField[stm1 index][au3 index][tug2 index][tu index]

Whenever a field within a structure refers to a specific TU, this field is declared as an array of
[4][3][7][4], so that you can retrieve the value of this field by providing the STM1 #, AU3 #,
TUG2 #, and TU # respectively in the indexes.

If the mapping is not all TU11s, there will be some unused fields inside the structure. For
example, if the mapping is all TU12s, there are only 3 TU12 per TUG2, so that all the [x][x][x][4]
elements are unused and therefore invalid. If the mapping is all TU3s, a specific TU3 is defined
by its STM1 #, TU3 # and therefore only the [x][x][1][1] are valid inside our structures, and all
the remaining elements are unused.

Note that the driver also uses substructures inside the high-level structures so that when a field is
for a specific TU, the actual [4][3][7][4] array is often separated into arrays of [4] substructures
that contain fields that are arrays of [3][7][4].

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 28
Document ID PMC-1991288 Issue 2

4.1 Constants

The following Constants are used throughout the driver code:

• <TUPP+622 ERROR CODES> error codes used throughout the driver code, returned by the API
functions and used in the global error number field of the MDB and DDB. For more
information on possible driver return codes, see Appendix A (page 79).

• TUP_MAX_DEVS defines the maximum number of devices that can be supported by this
driver. This constant must not be changed without a thorough analysis of the consequences to
the driver code.

• TUP_MOD_START, TUP_MOD_IDLE, TUP_MOD_READY are the three possible module states
(stored in stateModule).

• TUP_START, TUP_PRESENT, TUP_ACTIVE, TUP_INACTIVE are the four possible device
states (stored in stateDevice).

4.2 Structures Passed by the Application

These structures are defined for use by the application and are passed as argument to functions
within the driver. These structures are the Module Initialization Vector (MIV), the Device
Initialization Vector (DIV) and the ISR mask.

Module Initialization Vector: MIV

Passed via the tuppModuleOpen call, this structure contains all the information needed by the
driver to initialize and connect to the RTOS.

• maxDevs is used to inform the driver how many devices will be operating concurrently
during this session. The number is used to calculate the amount of memory that will be
allocated to the driver. The maximum value that can be passed is TUP_MAX_DEVS.

Table 2: Module Initialization Vector: sTUP_MIV

Field Name Field Type Field Description

pmdb sTUP_MDB * (pointer to) MDB

maxDevs UINT2 Maximum number of devices supported during this
session

maxInitProfs UINT2 Maximum number of initialization profiles

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 29
Document ID PMC-1991288 Issue 2

Device Initialization Vector: DIV

Passed via the tuppInit call, this structure contains all the information needed by the driver to
initialize a TUPP+622 device. This structure is also passed via the tuppAddInitProfile call
when used as an initialization profile.

• valid indicates that this initialization profile has been properly initialized and may be used
by the user. This field should be ignored when the DIV is passed directly.

• pollISR is a flag that indicates the type of interrupt servicing the driver is to use. The
choices are ‘polling’ (TUP_POLL_MODE), and ‘interrupt driven’ (TUP_ISR_MODE). When
configured in polling the Interrupt capability of the device is NOT used, and the user is
responsible for calling tuppPoll periodically. The actual processing of the event
information is the same for both modes.

• cbackIO, cbackVTPP, cbackRTOP and cbackRTTB are used to pass the address of
application functions that will be used by the DPR to inform the application code of pending
events. If these fields are set as NULL, then any events that might cause the DPR to ‘call
back’ the application will be processed during ISR processing but ignored by the DPR.

Table 3: Device Initialization Vector: sTUP_DIV

Field Name Field Type Field Description

valid UINT2 Indicates that this profile is valid

initMode TUP_MODE Mode used for Initialization: TUP_NORM, TUP_COMP or
TUP_FRM

pinitData UINT1* (pointer to) initialization data. Depending on the specified
mode of initialization, this is in fact a pointer to
sTUP_INIT_DATA_NORM, sTUP_INIT_DATA_COMP or
sTUP_INIT_DATA_FRM

pollISR TUP_POLL Indicates the type of ISR / polling to do

cbackIO sTUP_CBACK Address for the callback function for IO Events

cbackVTPP sTUP_CBACK Address for the callback function for VTPP Events

cbackRTOP sTUP_CBACK Address for the callback function for RTOP Events

cbackRTTB sTUP_CBACK Address for the callback function for RTTB Events

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 30
Document ID PMC-1991288 Issue 2

Initialization Profile: INIT_PROF

Initialization Profile Top-Level Structure

Passed via the tuppAddInitProfile call, this structure contains all the information needed by
the driver to initialize and activate a TUPP+622 device. This is in fact the same structure as
sTUP_DIV.

Table 4: Initialization Profile: sTUP_INIT_PROF

Field Name Field Type Field Description

valid UINT2 Indicates that this profile is valid

initMode TUP_MODE Mode used for Initialization: TUP_NORM, TUP_COMP or
TUP_FRM

pinitData UINT1* (pointer to) initialization data. Depending on the specified
mode of initialization, this is in fact a pointer to
sTUP_INIT_DATA_NORM, sTUP_INIT_DATA_COMP or
sTUP_INIT_DATA_FRM.

pollISR TUP_POLL Indicates the type of ISR / polling to do

cbackIO sTUP_CBACK Address for the callback function for IO Events

cbackVTPP sTUP_CBACK Address for the callback function for VTPP Events

cbackRTOP sTUP_CBACK Address for the callback function for RTOP Events

cbackRTTB sTUP_CBACK Address for the callback function for RTTB Events

Initialization Data in Normal Mode (TUP_NORM)

In Normal mode (NORM), the user only specifies the main modes of operation of the device.
Most of the device’s register bits are left in their default state (after a software reset). This
structure is pointed to by pinitData inside the initialization profile.

Table 5: Initialization Data: sTUP_INIT_DATA_NORM

Field Name Field Type Field Description

au4Mode[4] UINT1 Selects between AU4 and AU3 mode of
operation for the incoming and outgoing data
stream

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 31
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

tug3Mapping[4][3] UINT1 Selects the type of mapping for the incoming
and outgoing data stream.

When non-zero, enables processing a TU3 or
TUG2s that have been mapped into a TUG3.

When zero, enables processing TUG2s that
have been mapped into a VC3

tu3Mapping[4][3] UINT1 Enables processing a single TU3 that have
been mapped into a TUG3.

tug2Mapping[4][3][7] UINT1 Selects between TU2 (VT6) , VT3, TU12
(VT2), and TU11 (VT1.5) mapping for each
TUG2 (VTG) by specifying how many
tributaries constitute each TUG2

byPass[4][3] UINT1 When non-zero, the corresponding AU3 is
bypassed by the TUPP+622, the
corresponding processors are left in reset.

Initialization Data in Compatibility Mode (TUP_COMP)

In Compatibility mode (COMP), the user provides a list of data blocks to write directly to the
device registers. There are numBlocks blocks provided by the user. The block number [i] is
fully defined by:

• ppblock[i], which points to the data to write to the device’s registers

• ppmask[i], which points to a data mask to specify which bits are to be modified

• psize[i], the block size

• pstartReg[i], which is the register number at which the driver should start writing the
data.

This structure is pointed to by pinitData inside the initialization profile.

Table 6: Initialization Data: sTUP_INIT_DATA_COMP

Field Name Field Type Field Description

numBlocks UINT2 Number of provided blocks

ppblk[] UINT1* (pointer to) an array of pointer to a data block

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 32
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

ppmask[] UINT1* (pointer to) an array of pointer to a mask

pblkSize[] UINT2 (pointer to) an array of block size

pstartReg[] UINT2 Array of register numbers

Initialization Data in FRM Mode (TUP_FRM)

In Flat Register Mode (FRM), for each of the hardware blocks (IO, VTPP, RTOP and RTTB), the
user needs to fill a structure that holds a mapping of all the configuration bits for this hardware
block. They are used to fully configure the TUPP+622 device. This structure is pointed to by
pinitData inside the initialization profile. The reader is referred to the code for the definitions
of the configuration blocks (sTUP_CFG_XXX).

Table 7: Initialization Data: sTUP_INIT_DATA_FRM

Field Name Field Type Field Description

au4Mode[4] UINT1 Selects between AU4 and AU3 mode of
operation for the incoming and outgoing
data stream

tug3Mapping[4][3] UINT1 Selects the type of mapping for the
incoming and outgoing data stream.

When non-zero, enables processing a
TU3 or TUG2s that have been mapped
into a TUG3.

When zero, enables processing TUG2s
that have been mapped into a VC3

tu3Mapping[4][3] UINT1 Enables processing a single TU3 that
have been mapped into a TUG3

tug2Mapping[4][3][7] UINT1 Selects between TU2 (VT6) , VT3, TU12
(VT2), and TU11 (VT1.5) mapping for
each TUG2 (VTG) by specifying how
many tributaries constitute each TUG2

byPass[4][3] UINT1 When non-zero, the corresponding AU3 is
bypassed by the TUPP+622, the
corresponding processors are left in reset.

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 33
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

cfgIO[4] sTUP_CFG_IO Input/Output (IO) configuration block

cfgVTPP[4] sTUP_CFG_VTPP Tributary Payload Processor (VTPP)
configuration block

cfgRTOP[4] sTUP_CFG_RTOP Tributary Path Overhead Processor
(RTOP) configuration block

cfgRTTB[4] sTUP_CFG_RTTB Tributary Trace Buffer (RTTB)
configuration block

ISR Enable/Disable Mask

Passed via the tuppSetMask, tuppGetMask and tuppClearMask calls, this structure contains
all the information needed by the driver to enable and disable any of the interrupts in the
TUPP+622.

