

ADVANCE INFORMATION MX29VW160T/B

16M-BIT [2M x 8-BIT/1M x16-BIT] SIMULTANEOUS READ/WRITE SINGLE 2.5V OPERATION FLASH MEMORY

FEATURES

- Two Memory Banks for Simultaneous Read/Write operations
 - Host system can program or erase in one bank and simultaneously read from the other bank
 - Zero latency between simultaneous Read/Write operations
 - Read-While-Erase/Program
- Extended Single-supply voltage range from 2.25V to 3.0V for read, erase and write operations
- JEDEC-standard EEPROM commands
- Minimum 100,000 write/erase cycles
- Fast Access time: 120ns
- · Optimized block architecture:
 - Bank A
 - Eight 8K Byte (4K Word) blocks
 - Three 64K Byte (32K Word) blocks
 - Bank B
 - Twenty-eight 64K Byte (32K Word) blocks
- Data polling and toggle bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY): Hardware method for detection of program or erase cycle completion
- Automatic standby mode: When addresses remain stable, automatically switch themselves to low power mode(1uA Typical)
- · Auto erase operation
 - Automatically erases any combination of the blocks or the whole chip
 - Fast erase time: 20ms typical for single block erase and 50ms typical for chip erase and multi-block erase
- Auto page program operation
 - Automatically programs and verifies data at specified addresses
 - Internal address and data latches for 128 Bytes (64 Word) per page in each bank
 - Fast program time: 4ms typical for page program

- Built-in 128 Bytes/64 Words page buffer in each bank
 - Work as SRAM for temporary data storage
 - Fast access to temporary data
- Low power dissipation (typical values at 8MHz)
 - 40mA typical for Read While Write
 - 20mA typical for Read
 - 1uA typical for standby
- Hardware reset pin (RP)
 - Reset internal state machine and put the device into standby mode
- Hardware write protect pin (WP)
 - Allows protection of the first two 8K Byte blocks, regardless of their orginal protect status.
- Group Protection
 - Hardware method of locking groups to prevent any program or erase operation within that group
 - Any group can be locked in-system or via programming equipment
 - Temporary group unprotect feature allows code change in any previously locked group
- Erase Suspend/Erase Resume
 - Suspends or resumes erasing blocks to allow reading and programming in other blocks.
 - It is not necessary to do erase suspend if reading or programming blocks in the other bank
- Low Vcc write inhibit is equal to or less than 1.6V
- Compatible with JEDEC-standard pinouts
 - 48-pin TSOP (I)
 - 48-ball CSP

P/N:PM0567 REV. 0.7, EFB. 12, 1999

GENERAL DESCRIPTION

The MX29VW160T/B is a 16Mbit Flash memory organized as either 2M-byte by 8-bit or 1M-word by 16-bit. To provide simultaneous operation which can read a data while program/erase, the 16Mbits of data is divided into two banks of bank A (2M bit) and bank B(14M bit). Bank A is organized by eight 8K-byte blocks and three 64k-byte blocks. Bank B is organized by twenty-eight 64K-byte blocks.

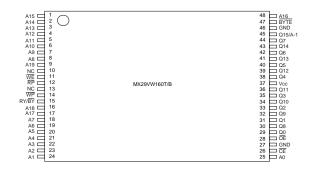
To allow for simple in-system operation with very low operation voltage, MX29VW160T/B can be operated with a single 2.25V to 3.0V supply voltage. Manufactured with MXIC's advanced nonvolatile memory technology, the device offers access times of 120ns, and a low 1uA typical standby current.

The MX29VW160T/B command set is compatible with the JEDEC single-power-supply flash standard. Commands are written to the command register using standard micro-processor write timings. MXIC's flash memory augments EPROM functionality with an internal state machine which controls the erase and program circuitry. The device RY/BY pin provides a convenient way to monitor when a program or erase cycle is complete.

Programming the MX29VW160T/B is performed on a page basis; 128 bytes of data are loaded into the device and then programmed simultaneously. The typical Page Program time is 4ms. The device can also be reprogrammed in standard EPROM programmers. Reading data out of the device is similar to reading from an EPROM or other flash.

Erase is accomplished by executing the Erase command sequence. This will invoke the Auto Erase algorithm which is an internal algorithm that automatically times the erase pulse widths and verifies proper cell margin. This device features both chip erase and block erase. Each block can be erased and programmed without affecting other blocks. Using MXIC's advance design technology, no preprogram is required (internally or externally). As a result, the whole chip can be typically erased and verified in as fast as 50ms.

A combined feature of Reset Pin (\overline{RP}) , a hardware lockout bit, and software command sequences provide complete data protection. First, software data protection protects the device from inadvertent program or erase. Two "unlock" write cycles must be presented to the device before the program or erase command can be accepted by the device. For hardware data protection, the \overline{RP} pin provide protection against unwanted command writes due to invalid system bus condition that may occur during system reset and power up/down sequence. Finally, with a hardware lockout bit feature, the device provides complete core security for the kernal code required for system initialization.


MXIC's flash technology reliably stores memory contents after 100,000 erase and program cycles. The MXIC's cell is designed to optimize the erase and program mechanism. In addition, the combination of advanced tunnel oxide processing and low internal electric fields for erase and program operations produce reliable cycling.

The highest degree of latch-up protection is achieved with MXIC's proprietary non-epi process. Latch-up protection is proved for stresses up to 100 milliamps on address and data pin from -1V to Vcc+1V.

PINOUT

48-PIN TSOP(I) 12mm x 20mm

PIN DESCRIPTION

SYMBOL	PIN NAME
A0 ~ A19	Address Input
Q0 ~ Q14	Data Input/ Output
Q15/A-1	Q15 (word mode)/LSB addr. (byte
	mode)
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable
WP	Write Protect
RP	Reset/Deep Power-down
RY/BY	Ready/Busy Output
BYTE	Word/Byte Selection Input
Vcc	Power Supply Pin (2.25V ~ 3.0V)
GND	Ground Pin
NC	No Internal Connection Pin

48-Ball CSP 8mm x 13mm x 1.2mm(Ball Pitch = 0.8 mm), Top View, Balls Facing Up

	Α	В	С	D	E	F	G	Н
1	А3	A4	A2	A1	A0	CE	ŌE	GND
2	A7	A17	A6	A5	Q0	Q8	Q9	Q1
3	RY/BY	WP	A18	NC	Q2	Q10	Q11	Q3
4	WE	\overline{RP}	NC	A19	Q5	Q12	Vcc	Q4
5	A9	A8	A10	A11	Q7	Q14	Q13	Q6
6	A13	A12	A14	A15	A16	BYTE	Q15/A-1	GND

A-1 TO A19

Table 1 Block Architecture (Word Mode Addr. :A0~A19, BYTE Mode Addr.:A-1~A19)

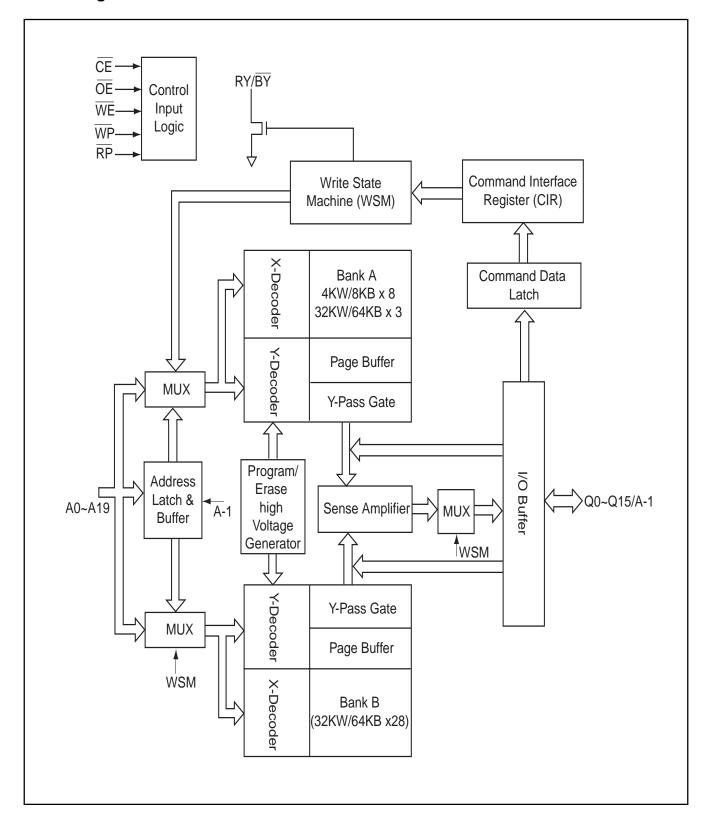
Byte Mode	Word Mode				
1FFFFF~1FE000	FFFFF~FF000	8K-Byte Block	SA01	GA01	
1FDFFF~1FC000	FEFFF~FE000	8K-Byte Block	SA02	GA02	1
1FBFFF~1FA000	FDFFF~FD000	8K-Byte Block	SA03	GA03	1
1F9FFF~1F8000	FCFFF~FC000	8K-Byte Block	SA04	GA04	1
1F7FFF~1F6000	FBFFF~FB000	8K-Byte Block	SA05	GA05	BANK A
1F5FFF~1F4000	FAFFF~FA000	8K-Byte Block	SA06	GA06	1
1F3FFF~1F2000	F9FFF~F9000	8K-Byte Block	SA07	GA07	1
1F1FFF~1F0000	F8FFF~F8000	8K-Byte Block	SA08	GA08	1
1EFFFF~1E0000	F7FFF~F0000	64K-Byte Block	SA09		1
1DFFFF~1D0000	EFFFF~F8000	64K-Byte Block	SA10	GA09	
1CFFFF~1C0000	E7FFF~E0000	64K-Byte Block	SA11		
1BFFFF~1B0000	DFFFF~D8000	64K-Byte Block	SA12		
1AFFFF~1A0000	D7FFF~D0000	64K-Byte Block	SA13	GA10	
19FFFF~190000	CFFFF~C8000	64K-Byte Block	SA14		
18FFFF~180000	C7FFF~C0000	64K-Byte Block	SA15		
17FFFF~170000	BFFFF~B8000	64K-Byte Block	SA16		1
16FFFF~160000	B7FFF~B0000	64K-Byte Block	SA17	GA11	
15FFFF~150000	AFFFF~A8000	64K-Byte Block	SA18		
14FFFF~140000	A7FFF~A0000	64K-Byte Block	SA19		
13FFFF~130000	9FFFF~98000	64K-Byte Block	SA20		1
12FFFF~120000	97FFF~90000	64K-Byte Block	SA21	GA12	
11FFFF~110000	8FFFF~88000	64K-Byte Block	SA22		
10FFFF~100000	87FFF~80000	64K-Byte Block	SA23		
0FFFFF~0F0000	7FFFF~78000	64K-Byte Block	SA24		
0EFFFF~0E0000	77FFF~70000	64K-Byte Block	SA25	GA13	BANK B
0DFFFF~0D0000	6FFFF~68000	64K-Byte Block	SA26		
0CFFFF~0C0000	67FFF~60000	64K-Byte Block	SA27		
0BFFFF~0B0000	5FFFF~58000	64K-Byte Block	SA28		
0AFFFF~0A0000	57FFF~50000	64K-Byte Block	SA29	GA14	
09FFFF~0E0000	4FFFF~48000	64K-Byte Block	SA30		
08FFFF~080000	47FFF~40000	64K-Byte Block	SA31		
07FFFF~070000	3FFFF~38000	64K-Byte Block	SA32		
06FFFF~060000	37FFF~30000	64K-Byte Block	SA33	GA15	
05FFFF~050000	2FFFF~28000	64K-Byte Block	SA34		
04FFFF~040000	27FFF~20000	64K-Byte Block	SA35		_
03FFFF~030000	1FFFF~18000	64K-Byte Block	SA36		
02FFFF~020000	17FFF~10000	64K-Byte Block	SA37	GA16	
01FFFF~010000	0FFFF~08000	64K-Byte Block	SA38	0.447	1
00FFFF~000000	07FFF~00000	64K-Byte Block	SA39	GA17	

