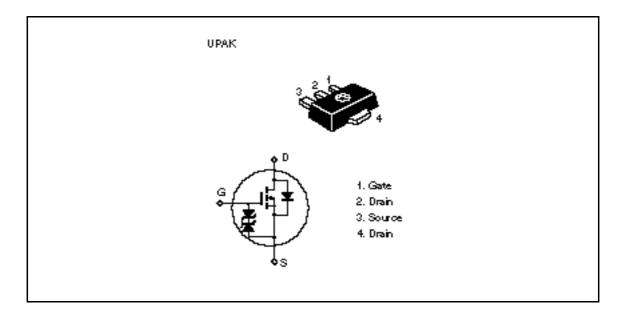
2SJ186

Silicon P-Channel MOS FET

HITACHI


Application

High speed power switching

Features

- · Low on-resistance
- · High speed switching
- · Low drive current
- Suitable for motor drive, DC-DC converter, power switch and solenoid drive

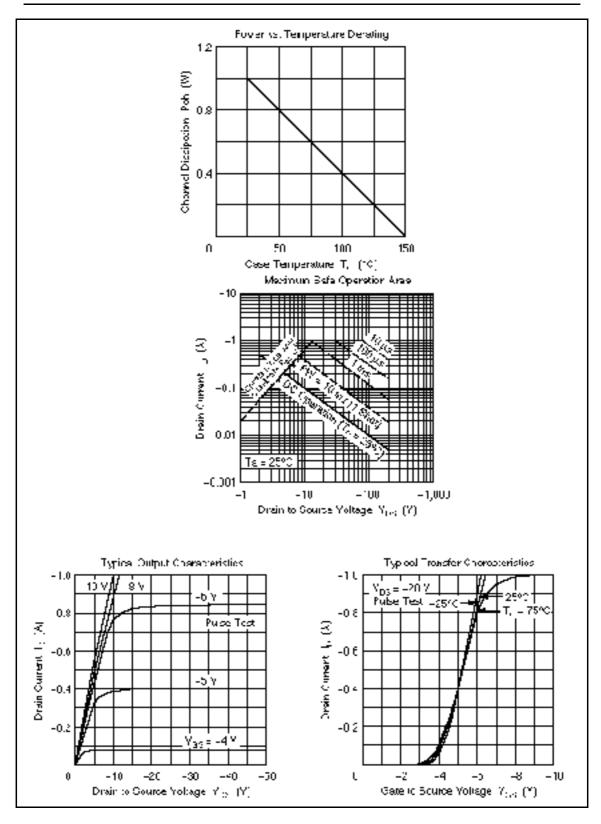
Outline

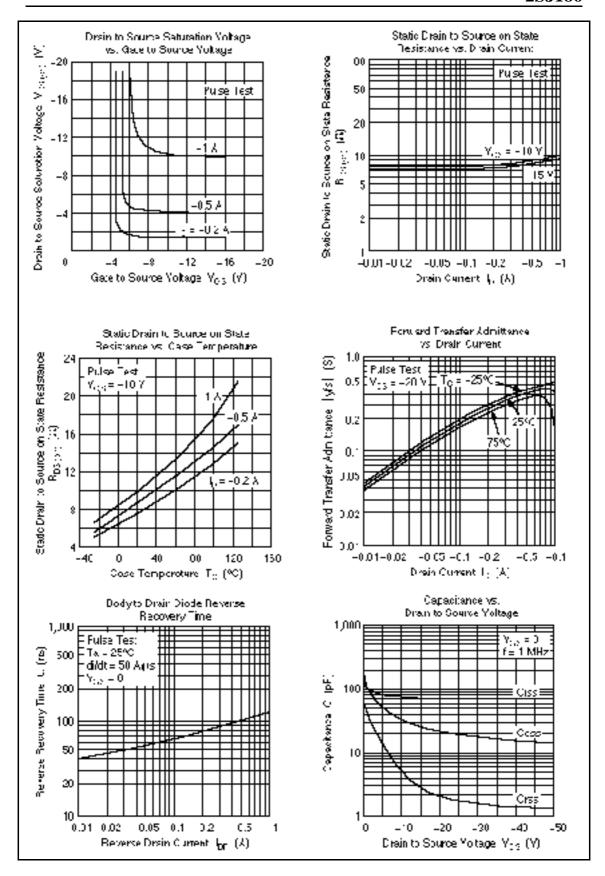
2SJ186

Absolute Maximum Ratings ($Ta = 25^{\circ}C$)

