

Quad Low Noise, Precision 16V CMOS Rail-to-Rail Operational Amplifiers

Preliminary Technical Data

AD8664

FEATURES

Low Offset Voltage: 100 µV max Low Input Bias Currents 1pA Max Single-Supply Operation: 5 to 16 Volts Dual-Supply Operation: +/- 2.5 to +/-8 Volts

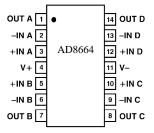
Low Noise: 10 nV/√Hz Wide Bandwidth: 4 MHz Unity Gain Stable

APPLICATIONS
Multi-pole Filters
Precision References
Physiological Measurements
Sensors
Medical Equipment
Consumer Audio
Photodiode amplification
Buffer / Level Shifting

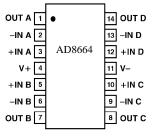
GENERAL DESCRIPTION

ADC driver

The AD8664 is a quad rail-to-rail output single supply amplifiers that use Analog Devices' patented DigiTrim® trimming technique to achieve low offset voltage. The AD8664 family features an extended operating range with supply voltages up to 16 V. They also feature low input bias currents, wide signal bandwidth, and low input voltage and current noise.


The combination of low offsets, very low input bias currents, and wide supply range make these amplifiers useful in a wide variety of applications normally associated with much higher priced JFET amplifiers. Systems utilizing high impedance sensors, such as photo-diodes benefit from the combination of low input bias current, low noise, low offset and bandwidth. The wide operating voltage range matches today's high performance ADCs and DACs. Audio applications and medical monitoring equipment can take advantage of the high input impedance, low voltage and current noise, wide bandwidth and the lack of "popcorn" noise (found in many other low input bias current amplifiers).

The AD8664 is specified over the extended industrial (-40° to +125°C) temperature range. The AD8664, quad, is available in the 14-lead TSSOP and 14-lead SOIC package.


Single Version: AD8661 Dual Version: AD8662

PIN CONFIGURATIONS

14-Lead TSSOP (RU-14)

14-Lead SO (R-14)

REV. PrA 2/2/2006

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © 2006 Analog Devices, Inc. All rights reserved.

Preliminary Technical Data

ELECTRICAL CHARACTERISTICS (V_S=+5.0V, V_{CM} = V_s/2, T_A=+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{SY} = 8V$, $V_{CM} = 3V$			100	μV
Ç		$V_{CM} = -0.1V \text{ to } 3.0V$		30	200	μV
		-40°< T _A < +85°C				μV
		-40°< T _A < +125°C			1000	μV
lanut Diag Current				0.0	4	- A
Input Bias Current	I _B	-40°< T _A < +85°C		0.3	1 50	pA pA
						pA
		-40°< T _A < +125°C			300	pA
Input Offset Current	I _{OS}			0.2	0.5	pA
		-40°< T _A < +85°C			20	pΑ
		-40°< T _A < +125°C			75	pA
Input Voltage Range	OMBB	.,	-0.1	400	+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1V$ to 3.0V	85	100		dB
		-40°< T _A < +125°C	80	100		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 2 \text{ k}\Omega \text{ V}_O = 0.5 \text{V to } 4.5 \text{V}$	100	240	_	V/mV
Offset Voltage Drift	ΔV _{OS} /ΔT			3	9	μV/°C
OUTPUT CHARACTERISTICS	.,					.,
Output Voltage High	V _{OH}	$I_L = 1mA$	4.85	4.93		V
		I _L = 10mA	4.80	4.85		V
		-40°C < T _A < +125°C	4.75			V
Output Voltage Low	V _{OL}	I _I = 1mA		50	100	mV
· ·	02	-40°C < T _A < +125°C			120	mV
Short-Circuit Current	I _{SC}			±19		mA
Closed Loop Output Impedance	Z _{OUT}	f=1 MHz, A _V = 1		65		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5 \text{ V to } 16 \text{ V}$	95	110		dB
		-40°C < T _A < +125°C	95	115		dB
Supply Current/Amplifier	I_{SY}	$V_O = 0V$		1.15	1.4	mA
		-40°< T _A < +125°C			2.0	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		3		V/μs
Gain Bandwidth Product	GBP			4		MHz
Phase Margin	Øo			60		degrees
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	f=0.1Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f=1kHz		12		nV/√Hz
Voltage Noise Density	e _n	f=10kHz		10		nV/√Hz
Current Noise Density	i _n	f=1kHz		0.1		pA/√Hz