MX29VW160T

A0 TO A19

P/N:PM0567 4 REV. 0.7, FEB. 12, 1999

TFFFF-1F0000	Byte Mode	Word Mode				
Teffer	1FFFFF~1F0000	FFFFF~F8000	64K-Byte Block	SA01	GA01	
1CFFFF-1B0000	1EFFFF~1E0000	F7FFF~F0000		SA02		
Table Tabl	1DFFFF~1D0000	EFFFF~E8000	64K-Byte Block	SA03	GA02	
1AFFFF~180000 D7FFF~D0000 64K-Byte Block SA06 GA03 19FFFF~180000 CFFFF~C8000 64K-Byte Block SA07 18FFFF~180000 CFFFF~C8000 64K-Byte Block SA09 16FFFF~150000 BFFFF~B8000 64K-Byte Block SA10 15FFFF~150000 AFFFF~A8000 64K-Byte Block SA11 14FFFF~130000 AFFFF~A8000 64K-Byte Block SA12 13FFFF~130000 9FFFF~98000 64K-Byte Block SA13 12FFFF~120000 9FFFF~98000 64K-Byte Block SA13 12FFFF~100000 8FFFF~88000 64K-Byte Block SA15 10FFFF~100000 7FFFF~80000 64K-Byte Block SA16 0FFFF~0F00000 7FFFF~80000 64K-Byte Block SA17 0FFFF~0E00000 7FFFF~88000 64K-Byte Block SA20 0BFFFF~0B0000 67FFF~68000 64K-Byte Block SA21 0AFFFP~0B0000 57FFF~58000 64K-Byte Block SA22 0BFFFF~0B0000 57FFF~58000 64K-Byte Block SA22 0FFFF~	1CFFFF~1C0000	E7FFF~E0000		SA04	1	
19FFFF~190000 CFFFF~C8000 64K-Byte Block SA07 18FFFF~180000 C7FFF~C0000 64K-Byte Block SA08 17FFF~170000 BFFFF~B8000 64K-Byte Block SA09 16FFFF~150000 B7FFF~B8000 64K-Byte Block SA10 15FFF~150000 AFFFF~A8000 64K-Byte Block SA11 14FFF~140000 A7FFF~A0000 64K-Byte Block SA12 13FFF~130000 9FFFF~98000 64K-Byte Block SA13 12FFF~120000 9FFFF~98000 64K-Byte Block SA15 10FFFF~100000 8FFFF~88000 64K-Byte Block SA16 0FFFF~0F0000 7FFF-78000 64K-Byte Block SA16 0FFFF~0F0000 7FFF-70000 64K-Byte Block SA17 0FFFF~0E0000 67FFF~68000 64K-Byte Block SA20 0BFFFF~0B0000 67FFF-58000 64K-Byte Block SA21 0AFFFP~0B0000 57FFF-58000 64K-Byte Block SA22 0AFFFF~080000 64K-Byte Block SA22 0AFFF-080000 64K-Byte Block SA22<	1BFFFF~1B0000	DFFFF~D8000	64K-Byte Block	SA05		-
18FFFF-180000 C7FFF-C0000 64K-Byte Block SA08 17FFFF-170000 BFFFF-88000 64K-Byte Block SA09 16FFF-150000 AFFFF-AB000 64K-Byte Block SA10 15FFFF-150000 AFFFF-AB000 64K-Byte Block SA11 14FFFF-140000 AFFFF-AB000 64K-Byte Block SA12 13FFF-130000 9FFFF-98000 64K-Byte Block SA13 12FFF-120000 9FFFF-98000 64K-Byte Block SA14 10FFFF-100000 8FFFF-88000 64K-Byte Block SA15 10FFFF-100000 7FFFF-78000 64K-Byte Block SA16 0FFFF-0D0000 7FFFF-70000 64K-Byte Block SA17 0FFFF-0D0000 6FFFF-68000 64K-Byte Block SA19 0FFFF-0D0000 6FFFF-68000 64K-Byte Block SA20 0BFFFF-0B0000 5FFFF-58000 64K-Byte Block SA21 0AFFF-000000 4FFF-48000 64K-Byte Block SA22 0FFFF-000000 4FFF-48000 64K-Byte Block SA22 0FFFF-000000 4FFF-380	1AFFFF~1A0000	D7FFF~D0000	64K-Byte Block	SA06	GA03	
17FFFF~170000 BFFFF~B8000 64K-Byte Block SA09 16FFFF-160000 B7FFF~B0000 64K-Byte Block SA10 15FFFF-150000 AFFF-A8000 64K-Byte Block SA11 14FFF-140000 A7FFF~A0000 64K-Byte Block SA12 13FFFF-130000 9FFFF~98000 64K-Byte Block SA13 12FFFF-120000 97FFF~90000 64K-Byte Block SA14 10FFFF-110000 8FFFF~88000 64K-Byte Block SA15 10FFFF-100000 7FFF-78000 64K-Byte Block SA16 0FFFF-0E0000 7FFF-78000 64K-Byte Block SA18 0FFFF-0E0000 7FFF-78000 64K-Byte Block SA18 0FFFF-0D0000 6FFF-68000 64K-Byte Block SA20 0BFFF-0B0000 5FFF-58000 64K-Byte Block SA21 0AFFF-090000 4FFF-48000 64K-Byte Block SA22 0FFFF-090000 4FFF-48000 64K-Byte Block SA22 0FFFF-000000 3FFF-38000 64K-Byte Block SA24 0FFFF-050000 3FFF-28000	19FFFF~190000	CFFFF~C8000	64K-Byte Block	SA07	1	
16FFFF~160000 B7FFF~B0000 64K-Byte Block SA10 GA04 15FFFF~150000 AFFFF~A8000 64K-Byte Block SA11 14FFFF~130000 9FFFF~98000 64K-Byte Block SA12 13FFF~130000 9FFFF~98000 64K-Byte Block SA13 12FFFF~120000 97FFF~90000 64K-Byte Block SA14 GA05 11FFFF~100000 8FFFF~88000 64K-Byte Block SA16 SA16 0FFFFF~0F0000 7FFFF~78000 64K-Byte Block SA17 SA18 GA06 0FFFFF~0E0000 7FFFF~78000 64K-Byte Block SA19 SA20 0FFFFF~0E0000 67FFF~68000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~68000 64K-Byte Block SA21 0AFFFF~0B0000 5FFFF~58000 64K-Byte Block SA22 0AFFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0FFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0FFFF-0B0000 37FFF~38000 64K-Byte Block SA25 0FFFF-0B0000 64	18FFFF~180000	C7FFF~C0000	64K-Byte Block	SA08		
15FFFF~150000 AFFFF~A8000 64K-Byte Block SA11 14FFFF~140000 A7FFF~A0000 64K-Byte Block SA12 13FFFF~130000 9FFFF~98000 64K-Byte Block SA13 12FFFF~120000 97FFF~90000 64K-Byte Block SA14 11FFFF~100000 8FFFF~88000 64K-Byte Block SA15 10FFFF~100000 8FFFF~88000 64K-Byte Block SA16 0FFFF~100000 7FFFF~78000 64K-Byte Block SA17 0EFFF~0E0000 7FFFF~70000 64K-Byte Block SA19 0CFFFF~0E0000 6FFF~68000 64K-Byte Block SA20 0BFFFP~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 5FFFF~58000 64K-Byte Block SA22 0BFFFP~0B0000 4FFFF~48000 64K-Byte Block SA22 0FFFF~0B0000 4FFFF~48000 64K-Byte Block SA24 0FFFF~060000 37FFF~38000 64K-Byte Block SA26 0FFFF~050000 2FFF~28000 64K-Byte Block SA26 0FFFF~030000 1FFF~	17FFFF~170000	BFFFF~B8000	64K-Byte Block	SA09		_
14FFFF~140000 A7FFF~A0000 64K-Byte Block SA12 13FFFF~130000 9FFFF~98000 64K-Byte Block SA13 12FFFF~120000 97FFF~90000 64K-Byte Block SA14 GA05 11FFFF~110000 8FFFF~88000 64K-Byte Block SA15 10FFFF~100000 7FFFF~8000 64K-Byte Block SA16 0FFFFF~0E0000 7FFFF~78000 64K-Byte Block SA17 0FFFFF~0E0000 7FFFF~78000 64K-Byte Block SA19 0CFFFF~0E0000 67FFF~68000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0B0000 5FFFF~58000 64K-Byte Block SA22 0AFFFF~0B0000 4FFFF~48000 64K-Byte Block SA23 08FFFF~090000 4FFFF~38000 64K-Byte Block SA24 07FFFF~00000 3FFFF~38000 64K-Byte Block SA25 06FFFF~050000 3FFFF~38000 64K-Byte Block SA26 07FFFF~050000 64K-Byte Block SA26 GA08 03FFF~050000 <td>16FFFF~160000</td> <td>B7FFF~B0000</td> <td>64K-Byte Block</td> <td>SA10</td> <td>GA04</td> <td></td>	16FFFF~160000	B7FFF~B0000	64K-Byte Block	SA10	GA04	
13FFFF~130000 9FFFF~98000 64K-Byte Block SA13 SA14 GA05 BANK A 11FFF~110000 8FFFF~88000 64K-Byte Block SA15 SA15 SA16 SA15 SA16 SA15 SA16 SA16 SA16 SA16 SA16 SA16 SA16 SA16 SA17 SA16 SA17 SA18 SA16 SA17 SA18 SA17 SA18 SA16 SA17 SA18 SA16 SA17 SA18 SA16 SA17 SA18 SA19 SA19 SA19 SA19 SA19 SA20 SA20 SA21 SA20 SA20 SA20 SA20 SA21 SA20 SA21 SA20 SA21 SA21 SA21 SA21 SA21 SA22 SA22 SA22 SA22 SA22 SA23 SA22 SA23 SA22 SA23 SA23 SA24 SA22 SA23 SA24 SA22 SA24 SA22 SA23 SA24 SA24 SA24 SA24 SA24 SA24 SA24	15FFFF~150000	AFFFF~A8000	64K-Byte Block	SA11		
12FFFF~120000 97FFF~90000 64K-Byte Block SA14 GA05 BANK A 11FFFF~110000 8FFFF~88000 64K-Byte Block SA15 SA16 10FFFF~100000 87FFF~80000 64K-Byte Block SA16 0FFFFF~0E0000 7FFFF~78000 64K-Byte Block SA17 0EFFFF~0E0000 7FFFF~68000 64K-Byte Block SA19 0CFFFF~0C00000 6FFFF~68000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0B0000 5FFFF~58000 64K-Byte Block SA22 0BFFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0BFFFF~0B0000 4FFFF~48000 64K-Byte Block SA23 0BFFFF~0B0000 4FFFF~48000 64K-Byte Block SA25 0FFFF~0B0000 37FFF~3000 64K-Byte Block SA25 0FFFF~0B000 2FFFF~28000 64K-Byte Block SA27 04FFF~0B000 2FFFF~20000 64K-Byte Block SA28 03FFF-00000 17FF~10000 64K-Byte Block SA30	14FFFF~140000	A7FFF~A0000	64K-Byte Block	SA12		
11FFFF~110000 8FFFF~88000 64K-Byte Block SA15 10FFFF~100000 87FFF~8000 64K-Byte Block SA16 0FFFFF~0F0000 7FFFF~78000 64K-Byte Block SA17 0EFFFF~0E0000 77FFF~70000 64K-Byte Block SA18 0DFFFF~0D0000 6FFFF~68000 64K-Byte Block SA20 0BFFFF~0B0000 6FFFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 5FFFF~58000 64K-Byte Block SA22 0AFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0AFFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0AFFFF~0B0000 4FFFF~48000 64K-Byte Block SA22 0AFFFF~0B0000 4FFFF~38000 64K-Byte Block SA24 0FFFF~0B0000 3FFFF~38000 64K-Byte Block SA25 0AFFFF~0B0000 2FFFF~28000 64K-Byte Block SA26 0AFFFF~0B0000 2FFFF~28000 64K-Byte Block SA27 0AFFFF~0B0000 1FFFF~1800 64K-Byte Block SA30 0AFFF~0B0000 0F	13FFFF~130000	9FFFF~98000	64K-Byte Block	SA13		-
10FFFF~100000 87FFF~80000 64K-Byte Block SA16 0FFFFF~0F0000 7FFFF~78000 64K-Byte Block SA17 0EFFFF~0E0000 77FFF~70000 64K-Byte Block SA18 GA06 0DFFFF~0D0000 6FFF~68000 64K-Byte Block SA19 SA20 0CFFFF~0C0000 67FFF~60000 64K-Byte Block SA20 SA21 0AFFFF~0B0000 5FFFF~58000 64K-Byte Block SA22 GA07 0FFFF~0B0000 5FFF~50000 64K-Byte Block SA22 GA07 0FFFF~0B0000 4FFF~48000 64K-Byte Block SA23 0FFFF~0B0000 3FFF~38000 64K-Byte Block SA24 0FFFF~0F00000 3FFF~38000 64K-Byte Block SA25 0FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFF~040000 2FFFF~28000 64K-Byte Block SA29 03FFFF~030000 1FFFF~18000 64K-Byte Block SA30 01FFFF~000000 07FFF~07000 8K-Byte Block SA31 00FFFF~000000 07FFF~05000 8K	12FFFF~120000	97FFF~90000	64K-Byte Block	SA14	GA05	BANK A
0FFFFF~0F0000 7FFFF~78000 64K-Byte Block SA17 0EFFFF~0E0000 77FFF~70000 64K-Byte Block SA18 GA06 0DFFFF~0D0000 6FFFF~68000 64K-Byte Block SA20 0EFFFF~0B0000 6FFF~66000 64K-Byte Block SA20 0BFFFF~0B0000 5FFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 5FFF~50000 64K-Byte Block SA22 0BFFFF~090000 4FFF~48000 64K-Byte Block SA23 0BFFFF~080000 4FFF~48000 64K-Byte Block SA24 0FFFF~070000 3FFF~38000 64K-Byte Block SA25 0FFFF~050000 3FFF~30000 64K-Byte Block SA26 0FFFF~050000 2FFF~28000 64K-Byte Block SA27 04FFFF~040000 2FFF~20000 64K-Byte Block SA28 03FFFF~030000 1FFF~18000 64K-Byte Block SA30 04FFFF~002000 17FFF~00000 64K-Byte Block SA31 00FFFF~00000 07FFF~05000 8K-Byte Block SA32 GA10 <td< td=""><td>11FFFF~110000</td><td>8FFFF~88000</td><td>64K-Byte Block</td><td>SA15</td><td>1</td><td></td></td<>	11FFFF~110000	8FFFF~88000	64K-Byte Block	SA15	1	
0EFFFF~0E0000 77FFF~70000 64K-Byte Block SA18 GA06 0DFFFF~0D0000 6FFFF~68000 64K-Byte Block SA19 0CFFFF~0C0000 67FFF~60000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 57FFF~50000 64K-Byte Block SA22 0BFFFF~090000 4FFFF~48000 64K-Byte Block SA23 08FFFF~080000 47FFF~40000 64K-Byte Block SA24 07FFFF~070000 3FFFF~38000 64K-Byte Block SA25 06FFFF~050000 37FFF~30000 64K-Byte Block SA26 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFFF~040000 27FFF~20000 64K-Byte Block SA28 03FFFF~030000 17FFF~18000 64K-Byte Block SA30 01FFFF~010000 07FFF~08000 64K-Byte Block SA31 00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00BFFF~00A000 04FFF~04000 8K-Byte Block SA35 GA13<	10FFFF~100000	87FFF~80000	64K-Byte Block	SA16		
0DFFFF~0D0000 6FFFF~68000 64K-Byte Block SA19 0CFFFF~0C0000 67FFF~60000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 57FFF~50000 64K-Byte Block SA22 0BFFFF~0B0000 4FFFF~48000 64K-Byte Block SA23 0BFFFF~0B0000 4FFFF~48000 64K-Byte Block SA24 07FFFF~0F0000 3FFFF~38000 64K-Byte Block SA25 06FFFF~0B0000 3FFFF~38000 64K-Byte Block SA26 05FFFF~0B0000 2FFFF~28000 64K-Byte Block SA27 04FFFF~0B0000 2FFFF~28000 64K-Byte Block SA28 03FFFF~030000 1FFFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA31 SA32 GA10 00FFF~00C000 0FFFF~05000 8K-Byte Block SA32 GA10 00BFFF~00A000 0FFFF~05000 8K-Byte Block SA34 GA12 00FFF~006000 0FFF~05000	0FFFFF~0F0000	7FFFF~78000	64K-Byte Block	SA17		-
0CFFFF~0C0000 67FFF~60000 64K-Byte Block SA20 0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0B0000 57FFF~50000 64K-Byte Block SA22 09FFFF~0B0000 4FFF~48000 64K-Byte Block SA23 08FFFF~0B0000 47FF~40000 64K-Byte Block SA24 07FFFF~0FF00000 3FFF~38000 64K-Byte Block SA25 06FFFF~0B0000 37FFF~30000 64K-Byte Block SA26 05FFFF~0B0000 2FFF~28000 64K-Byte Block SA27 04FFFF~040000 27FFF~20000 64K-Byte Block SA28 03FFFF~030000 1FFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA31 SA31 00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA36 GA14 005FFF~004000 02	0EFFFF~0E0000	77FFF~70000	64K-Byte Block	SA18	GA06	
0BFFFF~0B0000 5FFFF~58000 64K-Byte Block SA21 0AFFFF~0A0000 57FFF~50000 64K-Byte Block SA22 09FFFF~0B0000 4FFFF~48000 64K-Byte Block SA23 08FFFF~080000 47FFF~40000 64K-Byte Block SA24 07FFFF~070000 3FFF~38000 64K-Byte Block SA25 06FFFF~060000 37FFF~30000 64K-Byte Block SA26 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFFF~040000 27FFF~20000 64K-Byte Block SA29 03FFFF~030000 17FFF~18000 64K-Byte Block SA30 01FFFF~020000 17FFF~10000 64K-Byte Block SA31 00FFFF~010000 07FFF~07000 8K-Byte Block SA32 GA10 00FFFF~000000 07FFF~05000 8K-Byte Block SA33 GA11 00BFFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block	0DFFFF~0D0000	6FFFF~68000	64K-Byte Block			
0AFFFF~0A0000 57FFF~50000 64K-Byte Block SA22 GA07 09FFFF~090000 4FFF~48000 64K-Byte Block SA23 08FFFF~080000 47FFF~40000 64K-Byte Block SA24 07FFFF~070000 3FFFF~38000 64K-Byte Block SA25 06FFFF~050000 37FFF~30000 64K-Byte Block SA26 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFFF~040000 27FFF~20000 64K-Byte Block SA29 03FFFF~030000 17FFF~18000 64K-Byte Block SA30 01FFF~010000 07FFF~08000 64K-Byte Block SA31 00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~008000 04FFF~04000 8K-Byte Block SA35 GA12 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA12 005FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF	0CFFFF~0C0000	67FFF~60000	64K-Byte Block	SA20		
09FFFF~090000 4FFFF~48000 64K-Byte Block SA23 08FFFF~080000 47FFF~40000 64K-Byte Block SA24 07FFFF~070000 3FFFF~38000 64K-Byte Block SA25 06FFFF~060000 37FFF~30000 64K-Byte Block SA26 GA08 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 SA28 SA28 03FFFF~030000 1FFFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA30 SA30 01FFF~010000 07FFF~08000 64K-Byte Block SA31 SA31 00FFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00BFFF~00A000 05FFF~05000 8K-Byte Block SA33 GA11 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 <td< td=""><td>0BFFFF~0B0000</td><td>5FFFF~58000</td><td></td><td> -</td><td></td><td></td></td<>	0BFFFF~0B0000	5FFFF~58000		-		
08FFF~080000 47FFF~40000 64K-Byte Block SA24 07FFFF~070000 3FFFF~38000 64K-Byte Block SA25 06FFFF~060000 37FFF~30000 64K-Byte Block SA26 GA08 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFFF~040000 27FFF~20000 64K-Byte Block SA28 03FFF~030000 1FFFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA30 SA31 00FFFF~010000 0FFFF~08000 64K-Byte Block SA32 GA10 00FFFF~00E000 07FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38	0AFFFF~0A0000	57FFF~50000		SA22	GA07	
07FFFF~070000 3FFF~38000 64K-Byte Block SA25 06FFFF~060000 37FFF~30000 64K-Byte Block SA26 GA08 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 SA28 03FFFF~030000 1FFFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA30 01FFF~010000 0FFFF~08000 64K-Byte Block SA31 00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00BFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	09FFFF~090000	4FFFF~48000		SA23		
06FFFF~060000 37FFF~30000 64K-Byte Block SA26 GA08 05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFF~040000 27FFF~20000 64K-Byte Block SA28 03FFF~030000 1FFF~18000 64K-Byte Block SA29 GA09 02FFF~020000 17FFF~10000 64K-Byte Block SA30 SA31 00FFFF~010000 0FFFF~08000 64K-Byte Block SA32 GA10 00FFF~00E000 07FFF~07000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	08FFFF~080000	47FFF~40000	64K-Byte Block	SA24		
05FFFF~050000 2FFFF~28000 64K-Byte Block SA27 04FFF~040000 27FFF~20000 64K-Byte Block SA28 03FFF~030000 1FFFF~18000 64K-Byte Block SA29 GA09 02FFFF~020000 17FFF~10000 64K-Byte Block SA30 SA31 01FFF~010000 0FFF~08000 64K-Byte Block SA32 GA10 00FFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~004000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	07FFFF~070000	3FFFF~38000				
04FFF~040000 27FFF~20000 64K-Byte Block SA28 03FFF~030000 1FFF~18000 64K-Byte Block SA29 GA09 02FFF~020000 17FFF~10000 64K-Byte Block SA30 SA30 01FFF~010000 0FFF~08000 64K-Byte Block SA31 SA32 GA10 00DFFF~00E000 07FFF~07000 8K-Byte Block SA33 GA11 00BFFF~00C000 06FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	06FFFF~060000	37FFF~30000	1 1	SA26	GA08	
03FFF~030000 1FFF~18000 64K-Byte Block SA29 GA09 02FFF~020000 17FFF~10000 64K-Byte Block SA30 01FFF~010000 0FFF~08000 64K-Byte Block SA31 00FFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16		2FFFF~28000		SA27		
02FFFF~020000 17FFF~10000 64K-Byte Block SA30 01FFF~010000 0FFFF~08000 64K-Byte Block SA31 00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	04FFFF~040000	27FFF~20000				
01FFF~010000 0FFF~08000 64K-Byte Block SA31 00FFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	03FFFF~030000	1FFFF~18000	,		GA09	
00FFFF~00E000 07FFF~07000 8K-Byte Block SA32 GA10 00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	02FFFF~020000	17FFF~10000				
00DFFF~00C000 06FFF~06000 8K-Byte Block SA33 GA11 00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	01FFFF~010000	0FFFF~08000		SA31		
00BFFF~00A000 05FFF~05000 8K-Byte Block SA34 GA12 BANK B 009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	00FFFF~00E000	07FFF~07000	1 -			
009FFF~008000 04FFF~04000 8K-Byte Block SA35 GA13 007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	00DFFF~00C000	06FFF~06000	1 -		1	
007FFF~006000 03FFF~03000 8K-Byte Block SA36 GA14 005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	00BFFF~00A000	05FFF~05000			GA12	BANK B
005FFF~004000 02FFF~02000 8K-Byte Block SA37 GA15 003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	009FFF~008000				1	
003FFF~002000 01FFF~01000 8K-Byte Block SA38 GA16	007FFF~006000	03FFF~03000			1	
					1	
001FFF~000000 00FFF~00000 8K-Byte Block SA39 GA17					1]
	001FFF~000000	00FFF~00000	8K-Byte Block	SA39	GA17	