Table 8: ISR Mask: sTUP_MASK

Field Name Field Type Field Description

ioIpe[4] UINT1 Incoming parity error

lom[4][3] UINT1 Loss of Multiframe

vtppMaster[4][3] UINT1 VTPP master interrupt

rtopMaster[4][3] UINT1 RTOP master interrupt

rttbMaster[4][3] UINT1 RTTB master interrupt

vtppLop[4][3][7][4] UINT1 Loss of pointer

vtppNje[4][3][7][4] UINT1 Negative pointer justification event.

vtppPje[4][3][7][4] UINT1 Positive pointer justification event.

vtppEse[4][3][7][4] UINT1 Elastic store error

vtppAis[4][3][7][4] UINT1 Path AIS

rtopPslu[4][3][7][4] UINT1 Tributary path signal label unstable

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 34
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

rtopPslm[4][3][7][4] UINT1 Tributary path signal label mismatch

rtopCopsl[4][3][7][4] UINT1 Change of tributary path signal label

rtopRfi[4][3][7][4] UINT1 Remote failure indication

rtopRdi[4][3][7][4] UINT1 Remote defect indication

rttbTim[4][3][7][4] UINT1 Trail trace identifier mismatch

rttbTiu[4][3][7][4] UINT1 Trail trace identifier unstable

Device and Alarm Status

This structure as well as its component structures is used by tuppGetStatus to retrieve all the
status information for a given STM1.

Table 9: Alarm Status (sTUP_STATUS)

Field Name Field Type Field Description

statIO sTUP_STATUS_IO Alarm status of the input/output (IO)

statVTPP[3] sTUP_STATUS_VTPP Alarm status of the Section Overhead (VTPP)

statRTOP[3] sTUP_STATUS_RTOP Alarm status of the Received Tributary Overhead
Processor (RTOP)

statRTTB[3] sTUP_STATUS_RTTB Alarm status of the Received Tributary Trace
Buffer (RTTB)

Input / Output (IO) Status

Table 10: Input/Output Status (sTUP_STATUS_IO)

Field Name Field Type Field Description

otmfActiv UINT1 Monitors for low to high transition on the OTMF input

gsclkfpActiv UINT1 Monitors for low to high transition on the GSCLK_FP input

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 35
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

idActiv UINT1 Monitors for low to high transition on the input data bus
(ID)

itmfActiv UINT1 Monitors for low to high transition on the ITMF input

iplActiv UINT1 Monitors for low to high transition on the IPL input

ic1j1Activ UINT1 Monitors for low to high transition on the IC1J1 input

sclkActiv UINT1 Monitors for low to high transition on the SCLK input

hsclkActiv UINT1 Monitors for low to high transition on the HSCLK input

itv5Activ UINT1 Monitors for low to high transition on the ITV5 input

itplActiv UINT1 Monitors for low to high transition on the ITPL input

iaisActiv UINT1 Monitors for low to high transition on the IAIS input

Tributary Payload Processor (VTPP) Status

Table 11: VTPP Status (sTUP_STATUS_VTPP)

Field Name Field Type Field Description

ss[7][4] UINT1 Value of the size bits in the V1 byte of the corresponding
tributary

Tributary Path Overhead Processor (RTOP) Status

Table 12: RTOP Status (sTUP_STATUS_RTOP)

Field Name Field Type Field Description

expPSL[7][4] UINT1 Expected Path Signal Label for the corresponding tributary

accPSL[7][4] UINT1 Accepted Path Signal Label for the corresponding tributary

rdi[7][4] UINT1 Remote Defect Indication

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 36
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

rfi[7][4] UINT1 Remote Failure Indication

erdi[7][4] UINT1 Enhanced Remote Defect Indication

pslm[7][4] UINT1 Path Signal Label Mistmatch

pslu[7][4] UINT1 Path Signal Label Unstable

Tributary Trace Buffer (RTTB) Status

Table 13: RTTB Status (sTUP_STATUS_RTTB)

Field Name Field Type Field Description

expTraceMsg[7][4] UINT1[64] Expected tributary trace message

capTraceMsg[7][4] UINT1[64] Captured tributary trace message

tim[7][4] UINT1 Trace Identifier Mismatch

tiu[7][4] UINT1 Trace Identifier Unstable

Statistic Counters: CNT

This structure is used by the statistics collection APIs to retrieve the device counts. The user can
call tuppGetCnt to collect all the device counts for a given STM-1.

Table 14: Statistic Counters (sTUP_STAT_CNT)

Field Name Field Type Field Description

rtopBip[3][7][4] UINT2 Number of block interleave parity
errors (BIP-8 or BIP-2).

rtopRei[3][7][4] UINT2 Number of remote error indication
(REI).

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 37
Document ID PMC-1991288 Issue 2

Statistic Counter Configuration: CFG_CNT

This structure contains all the fields needed to configure the device counters. It is also passed via
the tuppCfgStats function call.

Table 15: Counters Config (sTUP_CFG_CNT)

Field Name Field Type Field Description

rtopBlkBip[4][3][7][4] UINT1 Controls the accumulation of block BIP-8/BIP-
2 errors.

When non-zero, one or more errors in the
tributary BIP-8/BIP-2 byte results in a single
error accumulated in the error counter.

When zero, all errors are accumulated in the
error counter.

rtopBlkRei[4][3] UINT1 Controls the accumulation of REI’s in the
incoming TU3 stream on a block or bit basis.

When non-zero, REI count codes in the range
of 1 to 8 are accumulated on a block basis as a
single REI event. All other codes are counted
zero events.

When zero, REI count codes in the range of 1
to 8 are accumulated on a bit basis as a up to 8
REI events. All other codes are counted zero
events.

4.3 Structures in Allocated Memory

These structures are defined and used by the driver and are part of the context memory allocated
when the driver is opened.

Module Data Block

The MDB is the top-level structure for the module. It contains configuration data about the
module level code and pointers to configuration data about the device level codes.

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 38
Document ID PMC-1991288 Issue 2

Table 16: Module Data Block: sTUP_MDB

Field Name Field Type Field Description

errModule INT4 Global error Indicator for module calls

valid UINT2 Indicates that this structure has been initialized

maxDevs UINT2 Maximum number of devices supported

numDevs UINT2 Number of devices currently registered

maxInitProfs UINT2 Maximum number of initialization profiles

stateModule TUP_MOD_STATE Module state; can be one of the following
TUP_MOD_START, TUP_MOD_IDLE or
TUP_MOD_READY

pddb sTUP_DDB * (array of) Device Data Blocks (DDB) in context
memory

pinitProfs sTUP_INIT_PROF * (array of) initialization profiles

Device Data Block

The DDB is the top-level structure for each device. It contains configuration data about the device
level code and pointers to configuration data about device level sub-blocks.

Table 17: Device Data Block: sTUP_DDB

Field Name Field Type Field Description

errDevice INT4 Global error indicator for device calls

valid UINT2 Indicates that this structure has been
initialized

baseAddr UINT1* Base address of the device

usrCtxt sTUP_USR_CTXT Stores the user’s context for the device. It is
passed as an input parameter when the
driver invokes an application callback

profileNum UINT2 Profile number used at initialization

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 39
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

stateDevice TUP_DEV_STATE Device State; can be one of the following
TUP+START, TUP_PRESENT, TUP_ACTIVE
or TUP_INACTIVE

au4Mode[4] UINT1 Selects between AU4 and AU3 mode of
operation for the incoming and outgoing
data stream

tug3Mapping[4][3] UINT1 Selects the type of mapping for the
incoming and outgoing data stream.

When non-zero, enables processing a TU3
or TUG2s that have been mapped into a
TUG3.

When zero, enables processing TUG2s that
have been mapped into a VC3

tu3Mapping[4][3] UINT1 Enables processing a single TU3 that have
been mapped into a TUG3.

tug2Mapping[4][3][7] UINT1 Selects between TU2 (VT6) , VT3, TU12
(VT2), and TU11 (VT1.5) mapping for each
TUG2 (VTG) by specifying how many
tributaries constitute each TUG2

byPass[4][3] UINT1 When non-zero, the corresponding AU3 is
bypassed by the TUPP+622, the
corresponding processors are left in reset.

cfgIO[4] sTUP_CFG_IO Input/Output (IO) configuration block

cfgVTPP[4] sTUP_CFG_VTPP Tributary Payload Processor (VTPP)
configuration block

cfgRTOP[4] sTUP_CFG_RTOP Tributary Path Overhead Processor (RTOP)
configuration block

cfgRTTB[4] sTUP_CFG_RTTB Tributary Trace Buffer (RTTB)
configuration block

pollISR TUP_POLL Indicates the current type of ISR/polling

cbackIO sTUP_CBACK Address for the callback function for IO
Events

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 40
Document ID PMC-1991288 Issue 2

Field Name Field Type Field Description

cbackVTPP sTUP_CBACK Address for the callback function for VTPP
Events

cbackRTOP sTUP_CBACK Address for the callback function for RTOP
Events

cbackRTTB sTUP_CBACK Address for the callback function for RTTB
Events

mask sTUP_MASK Interrupt Enable Mask

4.4 Structures Passed Through RTOS Buffers

Interrupt-Service Vector: ISV

This block is used in two ways. First it is used to determine the size of buffer required by the
RTOS for use in the driver. Second it is the template for data that is captured during ISR
processing and sent to the Deferred-Processing Routine (DPR).

