
Copyright Cirrus Logic, Inc. 199
(All Rights Reserved)P.O. Box 17847, Austin, Texas 78760

(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
AN130
Application Note
e
r-
e-
as

-
e

l

s

s
l

ns-

 to
e

Interfacing the CS5521/22/23/24/28 to the PIC16C84
TABLE OF CONTENTS
1. INTRODUCTION ... 1
2. ADC DIGITAL INTERFACE 1
3. SOFTWARE DESCRIPTION 2

3.1 Initialize ... 2
3.2 Write Channel Setup Registers 2
3.3 Self-Offset Calibration 3
3.4 Read/Write Gain Register 3
3.5 Acquire Conversion .. 4

4. MAXIMUM SCLK RATE ... 4
5. SERIAL PERIPHERAL INTERFACE 4
6. DEVELOPMENT TOOL DESCRIPTION 5
7. CONCLUSION ... 5
8. APPENDIX: PIC16C84 MICROCODE TO

INTERFACE TO THE CS5521/22/23/24/28 6

1. INTRODUCTION

This application note details the interface of Crys-
tal Semiconductor’s CS5521/22/23/24/28 Analog-
to-Digital Converter (ADC) to the Microchip
PIC16C84 microcontroller. This note takes the
reader through a simple example which demon-
strates how to communicate between the microcon-
troller and the ADC. All algorithms discussed are
included in Section 8. “APPENDIX: PIC16C84
Microcode to Interface to the
CS5521/22/23/24/28” on page 6.

2. ADC DIGITAL INTERFACE

The CS5521/22/23/24/28 interfaces to th
PIC16C84 through either a three-wire or a fou
wire interface. Figure 1 depicts the interface b
tween the two devices. Though this software w
written to interface to Port A (RA) on the
PIC16C84 with a four-wire interface, the algo
rithms can be easily modified to work with th
three-wire format.

The ADC’s serial port consists of four contro
lines: CS, SCLK, SDI, and SDO.

CS, Chip Select, is the control line which enable
access to the serial port.

SCLK, Serial Clock, is the bit-clock which control
the shifting of data to or from the ADC’s seria
port.

SDI, Serial Data In, is the data signal used to tra
fer data from the PIC16C84 to the ADC.

SDO, Serial Data Out, is the data signal used
transfer output data from the ADC to th
PIC16C84.

CS5521/22/23/24/28 PIC16C84

RA0

RA1

RA2

RA3

CS

SDI

SDO

SCLK

Figure 1. 3-Wire and 4-Wire Interfaces

CS5521/22/23/24/28 PIC16C84

RA1

RA2

RA3

CS

SDI

SDO

SCLK

3-Wire Interface 4-Wire Interface

NC (RA0)
1

9 NOV ‘99
AN130REV2

AN130

 a

up
Rs
 to
bits
e
the
k-
ub-
ps,
 is,
3. SOFTWARE DESCRIPTION

This note presents algorithms to initialize the
PIC16C84 and the CS5521/22/23/24/28, perform
calibrations, modify the CS5521/22/23/24/28’s in-
ternal registers, and acquire a conversion. Figure 2
depicts a block diagram of the main program struc-
ture. While reading this application note, please re-
fer to Section 8. “APPENDIX: PIC16C84
Microcode to Interface to the
CS5521/22/23/24/28” on page 6 for the code list-
ing.

3.1 Initialize

Initialize is a subroutine that configures Port A
(RA) on the PIC16C84 and places the serial port of
the CS5521/22/23/24/28 into the command state.
RA’s data direction is configured as depicted in
Figure 1 by writing to the TRISA register (for more
information on configuring ports, see the
PIC16C84 Data Sheet). The controller then enters
a number of delay states to allow the appropriate
time for the ADC’s oscillator to start up and stabi-
lize (oscillator start-up time for a 32.768 KHz crys-
tal is typically about 500ms). Finally, the ADCs
serial port is reset by sending fifteen bytes of logic
1’s followed by a single byte with its LSB at logic
0 to SDI (the serial port is initialized after any pow-
er-on reset, and this software re-initialization is for
demonstration purposes) Once the proper sequence
of bits has been received, the serial port on the

ADC is in the command state, where it waits for
valid command.