A-1 TO A19 A0 TO A19

MX29VW160B

P/N:PM0567 5 REV. 0.7, FEB. 12, 1999

Block Diagram

BUS OPERATIONS

Flash memory reads, erases and writes in-system via the local CPU. All bus cycles to or from the flash memory conform to standard microprocessor bus cycles. These bus operations are summarized below.

Table 2.1 MX29VW160T/B Bus Operations for Byte-Wide Mode (Byte = VIL)

MODE	CE	ŌĒ	WE	RP	WP	Α0	A1	A6	A9	Q0~Q7	Q8~Q14	Q15/A-1	Notes
Read	L	L	Н	Н	L/H	A0	A1	A6	A9	DOUT	HighZ	A-1	1,2,7,9
Output Disable	L	Н	Н	Н	Χ	Χ	Χ	Χ	Χ	HighZ	HighZ	Χ	1,6,7
Standby	Н	Χ	Χ	Н	Χ	Χ	Χ	Χ	Χ	HighZ	HighZ	Χ	1,6,7
Hardware Standby	Χ	Χ	Χ	L	Χ	Χ	Χ	Χ	Χ	HighZ	HighZ	Χ	1,3
Manufacturer ID	L	L	Н	Н	L/H	L	L	Χ	VID	C2H	HighZ	Χ	4,8
Device ID	L	L	Н	Н	L/H	Н	L	Χ	VID	67/68H	HighZ	Χ	4,8
Block Protect Verify *	L	L	Н	Н	Н	L	Н	Χ	VID	C2H	HighZ	Χ	
Write	L	Н	L	Н	L/H/VID	Α0	A1	A6	A9	DIN	High Z	A-1	1,5,6,10

Table 2.2 MX29VW160T/B Bus Operations for Word-Wide Mode (Byte = VIH)

MODE	CE	ŌE	WE	RP	WP	A0	A1	A6	A9	Q0~Q7	Q8~Q14	Q15/A-1	Notes
Read	L	L	Н	Н	L/H	Α0	A1	A6	A9	DOUT	DOUT	DOUT	1,2,7
Output Disable	L	Н	Н	Н	Χ	Х	Χ	Χ	Χ	HighZ	HighZ	HighZ	1,6,7
Standby	Н	Х	Χ	Н	Χ	Χ	Χ	Χ	Χ	HighZ	HighZ	HighZ	1,6,7
Hardware Standby	Χ	Χ	Χ	L	Χ	Χ	Χ	Χ	Χ	HighZ	HighZ	HighZ	1,3
Manufacturer ID	L	L	Н	Н	L/H	L	L	Χ	VID	C2H	00H	0B	4,8
Device ID	L	L	Н	Н	L/H	Н	L	Χ	VID	67/68H	00H	0B	4,8
Block Protect Verify *	L	L	Н	Н	Н	L	Н	Χ	VID	C2H	00H	0B	
Write	L	Н	L	Н	L/H/VID	Α0	A1	A6	A9	DIN	DIN	DIN	1,5,6,10

^{*:} Valid Sector Address must be provided when doing block protect Verify mode.