Table 18: Interrupt-Service Vector: sTUP_ISV

Field Name Field Type Field Description

deviceHandle sTUP_HNDL Handle to the device in cause

mask sTUP_MASK ISR mask filled with interrupt status

Deferred-Processing Vector: DPV

This block is used in two ways. First it is used to determine the size of buffer required by the
RTOS for use in the driver. Second it is the template for data that is assembled by the DPR and
sent to the application code.

Note: The application code is responsible for returning this buffer to the RTOS buffer pool.

Tupp+622 (PM5363) Driver Manual
Data Structures

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 41
Document ID PMC-1991288 Issue 2

Table 19: Deferred-Processing Vector: sTUP_DPV

Field Name Field Type Field Description

event TUP_DPR_EVENT Event being reported

cause UINT2 Reason for the Event

4.5 Global Variable

Most variables within the driver are not meant to be used by the application code. There is one,
however, that can be of great use to the application code:

tuppMDB: A global pointer to the Module Data Block (MDB). This global variable is to be
considered read only by the application.

• errModule: This structure element is used to store an error code that specifies the reason for
an API function’s failure. The field is only valid when the function in question returns a
TUP_FAILURE value.

• stateModule: This structure element is used to store the module state.

• pddb[]: An array of pointers to the individual Device Data Blocks. The user is cautioned that
a DDB is only valid if the ‘valid’ flag is set. Note that the DDBs are in no particular order.
° errDevice: this structure element is used to store an error code that specifies the reason

for an API function’s failure. The field is only valid when the function in question returns
a TUP_FAILURE value.

° stateDevice: this structure element is used to store the device state.

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 42
Document ID PMC-1991288 Issue 2

5 APPLICATION PROGRAMMING INTERFACE

This section provides a detailed description of each function that is a member of the TUPP+622
driver Application Programming Interface (API).

5.1 Module Initialization

Opening the Driver Module: tuppModuleOpen

This function performs module level initialization of the device driver. This involves allocating
all of the memory needed by the driver and initializing the Module Data Block (MDB) with the
passed Module Initialization Vector (MIV).

Prototypes INT4 tuppModuleOpen(sTUP_MIV *pmiv)

Inputs pmiv : (pointer to) Module Initialization Vector

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States START

Side Effects Changes MODULE state to IDLE

Closing the Driver Module: tuppModuleClose

This function performs module level shutdown of the driver. This involves deleting all devices
being controlled by the driver (by calling tuppDelete for each device) and de-allocating the
MDB.

Prototype INT4 tuppModuleClose(void)

Inputs None

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ALL STATES

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 43
Document ID PMC-1991288 Issue 2

Side Effects Changes MODULE state to START

5.2 Module Activation

Starting the Driver Module: tuppModuleStart

This function performs module level startup of the driver. This involves allocating semaphores
and timers, initializing buffers and installing the ISR handler and DPR task. Upon successful
return of this function the driver is ready to add devices.

Prototype INT4 tuppModuleStart(void)

Inputs None

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States IDLE

Side Effects Changes MODULE state to READY

Stopping the Driver Module: tuppModuleStop

This function performs module level shutdown of the driver. This involves deleting all devices
being controlled by the driver and removing the ISR handler and DPR task.

Prototype INT4 tuppModuleStop(void)

Inputs None

Outputs None

Returns Success = TUP_SUCCESS
Failure = < TUPP+622 ERROR CODE>

Valid States READY

Side Effects Changes MODULE state to IDLE

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 44
Document ID PMC-1991288 Issue 2

5.3 Initialization Profile Management

Creating an Initialization Profile: tuppAddInitProfile

This function creates an initialization profile that is stored by the driver. A device can now be
initialized by simply passing an initialization profile number.

Prototype INT4 tuppAddInitProfile(sTUP_INIT_PROF *pProfile,
UINT2 *pProfileNum)

Inputs pProfile : (pointer to) initialization profile being
 added

pProfileNum : (pointer to) profile number to be
 assigned by the driver

Outputs profileNum : profile number assigned by the driver

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

Retrieving an Initialization Profile: tuppGetInitProfile

This function retrieves the contents of the initialization profile.

Prototype INT4 tuppGetInitProfile(UINT2 profileNum,
sTUP_INIT_PROF *pProfile)

Inputs profileNum : initialization profile number
pProfile : (pointer to) initialization profile

Outputs pProfile : contents of the corresponding profile

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 45
Document ID PMC-1991288 Issue 2

Deleting an Initialization Profile: tuppDeleteInitProfile

This function deletes an initialization profile given its profile number.

Prototype INT4 tuppDeleteInitProfile(UINT2 profileNum)

Inputs profileNum : initialization profile number

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States IDLE, READY

Side Effects None

5.4 Device Addition and Deletion

Adding a Device: tuppAdd

This function verifies the presence of a new device in the hardware then returns a handle back to
the user. The device handle is passed as a parameter of most of the device API Functions. The
handle is used by the driver to identify the device on which the operation is to be performed.

Prototype sTUP_HNDL tuppAdd(void *usrCtxt, UINT1 *baseAddr,
INT4 **perrDevice)

Inputs usrCtxt : user context for this device
baseAddr : base address of the device
pperrDevice : (pointer to) an area of memory

Outputs pperrDevice : (pointer to) errDevice (inside the DDB)

Returns Device handle (to be used as an argument to most of the TUPP+622
APIs) or NULL pointer in case of an error

Valid States READY

Side Effects Changes the DEVICE state to PRESENT

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 46
Document ID PMC-1991288 Issue 2

Deleting a Device: tuppDelete

This function is used to remove the specified device from the list of devices being controlled by
the TUPP+622 driver. Deleting a device involves clearing the DDB for that device and releasing
its associated device handle.

Prototype INT4 tuppDelete(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States PRESENT, ACTIVE, INACTIVE

Side Effects None

5.5 Device Initialization

Initializing a Device: tuppInit

This function initializes the Device Data Block (DDB) that is associated with that device during
tuppAdd. It applies a reset to the device and configures it according to the DIV passed by the
Application. If the DIV is passed as a NULL the profile number is used. A profile number of zero
indicates that all the register bits are to be left in their default state (after a soft reset). Note that
the profile number is ignored UNLESS the passed DIV is NULL.

Prototype INT4 tuppInit(sTUP_HNDL deviceHandle, sTUP_DIV *pdiv,
UINT2 profileNum)

Inputs deviceHandle : device Handle (from tuppAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (ignored if pdiv is NULL)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States PRESENT

Side Effects Changes DEVICE state to INACTIVE

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 47
Document ID PMC-1991288 Issue 2

Updating the Configuration of a Device: tuppUpdate

This function updates the configuration of the device as well as the Device Data Block (DDB)
associated with that device according to the DIV passed by the Application. The only difference
between tuppUpdate and tuppInit is that no soft reset will be applied to the device.

Prototype INT4 tuppUpdate(sTUP_HNDL deviceHandle, sTUP_DIV
*pdiv, UINT2 profileNum)

Inputs deviceHandle : device Handle (from tuppAdd)
pdiv : (pointer to) Device Initialization Vector
profileNum : profile number (ignored if pdiv is NULL)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States PRESENT

Side Effects Changes DEVICE state to INACTIVE

Resetting a Device: tuppReset

This function applies a software reset to the TUPP+622 device. It also resets all the DDB contents
(except for the user context). This function is typically called before re-initializing the device.

Prototype INT4 tuppReset(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects Changes DEVICE state to PRESENT

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 48
Document ID PMC-1991288 Issue 2

5.6 Device Activation and De-Activation

Activating a Device: tuppActivate

This function restores the state of a device after it has been deactivated. Interrupts may be re-
enabled after deactivation.

Prototype INT4 tuppActivate(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States INACTIVE

Side Effects Change the device state to ACTIVE

DeActivating a Device: tuppDeActivate

This function de-activates the device from operation. In the process, interrupts are masked and the
device is put into a quiet state via enable bits.

Prototype INT4 tuppDeActivate(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE

Side Effects Changes the device state to INACTIVE

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 49
Document ID PMC-1991288 Issue 2

5.7 Device Reading and Writing

Reading from a Device Register: tuppRead

This function can be used to read a register of a specific TUPP+622 device by providing the
register number. This function derives the actual address location based on the device handle and
register number inputs. It then reads the contents of this address location using the system specific
macro, sysTuppRead.

Note: A failure to read returns a zero and any error indication is written to the DDB.

Prototype UINT1 tuppRead(sTUP_HNDL deviceHandle, UINT2 regNum)

Inputs deviceHandle : device Handle (from tuppAdd)
regNum : register number

Outputs ERROR code written to the DDB

Returns Success = the register value
Failure = 0x00

Valid States All Device States

Side Effects May affect registers that change after a read operation

Writing to a Device: tuppWrite

This function can be used to write to a register of a specific TUPP+622 device by providing the
register number. The function derives the actual address location based on the device handle and
register number inputs. It then writes the contents of this address location using the system
specific macro sysTuppWrite.

Note: A failure to write returns a zero and any error indication is written to the DDB.