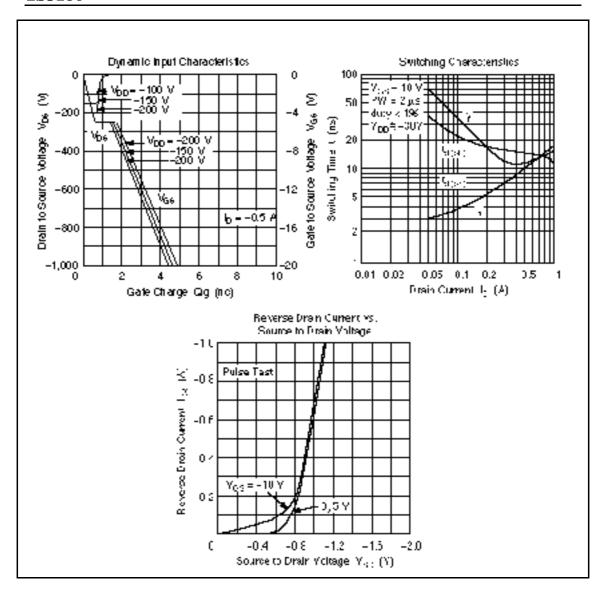
Item	Symbol	Ratings	Unit
Drain to source voltage	$V_{ t DSS}$	-200	V
Gate to source voltage	V _{GSS} ±15		V
Drain current	I _D	-0.5	А
Drain peak current	I _{D(pulse)} *1	-1.0	А
Body to drain diode reverse drain current	I _{DR}	-0.5	А
Channel dissipation	Pch*2	1	W
Channel temperature	Tch	150	°C
Storage temperature	Tstg	-55 to +150	°C

Notes: 1. PW 10 µs, duty cycle 1%


2. When using the alumina ceramic board (12.5×20×0.7 mm)


Electrical Characteristics ($Ta = 25^{\circ}C$)

Item	Symbol	Min	Тур	Max	Unit	Test conditions
Drain to source breakdown voltage	$V_{(BR)DSS}$	-200	_	_	V	$I_{D} = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±15	_	_	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Gate to source leak current	I _{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	-50	μΑ	$V_{DS} = -160 \text{ V}, V_{GS} = 0$
Gate to source cutoff voltage	$V_{\text{GS(off)}}$	-2.0	_	-4.0	V	$I_{D} = -1 \text{ mA}, V_{DS} = -10 \text{ V}$
Static drain to source on state	R _{DS(on)}	_	8.0	12.0		$I_D = -0.25 \text{ A}, V_{GS} = -10 \text{ V}^{*1}$
resistance		_	10.0	15.0	<u> </u>	$I_D = -1 A, V_{GS} = -10 V^{*1}$
Forward transfer admittance	y _{fs}	0.18	0.3	_	S	$I_D = -0.25 \text{ A}, V_{DS} = -10 \text{ V}^{*1}$
Input capacitance	Ciss	_	75	_	pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0,$
Output capacitance	Coss	_	32	_	pF	f = 1 MHz
Reverse transfer capacitance	Crss	_	5	_	pF	
Turn-on delay time	t _{d(on)}	_	6	_	ns	$I_D = -0.25 \text{ A}, V_{GS} = -10 \text{ V},$
Rise time	t _r	_	6	_	ns	$R_{L} = 120$
Turn-off delay time	t _{d(off)}	_	17	_	ns	
Fall time	t _f	_	15	_	ns	
Body to drain diode forward voltage	V_{DF}	_	0.95	_	V	$I_F = -0.5 \text{ A}, V_{GS} = 0$
Body to drain diode reverse recovery time	t _{rr}	_	100	_	ns	$I_F = -0.5 \text{ A}, V_{GS} = 0,$ $di_F/dt = 50 \text{ A}/\mu\text{s}$


Note: 1. Pulse test

Marking for 2SJ186 is "CY".

2SJ186

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.
Semiconductor & IC Div.
Napon Bidg., 2-6-2, Ohte-medii, Chiyode-ku, Tokyo 100, Jepan Tet Tokyo (03, 3270-2111
Fex: (03, 3270-5109)

For further in formellon write to: Historia America, Utd. Semiconductor & IC Dv. 2000 Sierre Point Perkwey Briebene, CA. 94005-4835 USA

Tet 415-589-8300 Fex 415-583-4207 Hitechi Burope GmbH
Bedronic Componente Group
Continentel Burope
Dornecher Streife 3
D-85622 Feldkirchen
München
Tet 089-9 94 80-0
Fex: 089-9 29 30 00

Hitachi Burope Ltd.
Bedronie Components Div.
Northern Burope Headquerters
Whitebrook Ferk
Lower Cook ham Road
Maidenhead
Berkehire SL68YA
United Kingdom
Tet 0628-885000
Fex 0628-778322

Hitechi Aeie Pte, Ltd 45 Collyer Quey \$20-00 Hitechi Tower Snappore 0404 Tet 535-2400 Fex: 535-4533

Hitachi Asia (Hong Kong) Ltd. Unit 705, North Towar, World Finance Centre, Herbour City, Certon Road Taim She Taul, Kowloon Hong Kong Tet 27:350218 Fax: 27:30607 f