Legend : L = Logic Low = VIL, H = Logic High = VIH, X = VIL or VIH, VID = 8.5~10.5V ,Refer to DC Characteristics for Voltage loads.

Notes:

- 1. X can be VIH or VIL for address or control pins except for RY/BY which is either VOL or VOH.
- 2. RY/BY output is open drain. When the WSM is ready, Erase is suspended or the device is in deep power-down mode, RY/BY will be at VOH, if it is tied to Vcc through a 1K ~ 100K resistor. When the RY/BY at VOH is independent of OE while a WSM operation is in progress.
- 3. RP< GND+0.2V ensures the lowest consumption current.
- 4. A0 and A1 at VIL provide manufacturer ID code. A0 at VIH and A1 at VIL provide ID code. A0 at VIL, A1 at VIH and with appropriate block address provide Block Protect Code.(Refer to Table 4)
- 5.Command or different Erase operations, Data program operations or Group protect operation can only be successfully completed through proper command sequence.
- 6. RY/BY goes to VOH when the WSM is not busy or in erase suspend mode.
- 7.RY/BY may be at VOL while the WSM is busy performing various operations.
- 8.VID = 8.5V-10.5V
- 9. Q15/A-1 = VIL, Q0-Q7 = D0-D7 out. Q15/A-1 = VIH, Q0-Q7 = D8-D15 out.
- 10. When \overline{WP} =VIL, the two outer most 8K-Byte blocks be protected.
 - When WP=VIH, all blocks remain orginal protect status.
 - When WP=VID, all blocks be unprotected.

COMMAND DEFINITIONS

Table 3 Command Definitions

									Bus Cy	/cles				
			First		Secon	d	Third		Fourth		Fifth		Sixth	
			Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data	Addr	Data
Read		1	RA	RD										
Reset		1	XXXH	F0H										
Manufacturer ID	Word	4	555H	AAH	2AAH	55H	555H	90H	X00H	00C2H				
	Byte		AAAH		555H		AAAH		X00H	C2H				
Device ID	Word	4	555H	AAH	2AAH	55H	555H	90H	X01H	0067H/0068H*				
	Byte		AAAH		555H		AAAH		X02H	67H/68H*				
Block Protect	Word	4	555H	AAH	2AAH	55H	555H	90H	X02H	XX01H/XX00H*				
Verify	Byte		AAAH		555H		AAAH		X04H	01H/00H*				
Group Protect	Word	6	555H	AAH	2AAH	55H	555H	60H	555H	AAH	2AAH	55H	GA	20H
	Byte		AAAH		555H		AAAH		AAAH		555H			
Group Unprotect	Word	6	555H	AAH	2AAH	55H	555H	60H	555H	AAH	2AAH	55H	555H	40H
	Byte		AAAH		555H		AAAH		AAAH		555H		AAAH	
Page/Byte	Word		555H	AAH	2AAH	55H	555H	A0H	PA	PD				
Program	Byte		AAAH		555H		AAAH							
Single Block	Word	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA	20H
Erase	Byte		AAAH		555H		AAAH		AAAH		555H			
Multi Block	Word	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	SA	30H
Erase	Byte		AAAH		555H		AAAH		AAAH		555H			
Chip Erase	Word	6	555H	AAH	2AAH	55H	555H	80H	555H	AAH	2AAH	55H	555H	10H
	Byte		AAAH		555H		AAAH		AAAH		555H		AAAH	
Erase Suspend		1	XXXH	ВОН										
Erase Resume		1	XXXH	30H										

Notes

- 1. *00H Represents unprotect block & *01H represents protect block in the 4th Bus cycle data of "Block Protect Verify".
- 2. Address bit A11-A19 = X = "Don't care" for all address commands except for Program Address (PA) and Block Address (SA). 555H and 2AAH address command codes stand for Hex number starting from A0 to A10 in word mode and A-1 to A10 in byte mode.
- 3.Bus operations are defined in Table 2.
- 4. RA = Address of the memory location to be read.
 - PA = Address of the memory location to be programmed. Address are located on the falling edge of the $\overline{\text{WE}}$ pulse.
 - SA = Address of the block to be erase. The combination of A12-A19 will select any block(Refer to Table 1).
 - GA = Group address to be protect. The combination of A12-A19 will select any group.
- 5.RD = Data read from location RA during read operation.
 - PD = Data to be Programmed at location PA. Data is latched on the rising edge of WE.
- 6.Only Q0-Q7 command data is taken, Q8 to Q15 = Don't care.
 - *Refer to Table 4.

FUNCTIONAL DESCRIPTION

SIMULTANEOUS OPERATION

The MX29VW160T/B provides the simultaneous read/write function. The device is capable of reading data from one bank and simultaneously erasing (so as, programming, erase-suspend reading, and erase suspend programming) data from the other bank. The bank selection can be selected by bank address (A16 to A19) with zero latency.

The MX29VW160T/B contains two data banks which are bank A (8K-Byte x 8, 64K-Byte x 3) and Bank B (64K-Byte x 28). Following table describes the detail simultaneous operation.

Simultaneous Operation Table

Bank-B	standby	Read	Single	Multiple block	Multiple block	Chip	Erase	Erase	Page	Group	Silicon
		mode	block	erase	erase	erase	suspend	resume	program	protect/	ID
Bank-A			erase	(only 1 bank)	(2 banks)					unprotect	read
Standby	0	-	-	-	-	-	-	-	-	-	-
Read mode	-	X	0	0	X	-	0	0	0	Χ	-
Single block erase	-	0	-	-	-	-	-	-	X	Χ	-
Multiple block erase	-	0	-	-	-	-	-	-	Х		-
(only 1 bank)											
Multiple block erase	-	X	-	-	0	-	0	0	Х	Χ	-
(2 banks)											
Chip erase	-	-	-	-	-	0	-	-	-	-	-
Erase suspend	-	0	-	-	0	-	-	-	-	Χ	0
Erase resume	-	0	-	-	0	-	-	-	-	Χ	-
Page program	-	0	X	Χ	X	-	-	-	-	Χ	-
Group protect/	-	Х	Х	-	Х	-	Х	Х	Х	-	-
unprotect											
Silicon ID read	-	-	-	-	-	-	0	-	-	-	-

Legend: "o"=Okay,"X"= Not allow, "-"= Not available.

READ ARRAY MODE

The MX29VW160T/B must satisfy two control functions to obtain data output. \overline{CE} is the power control and should be used for a device selection. \overline{OE} is the output control and should be used to gate data to the output pins if a device is selected. (Figure 11)

Address access time (tACC) is equal to the delay from stable addresses to valid output data. The chip enable access time (tCE) is the delay from state the falling edge of \overline{CE} to valid data at the output pins. (Assuming the addresses have been stable for at least tACC - tCE time.) When reading out a data without changing addresses after power-up, it is necessary to input hardware reset or to change \overline{CE} pin from "H" to "L".

READ/RESET COMMAND

The Read or Reset operation is initiated by writing the read/reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The device remains enable for reads until the command register contents are altered.

The device will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms (Figure 12) for the specific timing parameters.

READ ID MODE

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacturer and device codes must be accessible while the device resides in the target system. PROM programmers typically access signature codes by raising A9 to a high voltage. However, multiplexing high voltage onto address lines is not generally desired system design practice.

The MX29VW160T/B contains a Silicon-ID-Read Operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Read Silicon ID command sequence into the command register. Following the command write, a read cycle with A1=VIL, A0=VIL retrieves the manufacturer code of C2H. A read cycle with A1=VIL, A0=VIH returns the device code of 67H for MX29VW160T, 68H for MX29VW160B.

The Silicon-ID-Read Operation also covers the block protection verification. A read cycle with A1=VIH, A0= "Don't care" returns data of 00H for "unprotected block" and 01H for "protected block".

Table 4.1 Read ID Mode Table

	TYPE		A12 to A19	A6	A1	A0	A-1	Code (HEX)
	Manufacturer ID		X	Χ	L	L	Χ	C2H
	NAV(00) (14/400 T	Byte	Χ	Χ	L	Η	X	67H
Device ID	MX29VW160T	Word					Х	0067H
Device ib	MX29VW160B	Byte	X	Х	L	Н	Х	68H
	IVIAZƏVVV IOOD	Word					Χ	0068H
Bloc	k Protection Verify		Block Address	Χ	Н	X	Χ	01H/00H*

^{*01}H for "protected block" addresses and 00H for "unprotected block" addresses.

Table 4.2 Extended Read ID Mode Table

	TYPE		Code (HEX)	Q15	Q14	Q13	Q12	Q11	Q10	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
	Manufacturer's	ID	C2H	A-1/0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0
	MX29VW160T	Byte	67H	A-1	HI-Z	0	1	1	0	0	1	1	1						
Device ID		Word	0067H	0	0	1	0	0	0	1	0	0	1	1	0	0	1	1	1
	MX29VW160B	Byte	68H	A-1	HI-Z	0	1	1	0	1	0	0	0						
		Word	0068H	0	0	1	0	0	0	1	0	0	1	1	0	1	0	0	0
Block Pro	tection Verify		01H/00H**	A-1/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1/0

Notes:

P/N:PM0567 11 REV. 0.7, FEB. 12, 1999

^{*} Manufacture Code = C2 H, Device Code = 67H/68H when BYTE = VIL Manufacture Code = 00C2H, Device Code = 0067H/0068H when BYTE = VIH

^{**} Outputs 01H at protected block address ,00H at unprotected block address.

PROGRAM MODE

PAGE PROGRAM

The MX29VW160T/B is page programmable with one 128-Byte/ 64-Word page buffer in each bank. To initiate Page program mode, a three-cycle command sequence is required. There are two "unlock" write cycles. These are followed by writing the page program command A0H. Any attempt to write to the device without the three-cycle command sequence will not start the internal Write State Machine (WSM), no data will be written to the device.

After three-cycle command sequence is given, a Byte/ Word load is performed by applying a low pulse on the WE or CE input with CE or WE low (respectively) and OE high. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE. Maximum of 128-Byte/64-Word of data may be loaded into each page. Data loading activity is terminated by issuing same address load twice.

BYTE-WIDE LOAD/WORD-WIDE LOAD

Byte (Word) loads are used to enter the 128 bytes (64 words) of a page to be programmed or the software codes for data protection. A byte load (word load) is performed by applying a low pulse on the WE or CE input with CE or WE low respectively, and OE high. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is latched by the first rising edge of CE or WE.

Either byte-wide load or word-wide load is determined $\overline{(Byte = VIL)}$ or VIH is latched) on the falling edge of the \overline{WE} (or \overline{CE}) during the 3^{rd} command write cycle.

AUTOMATIC PROGRAM ALGORITHM

Any page to be programmed should have the page in the erased state first, i.e. performing block erase is suggested before page programming can be performed.

The device is programmed on a page basis. If a byte of data within a page is to be changed, data for the entire page must be loaded into the device. Any byte that is not loaded during the programming of its page will be still in the erased state (i.e. FFH). Once the bytes of the page are loaded into the device, they are simultaneously

programmed during the internal programming period. After the first data byte has been loaded into the device, successive bytes are entered in the same manner. A6 to A19 specify the page address, i.e., the device is pagealigned on 128-byte boundary. The page addresses must be valid (Page Address A6-A19 is latched at the 4th bus write-cycle) during each high to low transition of $\overline{\rm WE}$ or $\overline{\rm CE}$. A-1 to A5 specify the byte address during the page. The byte may be loaded in any order; sequential loading is not required. The load period will also end if the same address is consecutively loaded twice. For the last two same address, the first address and data will be treated as normal data to be programmed. The second one must keep the same address and data as the first one.

The status of program cycle can be determined by checking the Q7 (Data Polling), Q6 (Toggle Bit), or RY/BY.

The automatic programming operation is completed when Q6 stops toggling (See Table 5 of Hardware Sequence Flags.)

WRITE OPERATION STATUS

Detailed in Table 5 are all the status flags that can determine the status of the bank for the current mode operation. The read operation from the bank where is not operating Automatic algorithm returns a data of memory cell. These bits offer a method for determining whether a Automatic Algorithm is completed properly. The information on Q2 is address sensitive. This means that if an address from an erasing block is consecutively read, then the Q2 bit will toggle. However, Q2 will not toggle if an address from a non-erasing block is consecutively read. This allows the user to determine which blocks are erasing and which are not.