Prototype UINT1 tuppWrite(sTUP_HNDL deviceHandle, UINT2 regNum,
UINT1 value)

Inputs deviceHandle : device Handle (from tuppAdd)
regNum : register number
value : value to be written

Outputs ERROR code written to the DDB

Returns Success = previous value
Failure = 0x00

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 50
Document ID PMC-1991288 Issue 2

Valid States All Device States

Side Effects May change the configuration of the Device

Reading a Block of Registers: tuppReadBlock

This function can be used to read a register block of a specific TUPP+622 device by providing
the starting register number, and the size to read. The function derives the actual start address
location based on the device handle and starting register number inputs. It then reads the contents
of this data block using multiple calls to the system specific macro and sysTuppRead.

Note: Any error indication is written to the DDB. It is the user’s responsibility to allocate enough
memory for the block read.

Prototype void tuppReadBlock(sTUP_HNDL deviceHandle, UINT2
startRegNum, UINT2 size, UINT1 *pblock)

Inputs deviceHandle : device Handle (from tuppAdd)
startRegNum : starting register number
size : size of the block to read
pblock : (pointer to) the block to read

Outputs ERROR code written to the DDB
pblock : (pointer to) the block read

Returns None

Valid States ALL DEVICE STATES

Side Effects May affect registers that change after a read operation

Writing a Block of Registers: tuppWriteBlock

This function can be used to write to a register block of a specific TUPP+622 device by providing
the starting register number and the block size. The function derives the actual starting address
location based on the device handle and starting register number inputs. It then writes the contents
of this data block using multiple calls to the system specific macro and sysTuppWrite. A bit
from the passed block is only modified in the device’s registers if the corresponding bit is set in
the passed mask.

Note: Any error indication is written to the DDB

Prototype void tuppWriteBlock(sTUP_HNDL deviceHandle, UINT2

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 51
Document ID PMC-1991288 Issue 2

startRegNum, UINT2 size, UINT1 *pblock, UINT1 *pmask)

Inputs deviceHandle : device Handle (from tuppAdd)
startRegNum : starting register number
size : size of block to read
pblock : (pointer to) block to write
pmask : (pointer to) mask

Outputs ERROR code written to the DDB

Returns None

Valid States ALL DEVICE STATES

Side Effects May change the configuration of the Device

5.8 Input/Output

Configuring Auto-Responses: tuppAutoResponse

This function configures the per STM1 auto-response behavior of the TUPP+622. The device is
optionally configured to automatically insert AIS, RDI or ARDI upon detection of one or more of
the following alarms LOM, LOP, AIS, UNEQ, PSLM, PSLU, TIM and TIU.

Prototype INT4 tuppAutoResponse(sTUP_HNDL deviceHandle, UINT2
stm1, UINT1 ais, UINT1 rdi, UINT1 ardi)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
ais : mask to write to STP Tributary Alarm

 auxiliary AIS Control Register
 (register 010H)

rdi : mask to write to STP Tributary Remote
 defect Indication Control
 Register:(register 011H)

ardi : mask to write to STP Tributary
 Auxiliary Remote Defect Indication
 Control Register: (register 012H)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 52
Document ID PMC-1991288 Issue 2

Valid States ACTIVE, INACTIVE

Side Effects None

5.9 Tributary Payload Processor

Configuring Position of the J1 Byte: tuppVTPPConfigJ1

This function configures the position of the J1 byte for a given STM-1 (STS-3). For example,
setting posJ1 to a value of zero will force J1 to immediately follow H3, while a value of 522 will
force J1 to immediately follow J0/Z0. posJ1 can be set to any value between 0 and 782.

Prototype INT4 tuppVTPPConfigJ1(sTUP_HNDL deviceHandle, UINT2
stm1, UINT2 posJ1)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
posJ1 : J1 position

Outputs None

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Inserting all 0s in H4: tuppVTPPSquelchH4

This function enables insertion of an all-zeros byte in the H4 position of the outgoing payload.

Prototype INT4 tuppVTPPSquelchH4(sTUP_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
enable : enable zeroing of H4 byte

Outputs None

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 53
Document ID PMC-1991288 Issue 2

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Path AIS: tuppVTPPForcePAIS

This function enables insertion of path AIS in the outgoing payload.

Prototype INT4 tuppVTPPForcePAIS(sTUP_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2 enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : enable forcing insertion of path AIS

Outputs None

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Path IDLE: tuppVTPPForceIDLE

This function enables insertion of path IDLE in the outgoing payload.

Prototype INT4 tuppVTPPForceIDLE(sTUP_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2 enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : enable forcing insertion of path IDLE

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 54
Document ID PMC-1991288 Issue 2

Outputs None

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Forcing Loss of Pointer: tuppVTPPDiagLOP

This function enables inversion of the new data flag (NDF) field of the outgoing payload pointer
to cause downstream pointer processing elements to enter a loss of pointer state.

Prototype INT4 tuppVTPPDiagLOP(sTUP_HNDL deviceHandle, UINT2
stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2 enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : enable

Outputs None

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.10 Tributary Path Overhead Processors

Forcing PDIV Output High: tuppRTOPForcePDIVHigh

This function forces the state of the PDIV output. When enable flag is set, the PDIV output is set
high independently of the tributary’s defect status.

Prototype INT4 tuppRTOPForcePDIVHigh(sTUP_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 55
Document ID PMC-1991288 Issue 2

enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : enable forcing PDIV high

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Getting/Setting Path Signal Label: tuppRTOPPathSigLabel

This function gets/sets the path signal label in the Tributary Path Overhead Processor. It is the
user’s responsibility to make sure that the path signal label pointer points to an area of memory
large enough to hold all the data returned.

Prototype INT4 tuppRTOPPathSigLabel(sTUP_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2
rw, UINT2 type, UINT1 *psl)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
rw : read/write flag, write if zero
type : type of access:

0: accepted path signal label
1: expected path signal label

psl : (pointer to) path signal label

Outputs psl : updated path signal label

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 56
Document ID PMC-1991288 Issue 2

Side Effects None

Configuring Tributary AIS Auto-Responses: tuppAutoResponseTribAIS

This function configures the TUPP+622 to automatically insert AIS on a given TU upon detection
of one or more of the following alarms UNEQ, PSLM, PSLU, TIM and TIU, as configured by
tuppAutoResponse.

Prototype INT4 tuppAutoResponseTribAIS(sTUP_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2
enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : flag to enable/disable AIS insertion

Outputs None

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Configuring In-Band Error Reporting: tuppAutoResponseTribIBER

This function enables/disables in-band error reporting of the TUPP+622 for a given TU.

Prototype INT4 tuppAutoResponseTribIBER(sTUP_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2
enable)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
enable : flag to enable/disable in band error

 reporting

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 57
Document ID PMC-1991288 Issue 2

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.11 Tributary Trace Buffer

Getting/Setting Tributary Trace Messages: tuppTributaryTraceMsg

This function Gets or Sets the current tributary trace message (J2) in the Tributary Trace Buffer. It
is the user’s responsibility to make sure that the message pointer points to an area of memory
large enough to hold all the data returned.

Prototype INT4 tuppTributaryTraceMsg(sTUP_HNDL deviceHandle,
UINT2 stm1, UINT2 au3, UINT2 tug2, UINT2 tu, UINT2
rw, UINT2 type, UINT1 *pJ2)

Inputs deviceHandle : device Handle (from tuppAdd)
stm1 : STM-1 (STS-3) index
au3 : AU-3 (STS-1) index
tug2 : TUG2 (VTG) index
tu : TU (VT) index
rw : read/write flag, write if zero
type : type of access:

0: captured tributary trace
1: expected tributary trace

pJ2 : (pointer to) the tributary trace message

Outputs pJ2 : updated tributary trace message

 Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 58
Document ID PMC-1991288 Issue 2

5.12 Interrupt Service Functions

Getting the Interrupt Mask: tuppGetMask

This function returns the contents of the interrupt mask registers of the TUPP+622 device.

Prototype INT4 tuppGetMask(sTUP_HNDL deviceHandle, sTUP_MASK
*pmask)

Inputs deviceHandle : device Handle (from tuppAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Setting the Interrupt Mask: tuppSetMask

This function sets the contents of the interrupt mask registers of the TUPP+622 device.

Prototype INT4 tuppSetMask(sTUP_HNDL deviceHandle, sTUP_MASK
*pmask)

Inputs deviceHandle : device Handle (from tuppAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May change the operation of the ISR / DPR

Clearing the Interrupt Mask: tuppClearMask

This function clears the individual interrupt bits and registers in the TUPP+622 device. Any bits
that are set in the passed structure are cleared in the associated registers.

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 59
Document ID PMC-1991288 Issue 2

Prototype INT4 tuppClearMask(sTUP_HNDL deviceHandle, sTUP_MASK
*pmask)

Inputs deviceHandle : device Handle (from tuppAdd)
pmask : (pointer to) mask structure

Outputs ERROR code written to the DDB

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects May change the operation of the ISR / DPR

Polling Interrupt Status Registers: tuppPoll

This function commands the driver to poll the interrupt registers in the device. The call will fail
unless the device is initialized into polling mode. An additional parameter is available that starts
automatic polling on one second boundaries. The output of the poll is the same as it would be if
interrupts were enabled: the data gathered is passed to the DPR for disposition.

Prototype INT4 tuppPoll(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE

Side Effects None

Interrupt-Service Routine: tuppISR

This function reads the state of the interrupt registers in the TUPP+622 and stores them into an
ISV. It performs whatever functions are needed to clear the interrupt. This routine is called by the
application code from within sysTuppISRHandler.