3.2 Write Channel Setup Registers

The subroutine write_csrs is an example of how to
write to the CS5521/22/23/24/28’s Channel Set
Registers (CSRs). For this example, two CS
(four Setups) are written. The number of CSRs
be accessed is determined by the Depth Pointer
(DP3-DP0) in the configuration register. Th
Depth Pointer bits are set to “0011” to access
two CSRs. The value “0011” is calculated by ta
ing the number of Setups to be accessed and s
tracting 1. Because each CSR holds two Setu
this number must always be an odd value, that

START

INITIALIZE

SELF-OFFSET CAL.

MODIFY GAIN

ACQUIRE CONVERSION

MICROCONTROLLER & ADC

Figure 2. CS5521/22/23/24/28 Software Flowchart

WRITE CSRs

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

SPI is a trademark of Motorola.
MICROWIRE is a trademark of National Semiconductor.
MPLAB and MPASM are trademarks of Microchip.

Cirrus Logic, Inc. has made best efforts to ensure that the information contained in this document is accurate and reliable. However, the in-
formation is subject to change without notice and is provided “AS IS” without warranty of any kind (express or implied). No responsibility is
assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third parties. This document
is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publication
may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic,
or otherwise). Furthermore, no part of this publication may be used as a basis for manufacture or sale of any items without the prior written
consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in this document may be
trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trademarks
and service marks can be found at http://www.cirrus.com.
2 AN130REV2

AN130

.
nd
te

he
is-

 to

e
is
nt

is
es.
-

is
de
of
o
l-
e

he
A

ed

-
he
til

e
8

B
es
l-
DP0 must always be logic 1 when reading and writ-
ing the CSRs. To modify the Depth Pointer bits, the
configuration register is read to prevent corruption
of other bits. After the read_register routine is run
with the command 0x0B (HEX), the DP3-DP0 bits
are masked to “0011”. Then, the updated informa-
tion is written back into the ADC with the com-
mand 0x03 (HEX) using the write_register routine.

After the depth pointer bits are set correctly, the
CSR information is written to the ADC. The com-
mand 0x05 (HEX) is sent to the ADC to begin the
write sequence (to read the CSRs, the command
would be 0x0D). At this point, the ADC is expect-
ing to receive information for two 24-bit CSRs, or
48 bits, based on the Depth Pointer bits. The first
CSR is written with a value of 0x000000 (HEX).
This sets Setup 1 and Setup 2 both to convert bipo-
lar, 100mV signals on physical channel 1 (PC1) at
an output word rate (OWR) of 15 Hz, and latch pins
A1-A0 equal to “00”. The second CSR is written
with the value 0x4C0105 (HEX). This sets Setup 3
to convert a bipolar, 100mV signal on PC2 at a
101.1 Hz OWR, with latch pins A1-A0 at “01”.
This also sets Setup 4 to convert a unipolar, 25mV
input signal at 15 Hz on PC3, with output latch pins
A1-A0 set to “00”.

3.3 Self-Offset Calibration

Calibrate is a subroutine that performs a self-offset
calibration using Setup 1. Calibrate does this by
sending the command 0x81 (HEX) to the ADC.
This tells the ADC to perform a self-offset calibra-
tion using Setup 1 (see the CS5521/22/23/24/28
Data Sheet for information on performing offset or
gain calibrations using other Setups). Once the
command has been sent, the controller polls RA2
(SDO) until it falls, indicating that the calibration is
complete. Note that although calibrations are done
on a specific Setup, the offset or gain register that
is modified belongs to the physical channel refer-
enced by that Setup.