The status flag is not output from bank (non-busy bank) not executing Automatic Algorithm. For example, there is bank (busy bank) which is now executing Automatic Algorithm. When the read sequence is (a)"busy bank" (b)"non-busy bank" and (c)"busy bank" the Q6 is toggling in the case (a) and (c). In case of (b), the data of memory cell is output. In the erase-suspend read mode with the same read sequence, Q6 will not be toggled in the (a), and (c).

In the erase suspend read mode, Q2 is toggled in the (a) and (c). In case of (b), the data of memory cell is output.

Table 5. Hardware Sequence Flags Table

	Status		Q7	Q6	Q5	Q3	Q2	RY/BY
	Automatic Pi	rogram Algorithm	Q7	Toggle	0	N/A	No Toggle	0
	Automatic E	rase Algorithm	0	Toggle	0	1	Toggle*	0
	Erase	Erase Suspend Read	1	No Toggle	0	N/A	Toggle	1
In Progress	Suspend	(Erase-Suspend Block)						
	Mode	Erase Suspend Read	Data	Data	Data	Data	Data	1
		(Non-Erase-Suspend Block)						
		Erase Suspend Program	Q7	Toggle	0	N/A	N/A	0
		(Non-Erase-Suspend Block)						
	Automatic Pi	rogram Algorithm	Q7	Toggle	1	0	1	0
Exceeded	Automatic E	rase Algorithm	0	Toggle	1	1	N/A	0
Time	Erase	Erase Suspend Program	Q7	Toggle	1	0	N/A	0
Limits	Suspend	(Non-Erase-Suspend Block)						
	Mode	,						

^{*.} Successive reads from the erasing or erase-suspend block will cause Q2 to toggle. Reading from non-erase suspend block address will indicate logic "1" at the Q2 bit.

P/N:PM0567 13 REV. 0.7, FEB. 12, 1999

ERASE MODE

AUTOMATIC CHIP ERASE

The MX29VW160T/B does not require pre-program operation prior to erase operation. Chip erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command (80H). Two more "unlock" write cycles are then followed by the Chip Erase command (10H).

The system can determine the status of the erase operation by using Q7 (Data Polling), Q6 (Toggle Bit), or RY/BY. The chip erase begins on the rising edge of the last CE or WE, whichever happens first in the command sequence and terminates when the data on Q7 is (See Write Operation Status section.) at which time the device returns to read the mode.

AUTOMATIC BLOCK ERASE

The MX29VW160T/B does not require pre-program operation prior to erase operation. Block erase is a six-bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command (80H). Two more "unlock" write cycles are then followed by the Block Erase command (20H for single-block erase, 30H for multi-block erase). The system is not required to provide any controls or timings during these operations. When erasing a block or blocks the remaining un-selected blocks are not affected. The block address is latched on the falling edge of $\overline{\text{CE}}$ or $\overline{\text{WE}}$ whichever happens later, while the command (data) is latched on the rising edge of \overline{CE} or \overline{WE} whichever happens first. After issue same address (A12-A19) twice, the device will stop block address loading and start erase operation when at multi-block erase mode.

Before issued the same address twice to the device, any command other than Erase Suspend (B0H) or multi block Erase (30H) will reset the device to read mode and ignore the previous command string.

The system can determine the status of the erase operation by using Q7 (Data Polling), Q6 (Toggle Bit), or RY/BY.

ERASE SUSPEND AND RESUME

The Erase Suspend command ,B0H allows the user to interrupt a Block Erase operation and then perform data reads from or program to a block not being erased. .This command is applicable ONLY during the Block Erase operation. The Erase Suspend command will be ignored if written during the Chip Erase operation or Auto Program Algorithm.

Writing the Erase Suspend command (B0H) during the multiple block erase operation (before issue same address twice to terminate the block address loading and to start the erase operation) results immediate termination of the address loading and suspension of the erase operation.

Writing the Erase Resume command (30H) resumes the erase operation.

When the Erase Suspend command is written during the Block Erase operation, the device will take a maximum of 300us to suspend the erase operation. When the devices have entered the erase suspended mode, the RY/BY output pin will be at HighZ. The user must use the Q6 (or RY/BY pin) to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

To resume the operation of Block Erase, the Resume command (30H) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

STANDBY MODE

MX29VW160T/B can be set into Standby mode with two different approaches. One is using both \overline{CE} and \overline{RP} pins and the other one is using \overline{RP} pin only.

When using both pins of \overline{CE} and RP, a CMOS Standby mode is achieved with both pins held at Vcc \pm 0.3V. Under this condition, the current consumed is less than 1uA (typ.). During Auto Algorithm operation, Vcc active current (Icc2) is required even \overline{CE} = "H". The device can be read with standard access time (tCE) from either of these standby modes.

When using only \overline{RP} , a CMOS standby mode is achieved with \overline{RP} input held at Vss \pm 0.3V Under this condition the current is consumed less than 1uA (typ.). Once the \overline{RP} pin is taken high,the device is back to active without recovery delay.

In the standby mode the outputs are in the high impedance state, independent of the \overline{OE} input.

AUTOMATIC STANDBY MODE

MX29VW160T/B is capable to provide the Automatic Standby Mode to restrain power consumption during read-out of data. This mode can be used effectively with an application requested low power consumption such as handy terminals.

To active this mode, MX29VW160T/B automatically switch themselves to low power mode when MX29VW160T/B addresses remain stable during access time of 250ns. It is not necessary to control $\overline{\text{CE}}$, $\overline{\text{WE}}$, and $\overline{\text{OE}}$ on the mode. Under the mode, the current consumed is typically 1uA (CMOS level).

During Simultaneous operation, Vcc active current (Icc2) is required. Since the data are latched during this mode, the data are read-out continuously. If the addresses are changed, the mode is canceled automatically and MX29VW160T/B read-out the data for changed addresses.

OUTPUT DISABLE

With the \overline{OE} input at a logic high level (VIH), output from the devices are disabled. This will cause the output pins to be in a high impedance state.

DATA PROTECTION

The MX29VW160T/B is designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the device automatically resets the internal state machine in the Read Array mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific command sequences.

The device also incorporates several features to prevent inadvertent write cycles resulting from Vcc power-up and power-down transitions or system noise.

TEMPORARY GROUP UNPROTECT

This feature allows temoprary unprotection of previously protected group to change data in-system. The Temporary Group Unprotect mode is activated by setting the RP pin to VID(8.5V-10.5V). During this mode, formerly protected groups can be programmed or erased as unprotected group. Once VID is remove from the RP pin,all the previously protected group are protected again. Figure 1 shows the algorithm, for this feature.

GROUP PROTECTION

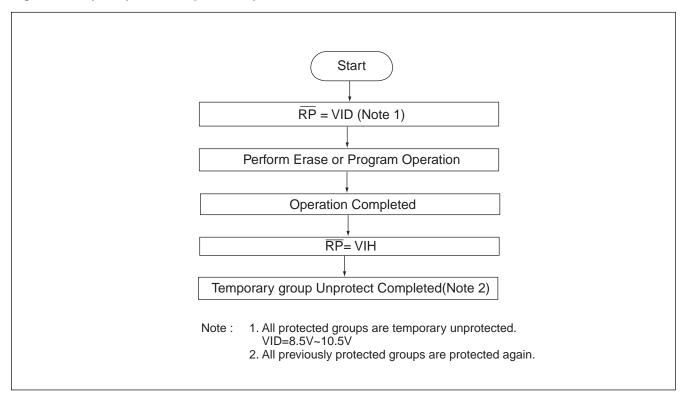
To activate this mode,a six-bus cycle operation is required, there are two "unlock" write cycle. There are followed by writing the setup command. Two more "unlock" write cycles are then followed by the lock group command-20H. Group address(A12~A19) is latched on the falling edge of CE or WE of the sixth cycle of the command sequence. The automatic Lock operation begins on the rising edge of the last WE pulse in the command sequence and terminates when the Q6 stops toggling(or RY/BY =1) at which time the device stays at the read array mode.

The devcie remains enabled for read array mode until the CIR contents are altered by a valid command sequence (Refer to the table 3).

GROUP UNPROTECT

It is also possible to unprotect all groups, same as the first five write command cycle in activating group protection mode followed by the unprotect group command -40H, the automatic unprotect operation begins on the rising edge of the last WE pulse in the command sequence and terminates when the Q6 stops toggling (or $RY/\overline{BY} = 1$) at with time the device stays at the read array mode.(Refer to table 3).Note that all groups are unprotected after group unprotection completed.

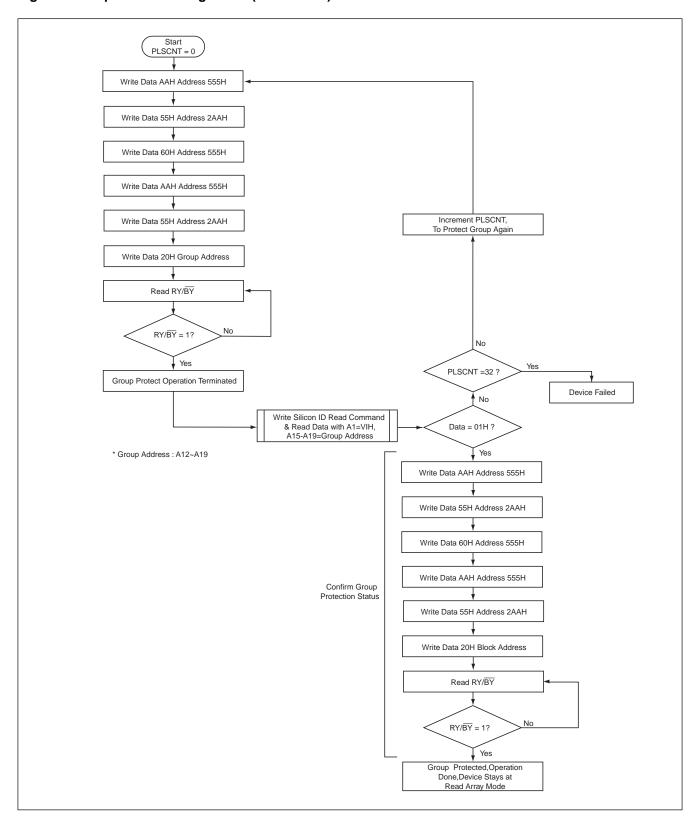
The device remains enable for read array mode until the CIR content are altered by a valid command sequence.



WP	VIL	VIH	VID
RP			
VIL	Hardware Standby	The two outer most 8K-Byte be protected,	The two outer most 8K-Byte blocks be protected,
		all other blocks remains at original protect	all other blocks be unprotected.
		status.	
VIH	Hardware Standby	All blocks remain at origined protect status.	All blocks be unprotected.
VID	Hardware Standby	All blocks be unprotected.	All blocks be unprotected.

VERIFY BLOCK PROTECT

To verify Protect status of the block, operation is initiated by writing Silicon ID read command into the command register. Following the command write, a read cycle from address XXX2H(A1=VIH) and Group Address (A15~A19) returns data of 00H for "unprotected block". A read cycle from XXX2H(A1=VIH) and group address (A15~A19) returns data of 01H for "protected block".


Figure 1 Temporary Block Unprotect Operation

P/N:PM0567 16 REV. 0.7, FEB. 12, 1999

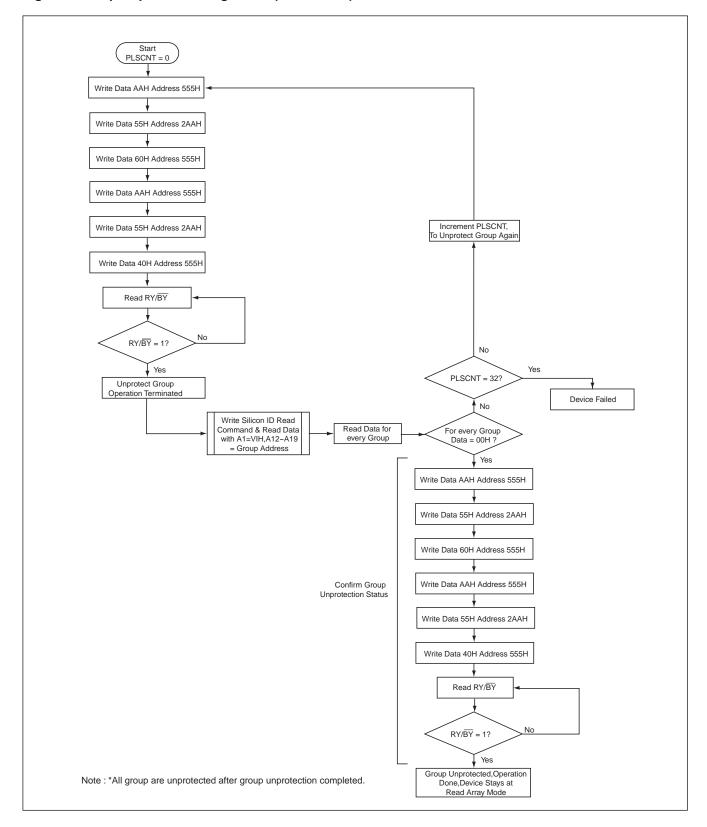


Figure 2 Group Protection Algorithm (Word Mode)

Figure 3 Group Unprotection Algorithm (Word Mode)

WRITE PULSE "GLITCH" PROTECTION

Noise pulses of less than 5ns (typ.) on \overline{CE} or \overline{WE} will not initiate a write cycle.