Prototype void * tuppISR(sTUP_HNDL deviceHandle)

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 60
Document ID PMC-1991288 Issue 2

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns (pointer to) ISV buffer if any valid interrupt condition was found

Valid States ACTIVE

Side Effects None

Deferred-Processing Routine: tuppDPR

This function acts on data contained in an ISV. It creates a DPV that invokes application code
callbacks (if defined and enabled), and possibly other performing linked actions. This function is
called from within the application function sysTuppDPRTask.

Prototype void tuppDPR(sTUP_ISV *pisv)

Inputs pisv : (pointer to) ISV buffer

Outputs None

Returns None

Valid States ACTIVE

Side Effects None

5.13 Alarm, Status and Statistics Functions

Configuring Statistical Counts: tuppCfgStats

This function configures the behavior of the device counts.

Prototype INT4 tuppCfgStats(sTUP_HNDL deviceHandle,
sTUP_CFG_CNT cfgCnt)

Inputs deviceHandle : device Handle (from tuppAdd)
cfgCnt : counters configuration block

Outputs None

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 61
Document ID PMC-1991288 Issue 2

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Getting the Current Status: tuppGetStatus

This function retrieves all the device and alarm status for a given STM-1.

Note: It is the user’s responsibility to ensure that the structure points to an area of memory large
enough to hold a copy of the status structure.

Prototype INT4 tuppGetStatus(sTUP_HNDL deviceHandle, UINT2
stm1, sTUP_STATUS *palm)

Inputs deviceHandle : device Handle (from tuppAdd)
stml : STM-1 (STS-3) index
palm : (pointer to) allocated memory

Outputs palm : updated status structure for this STM-1

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

Reading the Device Counters: tuppGetCnt

This function retrieves all the device counts for a given STM-1.

Note: It is the user’s responsibility to ensure that the structure points to an area of memory large
enough to hold a copy of the counter structure.

Prototype INT4 tuppGetCnt(sTUP_HNDL deviceHandle, UINT2 stm1,
sTUP_STAT_CNT *pcnt)

Inputs deviceHandle : device Handle (from tuppAdd)
stml : STM-1 (STS-3) index
pcnt : (pointer to) allocated memory

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 62
Document ID PMC-1991288 Issue 2

Outputs pcnt : updated count structure for this STM-1

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States ACTIVE, INACTIVE

Side Effects None

5.14 Device Diagnostics

Verifying Register Access: tuppTestReg

This function verifies the hardware access to the device registers by writing and reading back
values.

Prototype INT4 tuppTestReg(sTUP_HNDL deviceHandle)

Inputs deviceHandle : device Handle (from tuppAdd)

Outputs None

Returns Success = TUP_SUCCESS
Failure = <TUPP+622 ERROR CODE>

Valid States PRESENT, INACTIVE

Side Effects None

5.15 Callback Functions

The TUPP+622 driver has the capability to callback to functions within the user code when
certain events occur. These events and their associated callback routine declarations are detailed
below. There is no user code action that is required by the driver for these callbacks – the user is
free to implement these callbacks in any manner or else they can be deleted from the driver.

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 63
Document ID PMC-1991288 Issue 2

IO Section Callbacks: cbackTuppIO

This function is provided by the user and is used by the DPR to report significant IO section
events back to the application. This function should be non-blocking. Typically, the callback
routine sends a message to another task with the event identifier and other context information.
The task that receives this message can then process this information according to the system
requirements. The user should free the DPV buffer.

Prototype void cbackTuppIO(sTUP_USR_CTXT usrCtxt, sTUP_DPV
*pdpv)

Inputs usrCtxt : user context (from tuppAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Returns None

Valid States ACTIVE

Side Effects None

VTPP Section Callbacks: cbackTuppVTPP

This function is used by the DPR to report significant VTPP section events back to the
application. This function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that
receives this message can then process this information according to the system requirements.
The user should free the DPV buffer.

Prototype void cbackTuppVTPP(sTUP_USR_CTXT usrCtxt, sTUP_DPV
*pdpv)

Inputs usrCtxt : user context (from tuppAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Returns None

Valid States ACTIVE

Side Effects None

Tupp+622 (PM5363) Driver Manual
Application Programming Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 64
Document ID PMC-1991288 Issue 2

RTOP Section Callbacks: cbackTuppRTOP

This function is used by the DPR to report significant RTOP section events back to the
application. This function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that
receives this message can then process this information according to the system requirements.
The user should free the DPV buffer.

Prototype void cbackTuppRTOP(sTUP_USR_CTXT usrCtxt, sTUP_DPV
*pdpv)

Inputs usrCtxt : user context (from tuppAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Returns None

Valid States ACTIVE

Side Effects None

RTTB Section Callbacks: cbackTuppRTTB

This function is used by the DPR to report significant RTTB section events back to the
application. This function should be non-blocking. Typically, the callback routine sends a
message to another task with the event identifier and other context information. The task that
receives this message can then process this information according to the system requirements.
The user should free the DPV buffer.

Prototype void cbackTuppRTTB(sTUP_USR_CTXT usrCtxt, sTUP_DPV
*pdpv)

Inputs usrCtxt : user context (from tuppAdd)
pdpv : (pointer to) formatted event buffer

Outputs None

 Returns None

Valid States ACTIVE

Side Effects None

Tupp+622 (PM5363) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 65
Document ID PMC-1991288 Issue 2

6 HARDWARE INTERFACE

The TUPP+622 driver interfaces directly with the user’s hardware. In this section, a listing of
each point of interface is shown, along with a declaration and any specific porting instructions. It
is the responsibility of the user to connect these requirements into the hardware, either by
defining a macro or by writing a function for each item listed. Care should be taken when
matching parameters and return values.

6.1 Device I/O

Reading Registers: sysTuppRead

This function serves as the most basic hardware connection by reading the contents of a specific
register location. This Macro should be UINT1 oriented, and should be defined by the user to
reflect the target system’s addressing logic. There is no need for error recovery in this function.

Prototype UINT1 sysTuppRead(addr)

Inputs addr : register location to be read

Outputs None

Returns value read from the addressed register location

Format #define sysTuppRead(addr)

Writing Values: sysTuppWrite

This function serves as the most basic hardware connection by writing the supplied value to the
specific register location. This macro should be UINT1 oriented and should be defined by the
user to reflect the target system’s addressing logic. There is no need for error recovery in this
function.

Prototype void sysTuppWrite(addr, value)

Inputs addr : register location to be read

Outputs None

Returns value read from the addressed register location

Format #define sysTuppWrite(addr, value)

Tupp+622 (PM5363) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 66
Document ID PMC-1991288 Issue 2

6.2 Interrupt Servicing

The porting of an ISR routine between platforms is a rather difficult task. There are many
different implementations of these hardware level routines. In this driver, the user is responsible
for installing an interrupt handler (sysTuppISRHandler) in the interrupt vector table of the
system processor. This handler shall call tuppISR for each device that has interrupt servicing
enabled, to perform the ISR related housekeeping required by each device.

During execution of the API function tuppModuleStart / tuppModuleStop the driver informs
the application that it is time to install / uninstall this shell via sysTuppISRHandlerInstall /
sysTuppISRHandlerRemove, that needs to be supplied by the user.

Note: A device can be initialized with ISR disabled. In that mode, the user should periodically
invoke a provided ‘polling’ routine (tuppPoll) that in turn calls tuppISR.

Installing the ISR Handler: sysTuppISRHandlerInstall

This function installs the user-supplied Interrupt-Service Routine (ISR), sysTuppISRHandler,
into the processor’s interrupt vector table.

Prototype void sysTuppISRHandlerInstall(void *func)

Inputs func : (pointer to) the function tuppISR

Outputs None

Returns None

Valid States None

Format #define sysTuppISRHandlerInstall(func)

ISR Handler: sysTuppISRHandler

This routine is invoked when one or more TUPP+622 devices raise the interrupt line to the
microprocessor. This routine invokes the driver-provided routine (tuppISR) for each device
registered with the driver.

Prototype void sysTuppISRHandler(void)

Inputs None

Outputs None

Tupp+622 (PM5363) Driver Manual
Hardware Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 67
Document ID PMC-1991288 Issue 2

Returns None

Format #define sysTuppISRHandler()

Removing Handlers: sysTuppISRHandlerRemove

This function disables Interrupt processing for this device. It removes the user-supplied Interrupt-
Service Routine (ISR), sysTuppISRHandler, from the processor’s interrupt vector table.

Prototype void sysTuppISRHandlerRemove(void)

Inputs None

Outputs None

Returns None

Format #define sysTuppISRHandlerRemove()

DPR Task: sysTuppDPRTask

This routine is installed as a separate task within the RTOS. It runs periodically and retrieves the
interrupt status information sent to it by the tuppISRHandler routine, thereafter invoking the
tuppDPR routine for the appropriate device.

Prototype void sysTuppDPRTask(void)

Inputs None

Outputs None

Returns None

Format #define sysTuppDPRTask()

Tupp+622 (PM5363) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 68
Document ID PMC-1991288 Issue 2

7 RTOS INTERFACE

The TUPP+622 driver requires the use of some RTOS resources. In this section, a listing of each
required resource is shown, along with a declaration and any specific porting instructions. It is the
responsibility of the user to connect these requirements into the RTOS, either by defining a macro
or writing a function for each item listed. Care should be taken when matching parameters and
return values.

7.1 Memory Allocation / De-Allocation

Allocating Memory: sysTuppMemAlloc

This function allocates specified number of bytes of memory.