3.4 Read/Write Gain Register

The routine modify_gain provides an example of
how to modify the ADC’s internal gain registers
To modify the gain register the command byte a
data byte variables are written with the appropria
information. Modify_gain then calls the subroutine
write_register, which uses these variables to set t
contents of Physical Channel 1 (PC1)’s gain reg
ter to 0x800000 (HEX). The write_register routine
calls the send_byte algorithm four times, once to
send the command byte, and three more times
send the three data bytes. Send_byte is a subroutine
used to ‘bit-bang’ a byte of information from th
PIC16C84 to the CS5521/22/23/24/28. A byte
transferred one bit at a time, MSB (most significa
bit) first, by placing a bit of information on RA1
(SDI) and then pulsing RA3 (SCLK). The byte
transferred by repeating this process eight tim
Figure 3 depicts the timing diagram for the write
cycle in the CS5521/22/23/24/28’s serial port. It
important to note here that this section of the co
demonstrates how to write to the gain register
PC1. It does not perform a gain calibration. T
write to the other internal registers of the ADC, fo
low the procedures outlined in th
CS5521/22/23/24/28 data sheet.

To read the value in the gain register of PC1, t
command byte is loaded with the value 0x0
(HEX), and the read_register routine is called. It
duplicates the read-cycle timing diagram depict
in Figure 4. Read_register asserts CS (RA0). Then
it calls send_byte once to transfer the command
byte to the CS5521/22/23/24/28. This places t
converter into the data state where it waits un
data is read from its serial port. Read_register then
calls receive_byte three times and transfers thre
bytes of information from the CS5521/22/23/24/2
to the PIC16C84. Similar to send_byte,
receive_byte acquires a byte one bit at a time, MS
first. When the transfer is complete, the variabl
high_byte, mid_byte, and low_byte contain the va
ue present in PC1’s 24-bit gain register.
AN130REV2 3

AN130

n-

ta
-

of
-

e
is
y
ro-
.

e
ion
w

3.5 Acquire Conversion

To acquire a conversion the subroutine convert is
called. For single conversions on one physical
channel, the MC (multiple conversion) and the LP
(loop) bits in the configuration register must be log-
ic 0. To prevent corruption of the configuration
register, convert instructs the PIC16C84 to read
and save the contents. This information is stored in
the variables HIGHBYTE, MIDBYTE and LOW-
BYTE. Then the MC, LP, and RC (read convert)
bits are masked to logic 0, and the new information
is written back to the ADC’s configuration register.
A conversion is initiated on Setup 1 by sending the
command 0x80 to the converter. At this time, the
controller polls RA2 (SDO) until it falls to a logic
0 level (see Figure 5). After SDO falls, convert ap-
plies a logic 0 to RA1 (SDI) and pulses RA3
(SCLK) eight times to initiate the data transfer

from the ADC. The PIC16C84 then reads the co
version data word by calling receive_byte three
times. Figure 6 depicts how the 16 or 24-bit da
word is stored in the memory locations HIGH
BYTE, MIDBYTE, and LOWBYTE.

4. MAXIMUM SCLK RATE

An instruction cycle in the PIC16C84 consists
four oscillator periods, or 400ns if the microcon
troller’s oscillator frequency is 10 MHz. Since th
CS5521/22/23/24/28’s maximum SCLK rate
2MHz, additional no operation (NOP) delays ma
be necessary to reduce the transfer rate if the mic
controller system requires higher rate oscillators

5. SERIAL PERIPHERAL INTERFACE

When using a built-in Serial Peripheral Interfac
(SPI) port, the designer must pay special attent
to how the port is configured. Most SPI ports allo

Figure 3. Write-Cycle Timing

Figure 4. Read-Cycle Timing
4 AN130REV2

AN130

ed
-
y

ow
e
:

us-
e.

is-
ns.
r-

 in

.

for a selectable clock polarity. However, many do
not have the capability to select the clock’s phase.
When using a microcontroller with both features,
the clock polarity should be set to idle low, and the
clock phase should be set to begin clocking in the
middle of the data bits. For an SPI port without the
variable clock phase feature to function properly
with the CS5521/22/23/24/28, the clock polarity
needs to be set to idle high, and the ADC’s serial
port must be re-initialized anytime new informa-
tion is transmitted between the microcontroller and
the converter.

6. DEVELOPMENT TOOL
DESCRIPTION

The code in this application note was develop
with MPLABTM, a development package from Mi
crochip, Inc. It was written in Microchip assembl
and compiled with the MPASMTM assembler.