LOGIC INHIBIT

Writing is inhibited by holding any one of $\overline{OE} = VIL$, $\overline{CE} = VIH$, or $\overline{WE} = VIH$. To initiate a write cycle \overline{CE} and \overline{WE} must be a logical "0" while \overline{OE} is a logical "1".

POWER-UP SEQUENCE

The MX29VW160T/B powers up in the Read only mode. In addition, the memory contents may only be altered after successful completion of the predefined command sequences.

POWER SUPPLY DECOUPLING

In order to reduce power switching effect, each device should have a 0.1uF ceramic capacitor connected between its Vcc and GND.

Q7: Data Polling

The MX29VW160T/B features Data Polling as a method to indicate to the host system that the Automatic Program or Erase algorithms are either in progress or completed.

While the Automatic Programming algorithm is in operation, an attempt to read the device will produce the complement data of the data last written to Q7. Upon completion of the Automatic Program algorithm an attempt to read the device will produce the true data last written to Q7. The Data Polling feature is valid after terminating load operation for automatic program.

While the Automatic Erase algorithm is in operation, Q7 will read "0" until the erase operation is competed. Upon completion of the erase operation, the data on Q7 will read "1" The \overline{Data} Polling feature is valid after the rising edge of the sixth \overline{WE} pulse of six write pulse sequences for automatic chip/block erase.

The Data Polling feature is active during Automatic Program/Erase algorithm (see section Q3 Block Erase Status Bit).

RY/BY: Ready/Busy

The RY/BY is a dedicated, open-drain output pin that indicates whether an Automatic Erase/Program algorithm is in progress or complete. The RY/BY status is valid after the rising edge of the final WE pulse in the command sequence. Since RY/BY is an open-drain output, several RY/BY pins can be tied together in parallel with a pull-up resistor to Vcc.

If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is ready to ready to read array data (including during the Erase Suspend mode), or is in the standby mode.

Table 5 shows the outputs for RY/BY.

Q6: Toggle Bit I

Toggle Bit I on Q6 indicates whether an Automatic Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE pulse in the command sequence (prior to the program or erase operation), and during the block erase time-out period.

During an Automatic Program or Erase algorithm operation, successive read cycles to any address cause Q6 to toggle. The system may use either \overline{OE} or \overline{CE} to control the read cycles. When the operation is complete, Q6 stops toggling.

After an erase command sequence is written, if all blocks selected for erasing are protected, Q6 toggles and returns to reading array data. If not all selected blocks are protected, the Automatic Erase algorithm erases the un-protected blocks, and ignores the selected blocks that are protected.

The system can use Q6 and Q2 together to determine whether a block is actively erasing (that is, the Automatic Erase algorithm is in progress), Q6 toggling. When the device enters the Erase Suspend mode, Q6 stops toggling. However, the system must also use Q2 to determine which blocks are erasing or erase-suspended. Alternatively, the system can use Q7.

If a program address falls within a protected block, Q6 toggles for approximately 1us after the program command sequence is written, then returns to reading array data.

Q6 also toggles during the erase-suspend-program mode, and stops toggling once the Automatic Program algorithm is complete.

Table 5 shows the outputs for Toggle Bit I on Q6.

Q2: Toggle Bit II

The Toggle Bit II on Q2, when used with Q6, indicates whether a particular block is actively erasing (that is the Automatic Erase algorithm is in process), or whether that block is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE pulse in the command sequence.

Q2 toggles when the system reads at addresses within those blocks that have been selected for erasure. (The system may use either \overline{OE} or \overline{CE} to control the read cycles.) But Q2 cannot distinguish whether the block is actively erasing or is erase-suspended. Q6, by comparison, indicates whether the device is actively erasing or is erase-suspended, but cannot distinguish which blocks are selected for erasure. Thus, both status bits are required for blocks and mode information. Refer to table 5 to compare outputs for Q2 and Q6.

Reading Toggle Bits Q6/Q2

Whenever the system initially begins reading toggle bit status, it must read Q7~Q0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on Q7~Q0 on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of Q5 is high (see the section on Q5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as Q5 went high. If it is still toggling, the device did not complete the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that system initially determines that the toggle bit is toggling and Q5 has not gone high. The system may continue to monitor the toggle bit and Q5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation.

Q5: Exceeded Timing Limits

Q5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions Q5 will produce a "1" This is a time-out condition which indicates that the program or erase cycle was not successfully completed. Data Polling and Toggle Bit are the only operating functions of the device under this condition.

If this time-out condition occurs during block erase operation, it is specifiesd that a particular block is bad and it may not be reused. However, other blocks are still functional and may be used for program or erase operation. The device must be reset to use other blocks. Write the Reset command sequence to the device, and then execute program or erase command sequence. This allows the system to continue to use the other active blocks in the device.

If this time-out condition occurs during the chip erase operation, it specifies that the entire chip is bad or combination of blocks are bad.

If this time-out condition occurs during the byte programming operation, it specifies that the entire block containing that byte is bad and this block may not be reused. (Other blocks are still functional and can be reused.)

The Q5 time-out condition may also appear if a user tries to program a non blank location without erasing. In this case the device locks out and never completes the Automatic algorithm operation. Hence, the system never reads a valid data on Q7 bit and Q6 never stops toggling. Once the device has exceeded timing limits, the Q5 bit will indicate a logical "1" Please note that this is not a device failure condition since the device was incorrectly used.

Q3: Block Erase Status Bit

The MX29VW160T/B provides three difference erase operation:(1) chip erase. (2) single block erase,and (3) mutil-block erase. The device will automatically start erase operation after erase command completed when doing (1) and (2). For the case of (3), toggling the same address (A12 to A19) twice is necessary to terminate the block address loading and start the erase operation. No extra time-out is needed to terminate the block address loading or complete the erase operation.

During the period of issuing the erase command,Q3 will remain low until the erase operation starts. Data polling and Toggle Bit are valid after the initial block erase command sequence.

If Data Polling or the Toggle Bit indicates the device has been written with a valid erase command, Q3 may be used to determine if the block address loading window is still open. If Q3 is high (logical "1" the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit. If Q3 is low (logical "0", the device will be accept additional block erase command. To insure the command has been accepted, the system software should check the status of Q3 prior to and following each subsequent block erase command. If Q3 were high on the second status check, the command may not have been accepted. Note that during the block address loading period, any command other than Multiple Block Erase (30H) or Erase Suspend (B0H) will reset the device to read array mode.

WP: Write Protect Pin

When system provides VIL to the WP pin, the two outer most 8K-Byte blocks (SA01 and SA02 of MX29VW160T or SA38 and SA39 of MX29VW160B) will be protected from program and erase operations.

When WP=VIH, the two outer most 8K-Byte blocks and all other blocks will remain at (or back to) their original protect status.

When WP=VID, the whole device will be unprotected.

Figure 4 Data Polling Algorithm

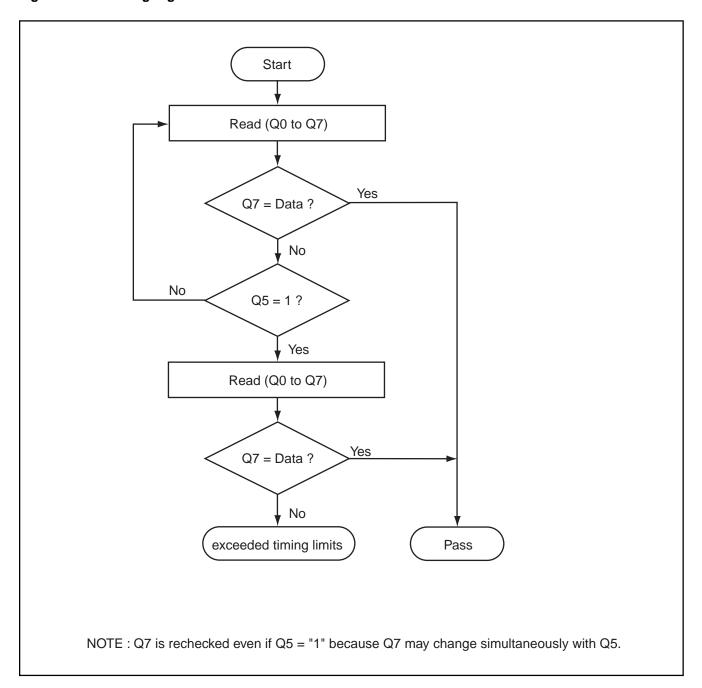


Figure 5 Toggle Bit Algorithm

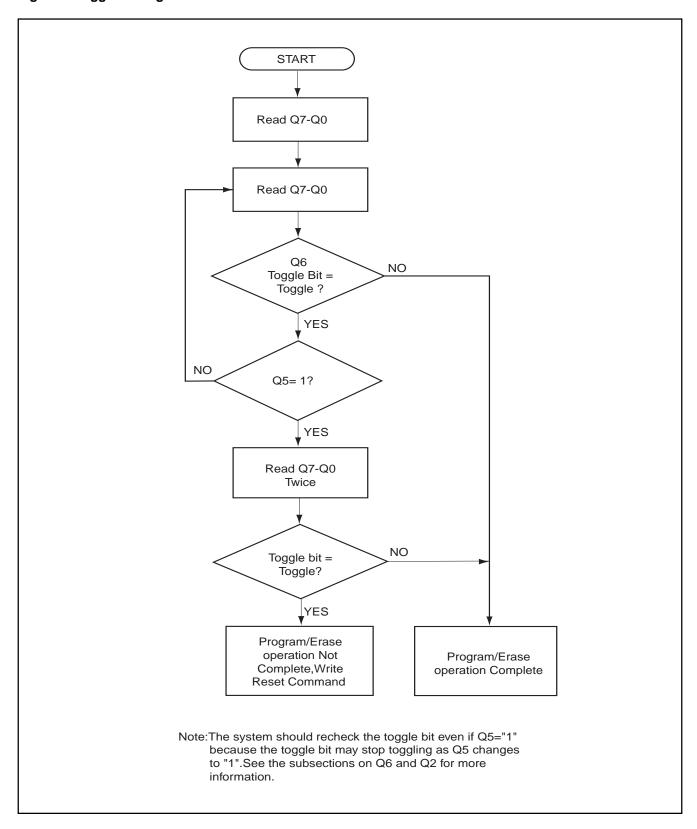


Figure 6 Automatic Erase Algorithm (Word Mode)

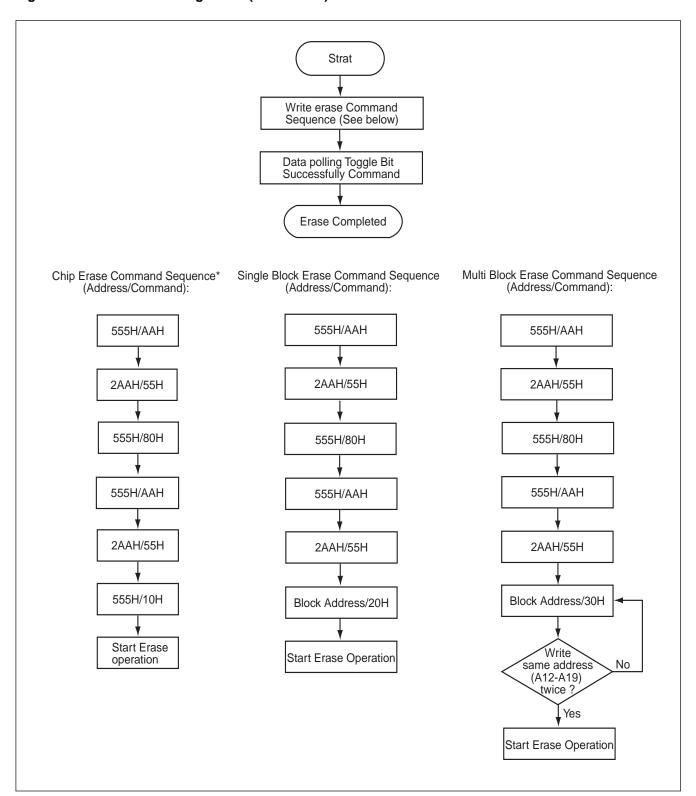
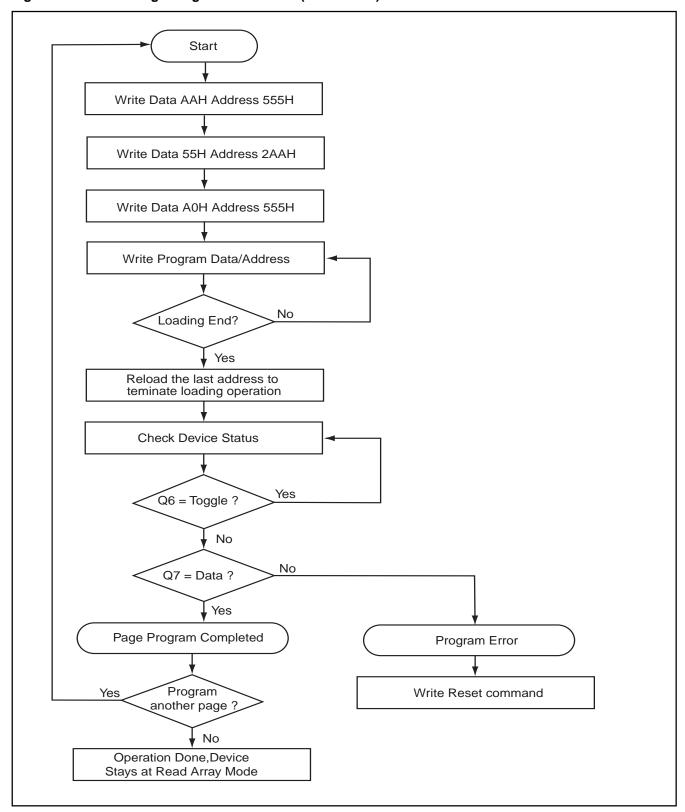