Prototype UINT1 *sysTuppMemAlloc(UINT4 numBytes)

Inputs numBytes : number of bytes to be allocated

Outputs None

Returns Success = Pointer to first byte of allocated memory
Failure = NULL pointer (memory allocation failed)

Format #define sysTuppMemAlloc(numBytes)

Freeing Memory: sysTuppMemFree

This function frees the memory allocated when using the sysTuppMemAlloc.

Prototype void sysTuppMemFree(UINT1 *pfirstByte)

Inputs pfirstByte : pointer to first byte of the memory region being
 de-allocated

Outputs None

Returns None

Format #define sysTuppMemFree(pfirstByte)

Tupp+622 (PM5363) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 69
Document ID PMC-1991288 Issue 2

7.2 Buffer Management

All operating systems provide some sort of buffer system, particularly for use in sending and
receiving messages. The following calls, provided by the user, allow the driver to Get and Return
buffers from the RTOS. It is the user’s responsibility to create any special resources or pools to
handle buffers of these sizes during the sysTuppBufferStart call.

Starting Buffer Management: sysTuppBufferStart

This function alerts the RTOS that the ISV buffers and DPV buffers are available and should be
sized correctly. This may or may not involve the creation of new buffer pools, depending on the
RTOS.

Prototype INT4 sysTuppBufferStart(void)

Inputs None

Outputs None

Returns Success = 0
Failure = any other value

Format #define sysTuppBufferStart()

Getting DPV Buffers: sysTuppDPVBufferGet

This function retrieves a buffer from the RTOS. The buffer is used by the DPR code to create a
Deferred-Processing Vector (DPV). The DPV contains information about the state of the device.
This information is passed on to the user via a callback function.

Prototype sTUP_DPV *sysTuppDPVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a DPV buffer
Failure = NULL (pointer)

Format #define sysTuppDPVBufferGet()

Tupp+622 (PM5363) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 70
Document ID PMC-1991288 Issue 2

Getting ISV Buffers: sysTuppISVBufferGet

This function retrieves a buffer from the RTOS. The buffer is used by the ISR code to create a
Interrupt-Service Vector (ISV). The ISV contains data transferred from the devices interrupt
status registers.

Prototype sTUP_ISV *sysTuppISVBufferGet(void)

Inputs None

Outputs None

Returns Success = (pointer to) a ISV buffer
Failure = NULL (pointer)

Format #define sysTuppISVBufferGet()

Returning DPV Buffers: sysTuppDPVBufferRtn

This device returns a DPV buffer to the RTOS when the information in the block is no longer
needed by the DPR.

Prototype void sysTuppDPVBufferRtn(sTUP_DPV *pdpv)

Inputs pdpv : (pointer to) a DPV buffer

Outputs None

Returns None

Format #define sysTuppDPVBufferRtn(pdpv)

Returning ISV Buffers: sysTuppISVBufferRtn

This device returns a ISV buffer to the RTOS when the information in the block is no longer
needed by the DPR.

Prototype void sysTuppISVBufferRtn(sTUP_ISV *pisv)

Inputs pisv : (pointer to) a ISV buffer

Outputs None

Returns None

Tupp+622 (PM5363) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 71
Document ID PMC-1991288 Issue 2

Format #define sysTuppISVBufferRtn(pisv)

Stopping Buffer Management: sysTuppBufferStop

This function alerts the RTOS that the driver no longer needs the ISV buffers or DPV buffers. If
any special resources were created to handle these buffers, they can be deleted at this time.

Prototype void sysTuppBufferStop(void)

Inputs None

Outputs None

Returns None

Format #define sysTuppBufferStop()

7.3 Preemption

Disabling Preemption: sysTuppPreemptDisable

This routine prevents the calling task from being preempted. If the driver is in interrupt mode, this
routine locks out all interrupts as well as other tasks in the system. If the driver is in polling
mode, this routine only locks out the other tasks.

Prototype INT4 sysTuppPreemptDisable(void)

Inputs None

Outputs None

Returns Preemption key (passed back as an argument in
sysTuppPreemptEnable)

Format #define sysTuppPreemptDisable()

Tupp+622 (PM5363) Driver Manual
RTOS Interface

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 72
Document ID PMC-1991288 Issue 2

Re-Enabling Preemption: sysTuppPreemptEnable

This routine allows the calling task to be preempted. If the driver is in interrupt mode, this routine
unlocks all interrupts and other tasks in the system. If the driver is in polling mode, this routine
only unlocks the other tasks.

Prototype void sysTuppPreemptEnable(INT4 key)

Inputs key : preemption key (returned by sysTuppPreemptDisable)

Outputs None

Returns None

Format #define sysTuppPreemptEnable(key)

7.4 Timers

Suspending a Task Execution: sysTuppTimerSleep

This function suspends the execution of a driver task for a specified number of milliseconds.

Prototype void sysTuppTimerSleep(UINT4 msec)

Inputs msec : sleep time in milliseconds

Outputs None

Returns None

Format #define sysTuppTimerSleep(msec)

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 73
Document ID PMC-1991288 Issue 2

8 PORTING DRIVERS

This section outlines how to port the TUPP+622 device driver to your hardware and OS platform.
However, this manual can offer only guidelines for porting the TUPP+622 driver because each
platform and application is unique.

8.1 Driver Source Files

The C files listed in the following table contain the code for the TUPP+622 driver. You may need
to modify the code or develop additional code. The code is in the form of constants, macros, and
functions. For ease of porting, the code is grouped into source files (src) and includes files
(inc). The source files contain the functions and the include files contain the structures, constants
and macros.

Directory File Description

tup_api1.c All API functions that take care of module, device and profile
management

tup_api2.c All TUPP+622 specific API functions.

tup_hw.c Hardware interface functions

tup_isr.c Internal functions that deal with interrupt servicing

tup_prof.c Internal functions that deal with profiles

tup_rtos.c RTOS interface functions

tup_stat.c Internal functions that deal with statistics

src

tup_util.c All the remaining internal functions

tup_api.h All API headers

tup_defs.h Driver macros, constants and definitions (such as register
mapping and bit masks)

tup_err.h TUPP+622 error codes

inc

tup_fns.h Prototype of non-API functions

tup_hw.h HW interface macros and prototype

tup_rtos.h RTOS interface macros and prototypes

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 74
Document ID PMC-1991288 Issue 2

Directory File Description

inc tup_strs.h Driver structures

tup_typs.h Types definitions

tup_app.c Sample driver callback functions

tup_app.h Prototypes, macros and structures used inside the example
code

tup_debug.c Functions to implement a debug diagnostic task

example

tup_debug.h Prototypes and structures used inside the debug task code

8.2 Driver Porting Procedures

The following procedures summarize how to port the TUPP+622 driver to your platform. The
subsequent sections describe these procedures in more detail.

To port the TUPP+622 driver to your platform:

Step 1: Port the driver’s RTOS interface (page 75):

Step 2: Port the driver’s hardware interface (page 76):

Step 3: Port the driver’s application-specific elements (page 77):

Step 4: Build the driver (page 77).

Porting Assumptions

The following porting assumptions have been made:

• It is assumed that RAM assigned to the driver’s static variables is initialized to ZERO before
any driver function is called.

• It is assumed that a RAM stack of 4K is available to all of the driver’s non-ISR functions and
that a RAM stack of 1K is available to the driver’s ISR functions.

• It is assumed that there is no memory management or MMU in the system or that all accesses
by the driver, to memory or hardware can be direct.

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 75
Document ID PMC-1991288 Issue 2

Step 1: Porting the RTOS interface

The RTOS interface functions and macros consist of code that is RTOS dependent and needs to
be modified as per your RTOS’ characteristics.

To port the driver’s OS extensions:

1. Redefine the following macros and functions in the tup_rtos.h file to the corresponding
system calls that your target system supports:

Service Type Macro Name Description

sysTuppMemAlloc Allocates a memory block

sysTuppMemFree Frees a memory block

sysTuppMemCpy Copies the contents of one memory block to
another

Memory

sysTuppMemSet Fills a memory block with a specified value

Timer sysTuppTimerSleep Delays the task execution for a given
number of milliseconds

sysTuppPreemptDisable Disables pre-emption of the currently
executing task by any other task or interrupt

Pre-emption
Lock/Unlock

sysTuppPreemptEnable Re-enables pre-emption of a task by other
tasks and/or interrupts

2. Modify the example implementation of the buffer management routines provided in the
tup_rtos.h file with the corresponding system calls that your target system supports:

Service Type Macro Name Description

sysTuppBufferStart Starts buffer management

sysTuppBufferStop Stops buffer management

sysTuppISVBufferGet Gets an ISV buffer from the ISV buffer queue

sysTuppISVBufferRtn Returns an ISV buffer to the ISV buffer queue

sysTuppDPVBufferGet Gets a DPV buffer from the DPV buffer queue

Buffer

sysTuppDPVBufferRtn Returns a DPV buffer to the DPV buffer queue

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 76
Document ID PMC-1991288 Issue 2

3. Define the following constants for your OS-specific services in tup_rtos.h:

Task Constant Description Default

TUP_DPR_TASK_PRIORITY Deferred Task (DPR) task priority 85

TUP_DPR_TASK_STACK_SZ DPR task stack size, in bytes 8192

TUP_MAX_ISV_BUF The queue message depth of the queue used for pass
interrupt context between the ISR task and DPR task

50

TUP_MAX_DPV_BUF The queue message depth of the queue used for pass
interrupt context between the ISR task and DPR task

950

Step 2: Porting the Hardware Interface

This section describes how to modify the TUPP+622 driver for your hardware platform.