ELECTRICAL CHARACTERISTICS (V_S =16V, V_{CM} = V_S /2, T_A =+25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{SY} = 8V$, $V_{CM} = 3V$			100	μV
		$V_{CM} = -0.1V \text{ to } +14.0V$		30	200	μV
		-40°< T _A < +85°C				μV
		-40°< T _A < +125°C			1000	μV
Input Bias Current	I _B			0.3	1	pA
	_	-40°< T _A < +85°C			50	pA
		-40°< T _A < +125°C			300	pA
						'
Input Offset Current	Ios			0.2	0.5	pА
		-40°< T _A < +85°C			20	pА
		-40°< T _A < +125°C			75	pА
Input Voltage Range			-0.1		+14	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.1V \text{ to } +14.0V$	90	110		dB
		-40°< T _A < +125°C	90	110		
Large Signal Voltage Gain	A_{VO}	$R_L=2 \text{ k}\Omega \text{ V}_O=0.5 \text{V to+15.5 V}$	200	420		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			3	9	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V_{OH}	I _L = 1mA	15.95	15.97		V
		I _L = 10mA	15.6	15.7		V
		-40°C < T _A < +125°C	15.5			V
Output Voltage Low	V _{OL}	I _L = 1mA		24	50	mV
calput tomage zon	·OL	I _I = 10mA		210	350	mV
		-40°C < T _A < +125°C		2.0	450	mV
Short-Circuit Current	I _{SC}	10 0 1 14 1 120 0		±140	.00	mA
Closed Loop Output Impedance	Z _{OUT}	f=1 MHz, A _V = 1		45		Ω
POWER SUPPLY	2001	1-1 1011 12, 70, -1		10		122
Power Supply Rejection Ratio	PSRR	$V_S = 5V$ to 16V	95	110		dB
		-40°C < T _A < +125°C	95	115		dB
Supply Current/Amplifier	I _{SY}	V _O = 0V	00	1.25	1.55	mA
cappi, carrena, anpimer	'51	-40°< T _A < +125°C		1.20	2.1	mA
DYNAMIC PERFORMANCE		10 1 1A 1 1 120 0				1100
Slew Rate	SR	$R_L = 2 k\Omega$		3.5		V/µs
Gain Bandwidth Product	GBP	N2 N32		4		MHz
Phase Margin	Øo			65		degrees
NOISE PERFORMANCE						3.23.230
Peak-to-Peak Noise	e _n p-p	f=0.1Hz to 10 Hz		2.5		μV p-p
Voltage Noise Density	e _n	f=1kHz		12		nV/√Hz
Voltage Noise Density	e _n	f=10kHz		10		nV/√Hz
Current Noise Density	i _n	f=1kHz				pA/√Hz
- Carrolle Noise Delisity	'n	I= I K I Z		0.1		P/N VI IZ

AD8664

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS¹

Supply voltage	+18V
Input Voltage	
Differential Input Voltage	±18V
Output Short-Circuit Duration to Gnd ² Obs	erve Derating Curves
Storage Temperature Range	
R, RU Package	65°C to +150°C
Operating Temperature Range	
AD8664	40°C to +125°C
Junction Temperature Range	
R,RU Package	65°C to +150°C
Lead Temperature Range (Soldering, 60 S	Sec)+300°C

Package Type	$\theta_{ m JA}$	$\theta_{ m JC}$	Units	
14-Pin SOIC (R)	120	36	°C/W	
14-Pin TSSOP (RU)	180	35	°C/W	

NOTES

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding Information
AD8664ARZ	-40°C to +125°C	14-Pin SOIC	R-14	
AD8664ARUZ	-40°C to +125°C	14-Pin TSSOP	RU-14	

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1500 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

 $^{^{1}}$ Absolute maximum ratings apply at 25 $^{\circ}\text{C},$ unless otherwise noted.

 $^{^2}$ θ_{JA} is specified for the worst-case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.