Figure 7 Automatic Page Program Flow Chart (Word Mode)

Table 6 DC CHARACTERISTICS

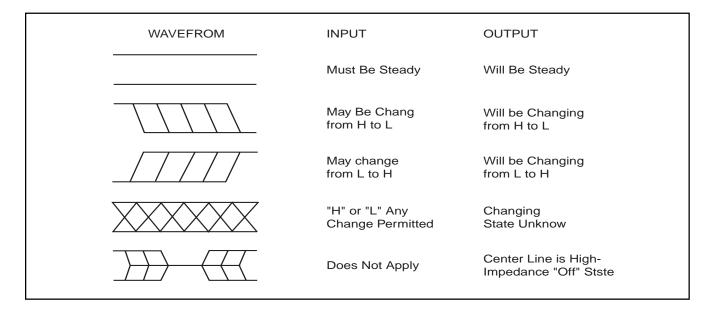
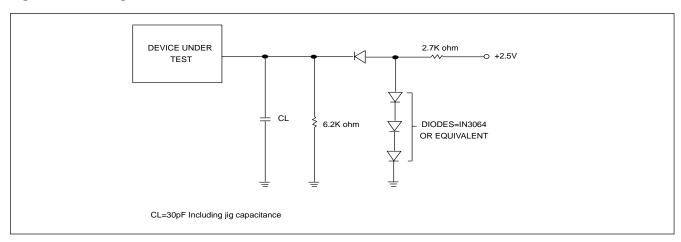

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
IIL	Input Load Current			1	uA	Vcc = Vcc Max
						VIN = Vcc or GND
ILO	Output Leakage Current			10	uA	Vcc = Vcc Max
						VIN = Vcc or GND
ISB1	Vcc Standby Current (CMOS)		1	10	uA	Vcc = Vcc Max
						CE = VIH
ISB2	Vcc Standby Current (TTL)			5	mA	Vcc = Vcc Max
						CE = VIH
ICC1	Vcc Read Current		20	27	mA	Vcc = Vcc Max
						f = 8MHz, IOUT = 0mA
ICC2	Vcc Erase/ Suspend Current		20	35	mA	CE = VIH
						Block Erase Suspend
ICC3	Vcc Program Current		20	35	mA	Program in Progress
ICC4	Vcc Erase Current		8	15	mA	Erase in Progress
ICC5	Vcc Read/Write Current (Note 1)		25	45	mA	Read/Write in Progress
ICC6	Vcc Read/Erase Current (Note 1))	25	45	mA	Read/Erase in Progress
VIL	Input Low Voltage	-0.5		0.8	V	
VIH	Input High Voltage	0.7 x Vcc		Vcc+0.3	V	
VOL	Output Low Voltage			0.45	V	IOL = 2.1mA
						Vcc = Vcc Min
VOH	Output High Voltage	Vcc-0.4			V	IOH = -100uA
						Vcc = Vcc Min
		0.85Vcc			V	IOH = -2mA
						Vcc = Vcc Min
VID		8.5	10	10.5	V	

Table 7 AC CHARACTERISTICS - READ OPERATIONS


SYMBOL	DESCRIPTIONS	MIN.	MAX.	UNIT	CONDITIONS
tACC	Address to Output Delay		120	ns	CE=OE=VIL
tCE	CE to Output Delay		120	ns	OE=VIL
tOE	OE to Output Delay		55	ns	CE=VIL
tDF	OE High to Output High Z (Note 1)		40	ns	CE=VIL
tOH	Address to Output Hold		0	ns	CE=OE=VIL

Note 1: Not 100% Tested.

Figure 8 Key to Switching Waveforms

Figure 9 Switching Test Circuits

Test Specifications

Test Condition		Unit	
Output Load	1TTL		
Output Load Capacitance,CL (in cluding jig capacitance)	30	pF	
Input rise & fall time	5	ns	
Input pulse Level	0~2.5	V	
Input timing measurement reference levels	1.25	V	
Output timing measurement reference levels	1.25	V	

Figure 10 Switching Test Waveforms

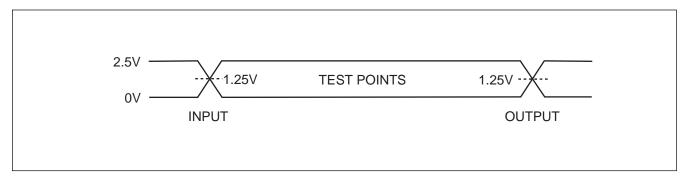
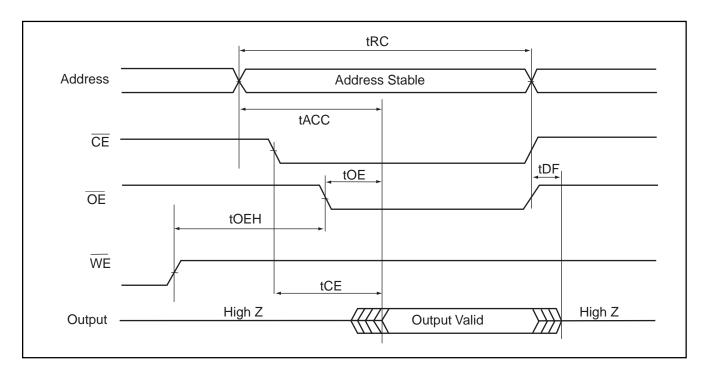
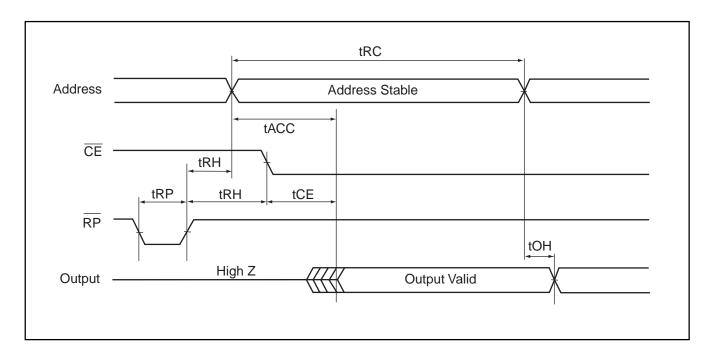
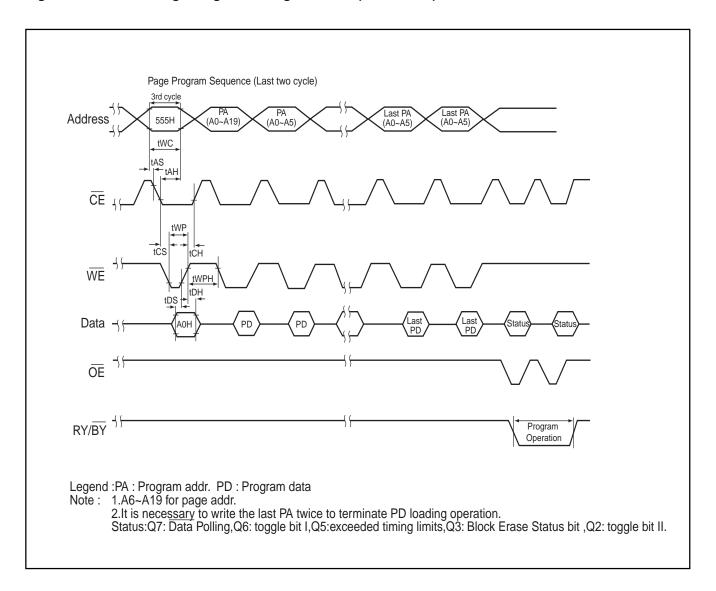



Figure 11 AC Waveform for Read Operations

P/N:PM0567 28 REV. 0.7, FEB. 12, 1999

Figure 12 AC Waveform for Hardware Reset/Read Operations




Table 8 AC CHARACTERISTICS-WRITE/ERASE/PROGRAM OPERATION

SYMBOL	DESCRIPTIONS	MIN.	MAX.	UNIT	CONDITIONS
tWC	Write Cycle Time	120		ns	
tAS	Address Setup Time	0		ns	
tAH	Address Hold Time	65		ns	
tDS	Data Setup Time	65		ns	
tDH	Data Hold Time	0		ns	
tOES	Output Enable Setup Time	0		ns	
tCES	CE Setup Time	0		ns	
tGHWL	Read Recover Time Before Write	0		ns	
tCS	CE Setup Time	0		ns	
tCH	CE Hold Time	0		ns	
tWP	Write Pulse Width	65		ns	
tWPH	Write Pulse Width High	35		ns	
tVCS	CE setup Before VCC Ready	0		ns	
tBUSY			120	ns	
tRB			0	ns	
tRP		50		ns	
tREADY			300	us	

P/N:PM0567 29 REV. 0.7, FEB. 12, 1999

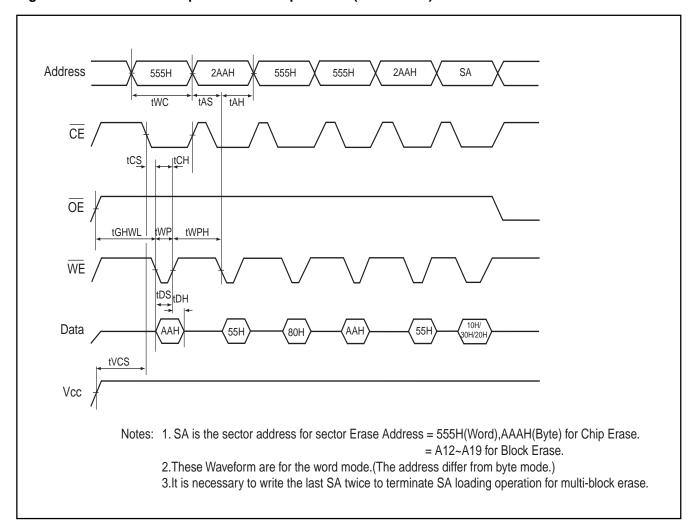


Figure 13 Automatic Page Program Timing Waveform(Word Mode)

Figure 14 AC Waveform Chip/Block Erase Operations (Word Mode)