To port the driver to your hardware platform:

1. Modify the variable type definitions in tup_typs.h.

2. Modify the low-level hardware-dependent functions and macros in the tup_hw.h file. You
may need to modify the raw read/write access macros (sysTuppRead and sysTuppWrite)
to reflect your system’s addressing logic.

Service Type Function Name Description

sysTuppRead Reads a device register given its real
address in memory

Register Access

sysTuppWrite Writes to a device register given its real
address in memory

sysTuppISRHandlerInstall Installs the interrupt handler for the OS

sysTuppISRHandlerRemove Removes the interrupt handler from the
OS

sysTuppISRHandler Interrupt handler for the TUPP+622
device

Interrupt

sysTuppDPRTask Task that calls the TUPP+622 DPR

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 77
Document ID PMC-1991288 Issue 2

3. Define the hardware system-configuration constants in the tup_hw.h file. Modify the
following constants to reflect your system’s hardware configuration:

Device Constant Description Default

TUP_MAX_DELAY Delay between two consecutive polls of a busy bit 100us

TUP_MAX_POLL Maximum number of times a busy bit will be polled before
the operation times out

100

Step 3: Porting the Application-Specific Elements

Porting the application-specific elements includes coding the application callback and defining all
the constants used by the API.

To port the driver’s application-specific elements:

1. Modify the base value of TUP_ERR_BASE (default = -300) in tup_err.h.

2. Define the following constants for your OS-specific services in tup_rtos.h:

Task Constant Description Default

TUP_MAX_DEVS The maximum number of TUPP+622 devices that can
be supported by the driver

24

TUP_MAX_INIT_PROFS The maximum number of initialization profiles that can
be added to the driver

5

3. Code the callback functions according to your application. Example implementations of these
callbacks are provided in app.c. The driver will call these callback functions when an event
occurs on the device. These functions must conform to the following prototype:
void cbackXX (sTUP_USR_CTXT usrCtxt, sTUP_DPV *pdpv)

Step 4: Building the Driver

This section describes how to build the TUPP+622 driver.

To build the driver:

1. Modify the Makefile to reflect the absolute path of your code, your compiler and compiler
options.

Tupp+622 (PM5363) Driver Manual
Porting Drivers

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 78
Document ID PMC-1991288 Issue 2

2. Choose from among the different compile options supported by the driver as per your
requirements.

3. Compile the source files and build the TUPP+622 API driver library using your make utility.

4. Link the TUPP+622 API driver library to your application code.

Tupp+622 (PM5363) Driver Manual
Appendix A: Driver Return Codes

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 79
Document ID PMC-1991288 Issue 2

APPENDIX A: DRIVER RETURN CODES

Table 20 describes the driver’s return codes.

Table 20: Return Codes

Return Type Description

TUP_ERR_MEM_ALLOC Memory allocation failure

TUP_ERR_INVALID_ARG Invalid argument

TUP_ERR_INVALID_MODULE_STATE Invalid module state

TUP_ERR_INVALID_MIV Invalid Module Initialization Vector

TUP_ERR_PROFILES_FULL Maximum number of profiles already added

TUP_ERR_INVALID_PROFILE Invalid profile

TUP_ERR_INVALID_PROFILE_MODE Invalid profile mode selected

TUP_ERR_INVALID_PROFILE_NUM Invalid profile number

TUP_ERR_INVALID_DEVICE_STATE Invalid device state

TUP_ERR_DEVS_FULL Maximum number of devices already added

TUP_ERR_DEV_ALREADY_ADDED Device already added

TUP_ERR_INVALID_DEV Invalid device handle

TUP_ERR_INVALID_DIV Invalid Device Initialization Vector

TUP_ERR_INT_INSTALL Error while installing interrupts

TUP_ERR_INVALID_MODE Invalid ISR/polling mode

TUP_ERR_INVALID_REG Invalid register number

TUP_ERR_POLL_TIMEOUT Time-out while polling

Tupp+622 (PM5363) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 80
Document ID PMC-1991288 Issue 2

APPENDIX B: CODING CONVENTIONS

This section describes the coding conventions used in the implementation of the TUPP+622
driver software.

Variable Type Definitions

Table 21: Variable Type Definitions

Type Description

UINT1 unsigned integer – 1 byte

UINT2 unsigned integer – 2 bytes

UINT4 unsigned integer – 4 bytes

INT1 signed integer – 1 byte

INT2 signed integer – 2 bytes

INT4 signed integer – 4 bytes

Naming Conventions

Table 22 presents a summary of the naming conventions followed by the TUPP+622 driver
software. A detailed description is then given in the following sub-sections.

The names used in the drivers are verbose enough to make their purpose fairly clear. This makes
the code more readable. Generally, the device name or abbreviation appears in prefix.

Table 22: Naming Conventions

Type Case Naming convention Examples

Macros Uppercase Prefix with “m” and device
abbreviation

mTUP_IO_OFFSET

Constants Uppercase Prefix with device
abbreviation

TUP_REG_OFFSET_NEXT_STM1

Tupp+622 (PM5363) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 81
Document ID PMC-1991288 Issue 2

Type Case Naming convention Examples

Structures Hungarian
Notation

Prefix with “s” and device
abbreviation

sTUP_DDB

API Functions Hungarian
Notation

Prefix with device name tuppAdd()

Porting Functions Hungarian
Notation

Prefix with “sys” and
device name

sysTuppRead()

Other Functions Hungarian
Notation

utilTuppResetDev()

Variables Hungarian
Notation

maxDevs

Pointers to
variables

Hungarian
Notation

Prefix variable name with
“p”

pmaxDevs

Global variables Hungarian
Notation

Prefix with device name tuppMdb

Macros

The following list identifies the macro conventions used in the driver code:

• Macro names can be uppercase.

• Words can be separated by an underscore.

• The letter ‘m’ in lowercase is used as a prefix to specify that it is a macro, then the device
abbreviation appears.

• Example: mTUP_IO_OFFSET is a valid name for a macro.

Constants

The following list identifies the constant conventions used in the driver code:

• Constant names can be uppercase.

• Words can be separated by an underscore.

• The device abbreviation can appear as a prefix.

• Example: TUP_REG_OFFSET_NEXT_STM1 is a valid name for a constant.

Tupp+622 (PM5363) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 82
Document ID PMC-1991288 Issue 2

Structures

The following list identifies the structure conventions used in the driver code:

• Structure names can be uppercase.

• Words can be separated by an underscore.

• The letter ‘s’ in lowercase can be used as a prefix to specify that it is a structure, then the
device abbreviation appears.

• Example: sTUP_DDB is a valid name for a structure.

Functions

API Functions

• Naming of the API functions follows the hungarian notation.

• The device’s full name in all lowercase can be used as a prefix.

• Example: tuppAdd() is a valid name for an API function.

Porting Functions

Porting functions correspond to all function that are HW and/or RTOS dependent.

• Naming of the porting functions follows the hungarian notation.

• The ‘sys’ prefix can be used to indicate a porting function.

• The device’s name starting with an uppercase can follow the prefix.

• Example: sysTuppRead() is a hardware / RTOS specific.

Other Functions

• Other Functions are all the remaining functions that are part of the driver and have no special
naming convention. However, they can follow the hungarian notation.

• Example: utilTuppResetDev() is a valid name for such a function.

Variables

• Naming of variables follows the hungarian notation.

• A pointer to a variable shall use ‘p’ as a prefix followed by the variable name unchanged. If
the variable name already starts with a ‘p’, the first letter of the variable name may be
capitalized, but this is not a requirement. Double pointers might be prefixed with ‘pp’, but
this is not required.

• Global variables are identified with the device’s name in all lowercase as a prefix.

• Examples: maxDevs is a valid name for a variable, pmaxDevs is a valid name for a pointer to
maxDevs, and tuppMdb is a valid name for a global variable.

Tupp+622 (PM5363) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 83
Document ID PMC-1991288 Issue 2

• Note: Both pprevBuf and pPrevBuf are accepted names for a pointer to the prevBuf
variable, and that both pmatrix and ppmatrix are accepted names for a double pointer to
the variable matrix.

File Organization

Table 23 presents a summary of the file naming conventions. All file names must start with the
device abbreviation, followed by an underscore and the actual file name. File names should
convey their purpose with a minimum amount of characters. If a file size is getting too big one
might separate it into two or more files, providing that a number is added at the end of the file
name (e.g. tup_api1.c or tup_api2.c).

There are 4 different types of files:

• The API file containing all the API functions

• The hardware file containing the hardware dependent functions

• The RTOS file containing the RTOS dependent functions

• The other files containing all the remaining functions of the driver

Table 23: File Naming Conventions

File Type File Name

API tup_api1.c, tup_api.h

Hardware Dependent tup_hw.c, tup_hw.h

RTOS Dependent tup_rtos.c, tup_rtos.h

Other tup_isr.c, tup_defs.h

API Files

• The name of the API files starts with the device abbreviation followed by an underscore and
‘api’. For more than one API file, a number is appended to the file name.

• Examples: tup_api1.c is the only valid name for the file that contains the first part of the
API functions; tup_api.h is the only valid name for the file that contains all of the API
functions headers.

Tupp+622 (PM5363) Driver Manual
Appendix B: Coding Conventions

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 84
Document ID PMC-1991288 Issue 2

Hardware Dependent Files

• The name of the hardware dependent files starts with the device abbreviation followed by an
underscore and ‘hw’. For more than one hardware dependent file, a number is appended to the
file name.