7. CONCLUSION

This application note presents an example of h
to interface the CS5521/22/23/24/28 to th
PIC16C84. It is divided into two main sections
hardware and software. The hardware section ill
trates both a three-wire and a four-wire interfac
The three-wire interface is SPI™ and MICROW-
IRE™ compatible. The software, developed using
tools from Microchip, Inc., illustrates how to ini-
tialize the converter and microcontroller, write to
the CSRs, write and read the ADC’s internal reg
ters, perform calibrations, and acquire conversio
The software is modularized and provides impo
tant subroutines such as write_register,
read_register, write_csrs and convert, which were
all written in PIC assembly language.

The software described in the note is included
Section 8. “APPENDIX: PIC16C84 Microcode to
Interface to the CS5521/22/23/24/28” on page 6

Command Time
8 SCLKs

8 SCLKs Clear SDO Flag

Data SDO Continuous Conversion Read

SDO

SCLK

SDI

t *d

Data Time
24 SCLKs

MSB LSB

* td = XIN/OWR clock cycles for each conversion except the
first conversion which will take XIN/OWR + 7 clock cycles

XIN/OWR
Clock Cycles

Figure 5. Conversion/Acquisition Cycle Timing

MSB High-Byte

Mid-Byte

Low-ByteLSB

A) 24-Bit Conversion Data Word (CS5522/24/28)

MSB High-Byte

Mid-Byte

Low-Byte

B) 16-bit Conversion Data Word (CS5521/23)

0 - always zero, 1 - always 1

CI1, CI0 - Channel Indicator Bits

OD - Oscillation Detect, OF - Overflow

D23 D22 D21 D20 D19 D18 D17 D16

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 0 CI1 CI0 OD OF

Figure 6. Bit Representation/Storage in the PIC16C84
AN130REV2 5

AN130
8. APPENDIX: PIC16C84 MICROCODE TO INTERFACE TO THE CS5521/22/23/24/28

;***
;* File: 55221684.ASM
;* Date: November 1, 1999
;* Revision: 1
;* Processor:PIC16C84
;* Program entry point at routine "main". Entry point address is 0x05.
;***
;* This program is designed to provide examples of how to interface the
;* CS5521/22/23/24/28 ADCs to a PIC16C84 Microcontroller. The software handles all
;* of the serial communications between the controller and the ADC to perform
;* system calibration and acquire 24 and 16-bit conversion words.
;***

;*** Memory Map Equates ***

STATUS equ 0x03 ; STATUS register
PORTA equ 0x05 ; I/O Port A address
TRISA equ 0x85 ; Port A Data Direction Control Latch
CARRY equ 0x00 ; Carry Bit in STATUS
RP0 equ 0x05 ; Register Bank Select Bit in STATUS
CS equ 0x00 ; Port A bit 0 - Chip Select
SDI equ 0x01 ; Port A bit 1 - Serial Data In
SDO equ 0x02 ; Port A bit 2 - Serial Data Out
SCLK equ 0x03 ; Port A bit 3 - Serial Clock
HIGHBYTE equ 0X0C ; Upper 8 Bits of Conversion Register
MIDBYTE equ 0x0D ; Middle 8 Bits of Conversion Register
LOWBYTE equ 0x0E ; Lowest 8 bits of Conversion Register
COMMAND equ 0x0F ; Command Byte RAM location
TEMP equ 0x10 ; Temporary Data storage RAM location
COUNT equ 0x11 ; Software Counter RAM location
SERI_DATA equ 0x12 ; Serial Data RAM location

;***
;* Program Code
;***

processor 16C84 ; Set Processor Type
org 0x00 ; Reset Vector Location
goto main ; Start at "main" routine