P/N:PM0567 31 REV. 0.7, FEB. 12, 1999

Figure 15 AC Waveforms for Data Polling Automatic Algorithm Operations

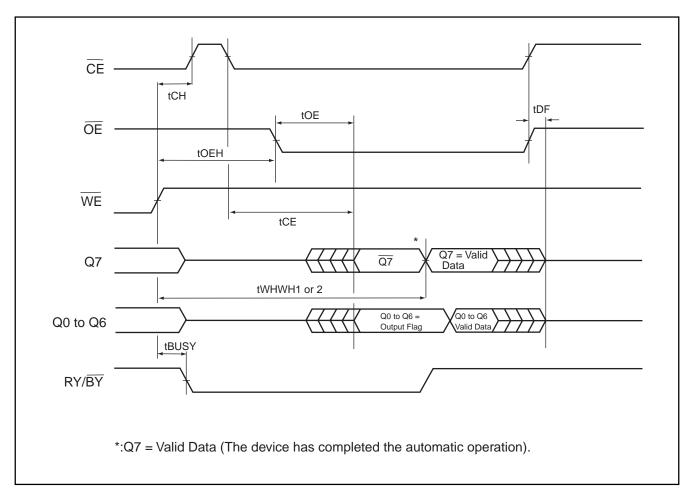


Figure 16 AC Waveform for Toggle Bit 1 during Automatic Algorithm Operation

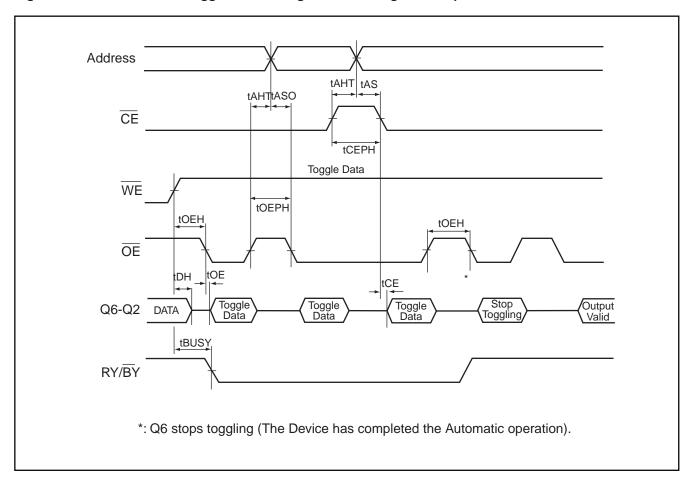


Figure 17 RY/BY Timing Diagram during Program/Erase Operation

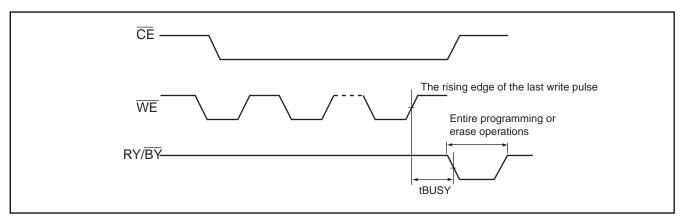
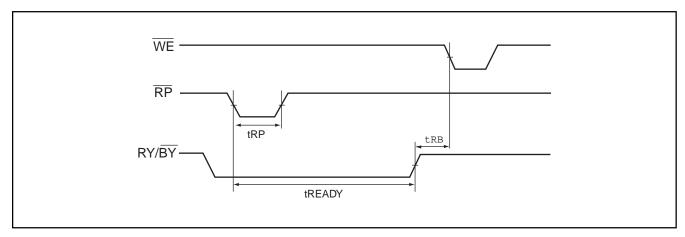



Figure 18 RP/RY/BY Timing Diagram

Figure 19 Timing Diagram for Word Mode Configuration

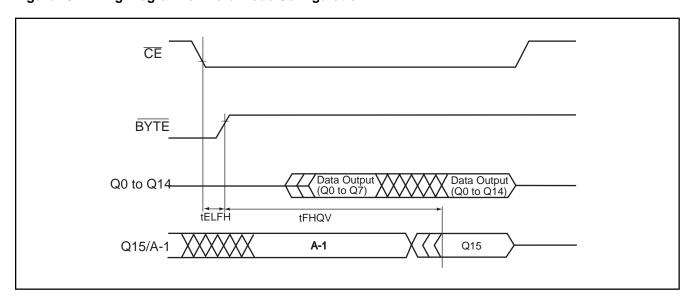


Figure 20 Timing Diagram for Byte Mode Configuration

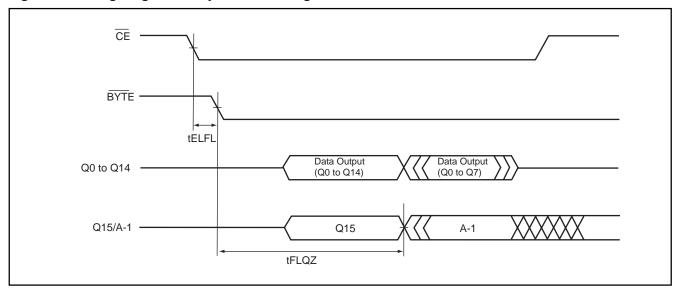
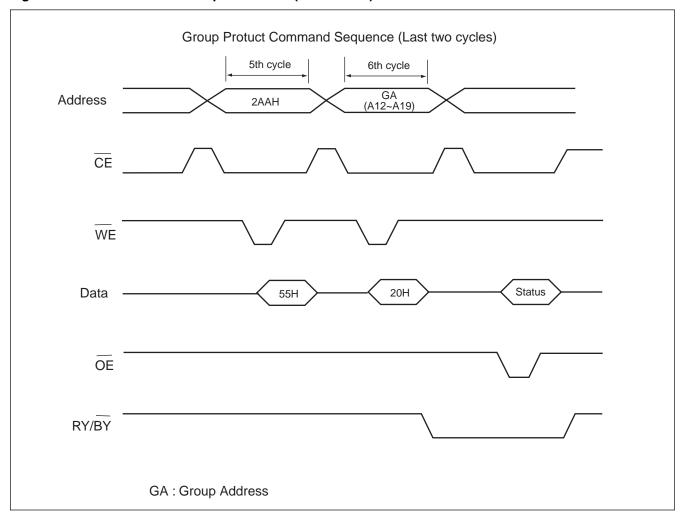
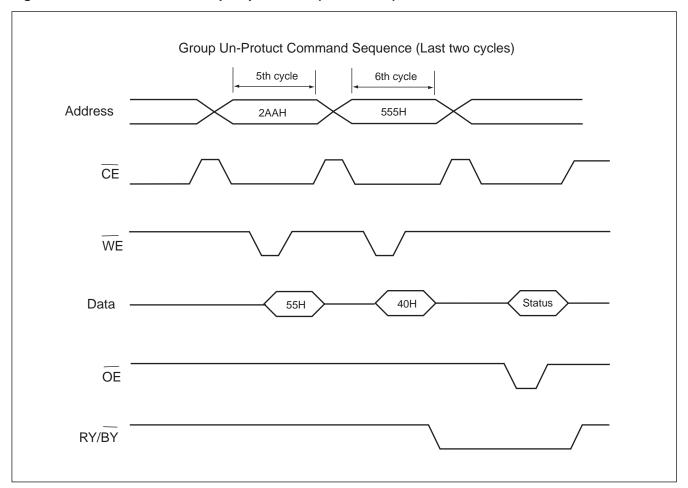




Figure 21 AC Waveform for Group Protection (Word Mode)

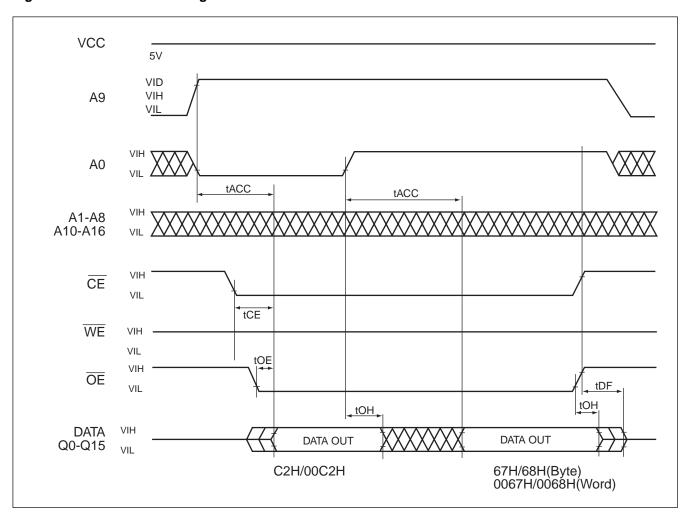


Figure 22 AC Waveform For Group Unprotection (Word Mode)



Figure 23 ID Code Read Timing Waveform

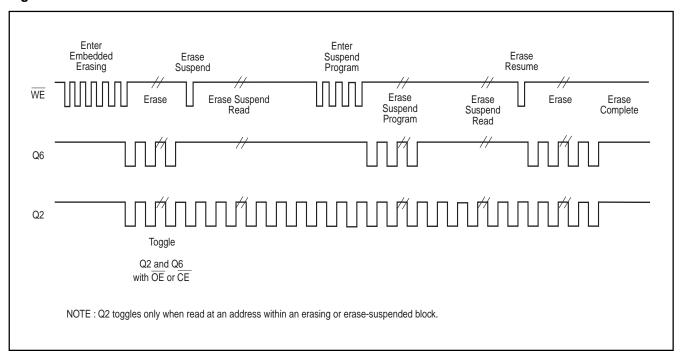


Figure 24 Back to Back Read/Write Timing Diagram

Figure 25 Q2 Vs Q6

Table 9 ERASE AND PROGRAMMING PERFORMANCE

		LIMITS		
PARAMETER	MIN.	TYP.	MAX.	UNITS
Single/Block Erase Time		20	400	ms
Multi Block Erase Time		50	400	ms
Chip Erase Time		50	400	ms
Page Programming Time		4	80	ms
Chip Programming Time		64	128	sec.
Byte Programming Time (Avg.)		32	640	ms
Erase/Program Cycles	100,000			Cycle

Table 10 LATCHUP CHARACTERISTICS

	MIN.	MAX.	UNITS		
Input Voltage with respect to GND on all pins except I/O pins	-1.0	10.5	V		
Input Voltage with respect to GND on I/O pins	-1.0	Vcc+1.0	V		
Current	-100	+100	mA		
Includes all pins except Vcc. Test conditions: Vcc = 3.0V, one pin at a time.					

Table 11 ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	-40℃ to 85℃
Storage Temperature	-65℃ to 125℃
Applied Input Voltage	-0.5V to Vcc + 4.5
Applied Output Voltage	-0.5V to Vcc +0.6
Vcc to Ground Potential	-0.5V to 5.5V
A9	-0.5V to 13.0V

Table 12 OPERATING RANGES

RATING	VALUE
Ambient Temperature	0°C to 70°C (Comm.)
	-40℃ to 85℃ (Ind.)
Vcc Supply Voltage	2.25V to 3.0V
Vcc Supply Voltage	2.25V to 3.0V

P/N:PM0567 40 REV. 0.7, FEB. 12, 1999

Ordering Information

Part No.	Access	Temperature		Package	
	Time(ns)	Range	Туре	Ball Type	Ball Pitch
MX29VW160TTC-12	120	Comm.	48 Pin TSOP		
MX29VW160TTI-12	120	Ind.	48 Pin TSOP		
MX29VW160TXAC-12	120	Comm.	48 Ball CSP	uBGA	0.75mm
MX29VW160TXAI-12	120	Ind.	48 Ball CSP	uBGA	0.75mm
MX29VW160TXBC-12	120	Comm.	48 Ball CSP	BGA	0.80mm
MX29VW160TXBI-12	120	Ind.	48 Ball CSP	BGA	0.80mm

P/N:PM0567 REV. 0.7, FEB. 12, 1999 41

^{1.} Top Boot Block as an sample. For Bottom Boot Block ones, MX29VW160TXXX will be changed to MX29VW160BXXX) 2. 0.75mm ball pitch uBGA is under evaluation.

REVISION HISTORY

Revision	Description	Page	Date
0.3	CSP package size:7mmx12mm> 8mmx13mmx1.2mm	P3	NOV/04/1998
	Add in ICC6:Vcc Read/Erase Current	P25	
	Remove tBACC & tBHZ	P25	
	Remove LGA Package	P41	
0.4	Change Sector structure of the 2Mb-Bank from 16KBx4+	P1, 4, 5, 8	NOV/19/1998
	8KBx8+32KBx4 to 8KBx8+64KBx1		
	Add in WP pin	P1, 3, 5, 6, 14, 20	
	Change VIP range from 9.5V~10.5V to 8.5V~10.5V	P6, 14, 15, 25	
0.5	Vcc range change to 2.25V~3.0V	P1, 2, 3, 40	NOV/27/1998
0.6	Change Group Addr.: A12~A19	P8, 15, 17, 18, 35	DEC/03/1998
	Correct ID data	P11	
0.7	Block architecture description correction		

P/N:PM0567 42 REV. 0.7, FEB. 12, 1999

MACRONIX INTERNATIONAL CO., LTD.

HEADQUARTERS:

TEL:+886-3-578-8888 FAX:+886-3-578-8887

EUROPE OFFICE:

TEL:+32-2-456-8020 FAX:+32-2-456-8021

JAPAN OFFICE:

TEL:+81-44-246-9100 FAX:+81-44-246-9105

SINGAPORE OFFICE:

TEL:+65-747-2309 FAX:+65-748-4090

TAIPEI OFFICE:

TEL:+886-3-509-3300 FAX:+886-3-509-2200

MACRONIX AMERICA, INC.

TEL:+1-408-453-8088 FAX:+1-408-453-8488

CHICAGO OFFICE:

TEL:+1-847-963-1900 FAX:+1-847-963-1909

http://www.macronix.com