• Examples: tup_hw.c is the only valid name for the file that contains all of the hardware
dependent functions; tup_hw.h is the only valid name for the file that contains all of the
hardware dependent functions headers.

RTOS Dependent Files

• The name of the RTOS dependent files starts with the device abbreviation followed by an
underscore and ‘rtos’. For more than one RTOS dependent file, a number is appended to the
file name.

• Examples: tup_rtos.c is the only valid name for the file that contains all of the RTOS
dependent functions; tup_rtos.h is the only valid name for the file that contains all of the
RTOS dependent functions headers.

Other Driver Files

• The name of the remaining driver files must start with the device abbreviation followed by an
underscore and the file name itself, which should convey the purpose of the functions within
that file with a minimum amount of characters.

• Examples: tup_isr.c is a valid name for a file that would deal with interrupt servicing,
tup_defs.h is a valid name for the header file that contains all the driver’s definitions.

Tupp+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 85
Document ID PMC-1991288 Issue 2

ACRONYMS

API: Application Programming Interface

DDB: Device Data Block

DIV: Device Initialization Vector

DPR: Deferred-Processing Routine

DPV: Deferred-Processing (routine) Vector

FIFO: First In, First Out

IO: Input/Output

ISR: Interrupt-Service Routine

ISV: Interrupt-Service (routine) Vector

MDB: Module Data Block

MIV: Module Initialization Vector

RTOP: Tributary Path Overhead Processor

RTOS: Real-Time Operating System

RTTB: Tributary Trace Buffer

VTPP: Tributary Payload Processor

Tupp+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 86
Document ID PMC-1991288 Issue 2

LIST OF TERMS

APPLICATION: Refers to protocol software used in a real system as well as validation software
written to validate the TUPP+622 driver on a validation platform.

API (Application Programming Interface): Describes the connection between this module and the
user’s Application code.

ISR (Interrupt-Service Routine): A common function for intercepting and servicing device events.
This function is kept as short as possible because an Interrupt preempts every other function
starting the moment it occurs and gives the service function the highest priority while running.
Data is collected, Interrupt indicators are cleared and the function ended.

DPR (Deferred-Processing Routine): This function is installed as a task, at a user configurable
priority, that serves as the next logical step in Interrupt processing. Data that was collected by the
ISR is analyzed and then calls are made into the Application that inform it of the events that
caused the ISR in the first place. Because this function is operating at the task level, the user can
decide on its importance in the system, relative to other functions.

DEVICE: One TUPP+622 Integrated Circuit. There can be many devices, all served by this one
driver module

• DIV (Device Initialization Vector): Structure passed from the API to the device during
initialization; it contains parameters that identify the specific modes and arrangements of the
physical device being initialized.

• DDB (Device Data Block): Structure that holds the Configuration Data for each device.

MODULE: All of the code that is part of this driver, there is only one instance of this module
connected to one or more TUPP+622 chips.

• MIV (Module Initialization Vector): Structure passed from the API to the module during
initialization, it contains parameters that identify the specific characteristics of the driver
module being initialized.

• MDB (Module Data Block): Structure that holds the Configuration Data for this module.

RTOS (Real-Time Operating System): The host for this driver

Tupp+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 87
Document ID PMC-1991288 Issue 2

INDEX

A

api functions
tuppActivate-7, 52

tuppAdd-6, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 91, 92

tuppAddInitProfile-6, 30, 31, 48

tuppAutoResponse-7, 56, 61

tuppAutoResponseTribAIS-7, 61

tuppAutoResponseTribIBER-7, 62

tuppCfgStats-7, 40, 67

tuppClearMask-7, 36, 65

tuppDeActivate-7, 53

tuppDelete-6, 26, 46, 50

tuppDeleteInitProfile-6, 49

tuppDPR-5, 7, 20, 25, 26, 27, 66, 74

tuppGetCnt-2, 3, 7, 39, 68

tuppGetInitProfile-6, 48

tuppGetMask-7, 36, 64

tuppGetStatus-2, 3, 7, 37, 67

tuppInit-6, 30, 51

tuppISR-5, 7, 19, 25, 26, 27, 66, 73, 74

tuppISRHandler-74

tuppMdb-91, 93

tuppMDB-44

tuppModuleClose-6, 46

tuppModuleOpen-6, 29, 46

tuppModuleStart-6, 47, 73

tuppModuleStop-6, 47, 73

tuppPoll-5, 7, 27, 30, 65, 73

tuppRead-7, 53, 54

tuppReadBlock-7, 55

tuppReset-6, 52

tuppRTOPForcePDIVHigh-7, 60

tuppRTOPPathSigLabel-7, 61

tuppSetMask-7, 36, 64

tuppTestReg-8, 68

tuppTributaryTraceMsg-7, 63

tuppUpdate-6, 51

tuppVTPPConfigJ1-7, 57

tuppVTPPDiagLOP-7, 59

tuppVTPPForceIDLE-7, 59

tuppVTPPForcePAIS-7, 58

tuppVTPPSquelchH4-7, 57, 58

tuppWrite-7, 54

tuppWriteBlock-7, 55

C

callbacks
cbackTuppIO-8, 69

cbackTuppRTOP-8, 70

cbackTuppRTTB-8, 71

cbackTuppVTPP-8, 70

D

device
deviceHandle-44

driver
inc

tup_api.h-83, 93, 94

tup_defs.h-83, 93, 94

tup_err.h-83, 87

tup_fns.h-83

tup_hw.h-83, 86, 87, 93, 94

tup_rtos.h-83, 84, 85, 86, 87, 93, 94

tup_strs.h-83

tup_typs.h-83, 86

src

tup_api1.c-82, 93, 94

tup_api2.c-82, 93

tup_hw.c-82, 93, 94

tup_isr.c-82, 93, 94

tup_prof.c-82

tup_rtos.c-82, 93, 94

tup_stat.c-82

tup_util.c-82

Tupp+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 88
Document ID PMC-1991288 Issue 2

E

error
errDevice-41, 45, 50

errModule-41, 44

P

pointers
pblkSize-34

pblock-55, 56

pcnt-68

pddb-41, 45

pdiv-51

pdpv-69, 70, 71, 78, 79, 88

perrDevice-50

pfirstByte-76

pinitData-30, 31, 32, 33, 34

pinitProfs-41

pisv-66, 79

pmask-55, 56, 64, 65

pmatrix-93

pmaxDevs-91, 93

pmdb-29

pmiv-46

ppblk-34

ppblock-33

pperrDevice-50

ppmask-33, 34

ppmatrix-93

pPrevBuf-93

pProfile-48, 49

pProfileNum-48

psize-33

psl-61

pstartReg-33, 34

poll
pollISR-30, 32, 43

porting functions
sysTuppBufferStart-8, 77, 85

sysTuppBufferStop-8, 79, 85

sysTuppDPRTask-8, 25, 26, 27, 66, 74, 75, 87

sysTuppDPVBufferGet-8, 77, 78, 85

sysTuppDPVBufferRtn-8, 78, 79, 85

sysTuppISRHandler-8, 25, 26, 27, 66, 73, 74,
87

sysTuppISRHandlerInstall-8, 27, 73, 86

sysTuppISRHandlerRemove-8, 73, 74, 86

sysTuppISVBufferGet-8, 78, 85

sysTuppISVBufferRtn-8, 79, 85

sysTuppMemAlloc-8, 76, 84

sysTuppMemCpy-84

sysTuppMemFree-8, 76, 84

sysTuppMemSet-85

sysTuppPreemptDisable-8, 80, 85

sysTuppPreemptEnable-8, 80, 85

sysTuppRead-8, 53, 55, 72, 86, 91, 92

sysTuppTimerSleep-8, 81, 85

sysTuppWrite-8, 54, 55, 72, 86

S

structures
sTUP_CBACK-30, 31, 32, 43

sTUP_CFG_CNT-11, 40, 67

sTUP_CFG_IO-35, 42

sTUP_CFG_RTOP-35, 43

sTUP_CFG_RTTB-35, 43

sTUP_CFG_VTPP-35, 42

sTUP_CFG_XXX-34

sTUP_DDB-11, 41, 91, 92

sTUP_DIV-11, 30, 31, 51

sTUP_DPV-11, 44, 69, 70, 71, 77, 78, 88

sTUP_HNDL-44, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68

sTUP_INIT_DATA_COMP-11, 30, 31, 34

sTUP_INIT_DATA_FRM-11, 30, 31, 34

sTUP_INIT_DATA_NORM-11, 30, 31, 32

sTUP_INIT_PROF-11, 31, 41, 48

sTUP_ISV-11, 44, 66, 78, 79

sTUP_MASK-11, 36, 43, 44, 64, 65

sTUP_MDB-11, 29, 41

sTUP_MIV-11, 29, 46

sTUP_STAT_CNT-11, 39, 68

Tupp+622 (PM5363) Driver Manual

Proprietary and Confidential to PMC-Sierra, Inc., and for its Customers’ Internal Use 89
Document ID PMC-1991288 Issue 2

sTUP_STATUS-2, 3, 11, 37, 38, 39, 67

sTUP_STATUS_IO-11, 37

sTUP_STATUS_RTOP-11, 37, 38

sTUP_STATUS_RTTB-11, 37, 39

sTUP_STATUS_VTPP-11, 37, 38

sTUP_USR_CTXT-42, 69, 70, 71, 88