;***
6 AN130REV2

AN130
;* Routine - main
;* Input - none
;* Output - none
;* This is the entry point to the program, as well as the central loop.
;***

org 0x05 ; program memory beginning location
main

;*** Initialize and Calibrate System ***
CALL initialize ; Initialize the System

CALL write_csrs ; Modify the Channel Setup Registers

CALL calibrate ; Calibrate ADC Offset

CALL modify_gain ; Write and Read gain register

;*** Loop to perform continuous single conversions ***
mloop: CALL convert ; Obtain conversions from ADC

goto mloop ; Keep looping

;*** End main ***

;***
;* Subroutines
;***

;***
;* Routine - initialize
;* Input - none
;* Output - none
;* This subroutine initializes Port A to interface to the CS5521/22/23/24/28 ADC.
;* A time delay is provided to allow for the ADC oscillator to power up.
;* Typically, a 32.768 KHz crystal has a start-up time of about 500ms.
;* Additionally, 1003 XIN cycles are delayed for the ADC’s power-on reset
;* after the crystal has stabilized. The total delay is 660ms upon system
;* power-up, assuming that the microcontroller has no start-up delay.
;***

initialize CLRF PORTA ; Clear Port A Output data latches
BSF STATUS, RP0 ; Select Register Bank 1 - control
MOVLW 0x04 ; Directional Values for Port A:
MOVWF TRISA ; RA2 = input, RA0-1 & 3-4 = output

BCF STATUS, RP0 ; Select Register Bank 0 - normal
MOVLW 0x32 ; Load W for delay count
CALL delay ; Delay 1003 XIN cycles
AN130REV2 7

AN130
MOVLW 0xFF ; Load W for new delay count
CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms
CALL delay ; Delay for Oscillator start-up 158ms

;*** ADC Serial Port Initialization ***
MOVLW 0x0F ; Load W with a value of 15
MOVWF TEMP ; Loop count variable = TEMP
BCF PORTA, CS ; Clear CS to enable ADC

loop: MOVLW 0xFF ; Load W with all 1’s
CALL send_byte ; send all 1’s to ADC
DECFSZ TEMP, 1 ; loop through to send 15 bytes of all 1’s
goto loop
MOVLW 0xFE ; Load W with last byte - ’11111110’
CALL send_byte ; send final initialize byte to ADC
BSF PORTA, CS ; Set CS to disable ADC
RETURN ; Exit to "main"

;***
;* Routine - calibrate
;* Input - none
;* Output - none
;* This subroutine tells the ADC to perform self-offset calibration on Setup 1
;***

calibrate MOVLW 0x81 ; Command for Self-Offset Calibration
BCF PORTA, CS ; Enable ADC
CALL send_byte ; Send Calibration Command to ADC

poll_sdo1: BTFSC PORTA, SDO ; Wait until SDO falls to indicate
goto poll_sdo1 ; calibration completion.
BSF PORTA, CS ; Disable ADC
RETURN ; Exit to "main"

;***
;* Routine - modify_gain
8 AN130REV2

AN130
;* Input - none
;* Output - none
;* This subroutine writes to and reads from the gain register on physical
;* channel 1.
;***

modify_gain MOVLW 0x02 ; Command to write Gain register
MOVWF COMMAND ; Set command byte
MOVLW 0x80 ; High byte information
MOVWF HIGHBYTE ; Set high byte
CLRF MIDBYTE ; Set middle byte
CLRF LOWBYTE ; Set low byte
CALL write_register ; Write 0x800000 to Gain Register

MOVLW 0x0A ; Command to read Gain Register
MOVWF COMMAND ; Set Command byte
CALL read_register ; Read data from the Gain Register

RETURN ; Exit

;***
;* Routine - write_csrs
;* Input - none
;* Output - none
;* This subroutine is used to modify the information in the Channel Setup
;* Registers. It first changes the depth pointer bits in the ADCs config.
;* register to reflect the number of CSRs to be written, and then writes to
;* the appropriate CSRs
;***

write_csrs MOVLW 0x0B ; Command to read Config. Register
MOVWF COMMAND ; set command byte
CALL read_register ; read the config. register

;*** Mask DP3-DP0 to access two CSRs (four Setups) ***
MOVLW 0x3F ; mask DP3-DP2 low
ANDWF MIDBYTE, 1 ; change DP3 and DP2
MOVLW 0x30 ; mask DP1-DP0 high
IORWF MIDBYTE, 1 ; change DP1 and DP0

MOVLW 0x03 ; Command to write config. register
MOVWF COMMAND ; set command byte
CALL write_register ; Change Depth Pointer Bits

;*** Write to CSRs - note, the ADC expects information for the
; number CSRs indicated in the Depth Bits (DP3-0 in the
; configuration register) so all of the CSRs are
; written at this time ***
AN130REV2 9

AN130
MOVLW 0x05 ; Command to write CSRs
BCF PORTA, CS ; select the ADC
CALL send_byte ; send command byte to ADC

;*** Setup CSR #1 - Setups 1 and 2
; setting both to default value of ’000’
; (A1-A0 = 00, Physical Channel = 1, OWR = 15Hz,
; input V-range = 100mV, Bipolar Measurement mode) ***

MOVLW 0x00 ; all zeros
CALL send_byte ; send first byte
CALL send_byte ; send second byte
CALL send_byte ; send third byte

;*** Setup CSR #2 - Setups 3 and 4
; setting Setup 3 to ’4C0’ and Setup 4 to ’105’
; Setup 3 Settings - (A1-A0 = 01, Physical Channel = 2,
; OWR = 101.1 Hz, input V-range = 100mV, Bipolar)
; Setup 4 Settings - (A1-A0 = 00, Physical Channel = 3,
; OWR = 15 Hz, input V-range = 25mV, Unipolar)

MOVLW 0x4C ; first byte of info
CALL send_byte ; send first byte
MOVLW 0x01 ; second byte of info
CALL send_byte ; send second byte
MOVLW 0x05 ; third byte of info
CALL send_byte ; send last byte

BSF PORTA, CS ; de-select the ADC
RETURN ; exit

;***
10 AN130REV2

AN130
;* Routine - convert
;* Input - none
;* Output - 24-bit Conversion Results in memory locations HIGHBYTE, MIDBYTE
;* and LOWBYTE.
;* The Algorithm itself will only perform a single
;* conversion using Setup 1. For multiple continuous
;* conversions, or for conversions using other setups, the routine
;* must be modified. (see the CS5521/22/23/24/28 data sheet for more info)
;***

convert MOVLW 0x0B ; Command to read Configuration Reg.
MOVWF COMMAND ; Set Command Byte
CALL read_register ; Read Config. Register Information
MOVLW 0xF8 ; Load mask info into W
ANDWF HIGHBYTE, 1 ; Mask MC, LP, and RC to 0
MOVLW 0x03 ; Command to write Configuration Reg.
MOVWF COMMAND ; Set Command Byte
CALL write_register ; Write Config. Register with new info

; *** Receive Conversion Data ***

BCF PORTA, CS ; Enable ADC
MOVLW 0X80 ; Command for conversion using Setup 1
CALL send_byte ; send command byte

poll_sdo2: BTFSC PORTA, SDO; Wait until SDO falls to indicate
goto poll_sdo2 ; conversion completion
MOVLW 0X00 ; Command to start data output
CALL send_byte ; send command
CALL receive_byte ; Receive data...
MOVWF HIGHBYTE ; High Byte 1st..
CALL receive_byte
MOVWF MIDBYTE ; then the Middle Byte..
CALL receive_byte
MOVWF LOWBYTE ; and finally the Low Byte.
BSF PORTA, CS ; Disable ADC
RETURN ; Exit to "main"

;***
AN130REV2 11

AN130
;* Routine - write_register
;* Input - COMMAND, HIGHBYTE, MIDBYTE, LOWBYTE
;* Output - none
;* This subroutine writes to the internal registers of the CS55/2122/23/24/28
;***

write_register BCF PORTA, CS ; Enable ADC
MOVF COMMAND, 0; Load W with Command byte
CALL send_byte ; Send command info
MOVF HIGHBYTE, 0 ; Load W with high byte
CALL send_byte ; Send high byte first..
MOVF MIDBYTE, 0 ; Load W with middle byte
CALL send_byte ; Then the middle byte..
MOVF LOWBYTE, 0 ; Load W with low byte
CALL send_byte ; .. and then the low byte last.
BSF PORTA, CS ; Disable ADC
RETURN ; Exit Subroutine

;***
;* Routine - read_register
;* Input - COMMAND
;* Output - HIGHBYTE, MIDBYTE, LOWBYTE
;* This subroutine reads from the internal registers of the CS5521/22/23/24/28
;***

read_register BCF PORTA, CS ; Enable ADC
MOVF COMMAND, 0; Load W with Command Byte
CALL send_byte ; Send Command info
CALL receive_byte ; receive High byte first..
MOVWF HIGHBYTE ; Move W to HIGHBYTE
CALL receive_byte ; and then the middle byte..
MOVWF MIDBYTE ; Move W to MIDBYTE
CALL receive_byte ; and finally the Low byte.
MOVWF LOWBYTE ; Move W to LOWBYTE
BSF PORTA, CS ; Disable ADC
RETURN ; Exit Subroutine

;***
12 AN130REV2

AN130
;* Routine - send_byte
;* Input - Byte stored in W register
;* Output - none
;* This subroutine sends a byte, one bit at a time, MSB first, to the ADC
;***

send_byte MOVWF SERI_DATA ; Move W to SERI_DATA
MOVLW 0x08 ; Set COUNT to 8
MOVWF COUNT ; to trasnsmit each bit individually

bitloop1: RLF SERI_DATA, 1 ; Rotate SERI_DATA to send MSB first
BTFSC STATUS, CARRY ; If bit is low, skip next instruction
BSF PORTA, SDI ; If high, set SDI
BTFSS STATUS, CARRY ; If bit is high, skip next instr.
BCF PORTA, SDI ; If low, clear SDI
BSF PORTA, SCLK ; Toggle SCLK High
BCF PORTA, SCLK ; Toggle SCLK Low
DECFSZ COUNT, 1 ; Go to next bit unless done
goto bitloop1
BCF PORTA, SDI ; Return SDI to low state
RETURN ; Exit Subroutine

;***
;* Routine - receive_byte
;* Input - none
;* Output - Byte stored in W register
;* This subroutine receives a byte, one bit at a time, MSB first, from the ADC
;***

receive_byte MOVLW 0x08 ; Set COUNT to 8
MOVWF COUNT ; to receive each bit individually

bitloop2: BTFSC PORTA, SDO ; If Bit is low, skip next instruction
BSF STATUS, CARRY ; Otherwise, set carry bit
BTFSS PORTA, SDO ; If Bit is high, skip next instruction
BCF STATUS, CARRY ; Otherwise, clear carry bit
RLF SERI_DATA, 1 ; Rotate Carry into SERI_DATA, MSB first
BSF PORTA, SCLK ; Toggle SCLK High
BCF PORTA, SCLK ; Toggle SCLK Low
DECFSZ COUNT, 1 ; Go to next bit unless finished
goto bitloop2
MOVF SERI_DATA, 0 ; Put received byte into W
RETURN ; Exit Subroutine

;***
AN130REV2 13

AN130
;* Routine - delay
;* Input - Count in W register
;* Output - none
;* This subroutine delays by using a count value stored in register W. This
;* example was tested using a 10MHz clock (E = 2.5 MHz), thus each
;* cycle is 400ns. This delay is approximately equivalent to:
;* (400ns)*(1536)*(count value in W) - A count of 720 provides a 445ms delay
;***

delay MOVWF COUNT ; Move delay value to COUNT
outlp: CLRF TEMP ; TEMP used for inner loop counter
innlp: NOP ; 1 cycle - 400ns

NOP ; 2 cycles - 800ns
NOP ; 3 cycles - 1.2 us
NOP ; 4 cycles - 1.6 us
DECFSZ TEMP, 1 ; Decrement TEMP and loop 256 times
goto innlp
DECFSZ COUNT, 1 ; Decrement COUNT and loop
goto outlp
RETURN ; Exit delay

;***
;* Interrupt Vectors
;***

NOT_USEDRETFIE
ORG 0x04 ; originate interrupt vector here
goto NOT_USED ; no interrupts enabled

end ; end program listing
14 AN130REV2

• Notes •

