
Copyright  Cirrus Logic, Inc. 200
(All Rights Reserved)P.O. Box 17847, Austin, Texas 78760

(512) 445 7222   FAX: (512) 445 7581
http://www.cirrus.com
AN195
Application Note for CDB4812GTR Effects Code
1.0 INTRODUCTION

Cirrus Logic, Inc. has developed a suite of sound
effects for use on the CS4812 DSP + CODEC chip.
The sound effects included in this code release are
targeted for use in electric guitar amplifiers. The
high level of integration offered by the CS4812 de-
vice makes this high quality effects solution attrac-
tive, even in lower cost guitar amplifiers.

Highlighting the suite of effects is a very convinc-
ing spring reverb algorithm recently developed at
Cirrus Logic, Inc. In A/B comparisons, this algo-
rithm has proven to be almost indistinguishable
from the actual mechanical spring reverb.

Rounding out the effects suite are several effects
typically found in expensive guitar amplifiers such
as chorus, flange, tremolo, and delay.

The CS4812 is also capable of providing combina-
tion effects such as chorus + spring reverb, delay +
spring reverb and spring reverb + tremolo.

The CDB4812GTR firmware allows an external
microcontroller to change the DSP effects parame-
ters in real time via an SPI or I2C® serial commu-
nication interface. This application note will
provide the microcontroller programmer with a de-
scription of these application control messages.

1.1 Description of Effects Modules

The effects of the CDB4812GTR firmware are or-
ganized into 2 stages with a flexible signal flow

that allows many different effects to be generated.
Figure 1 shows the audio signal flow.

You can choose from several effects in each stage.
The user may choose one effect from each stage at
a time or bypass a stage altogether.

Caution Although all of the effects can be adjusted 
in real-time, changing parameters may 
produce audible artifacts.

The system designer needs to select which param-
eters to change in real-time and whether to tempo-
rarily mute the audio outputs during parameter
changes.

Table 1 shows the available effects for each stage.

Each effect module has several parameters that
may be adjustable in real-time. These effects are
given in Tables 1 through 8.

STAGE 1 STAGE 2

Chorus/Flange Spring Reverb

Tremolo Delay

Table 1. Effects Modules

Output MixInput Output

Stage 1

Stage 2

Stage 1 Wet

Stage 2
Mix

Stage 1
Mix

Figure 1.  Signal Flow Diagram
1

1 APR ‘01
AN195REV1



AN195
1.1.1 Chorus/Flange

The chorus/flange effects module consists of a de-
lay line with feedback. Figure 2 shows the Cho-
rus/Flange block diagram and Table 2 shows the
parameters that are available for real-time adjust-
ment.

Depth here refers to the delay line length. Rate here
refers to the rate of modulation of the delay line.
Regen here refers to the amount of feedback from
output added back to input. LFO shape here refers
to the delay line modulation waveform shape.
Phase reversal here refers to the phase of the regen
feedback.

1.1.2 Tremolo

The Tremolo effects module consists of an ampli-
tude modulation block. Figure 3 shows the Tremo-

lo block diagram and Table 3 shows the parameters
available for real-time adjustment.

Depth here refers to the ratio of the amplitude mod-
ulation compared to unity gain. A depth of zero
corresponds to no modulation and a depth of 1 cor-
responds to full amplitude modulation. Rate here
refers to the rate of amplitude modulation. The
LFO shape refers to the modulation waveform
shape.

1.1.3 Spring Reverb

The spring reverb module consists of 2 main sub-
blocks, the chirp module and the reverb module.
Figure 4 shows the spring reverb block diagram
and Table 4 shows the parameters available for
real-time adjustment.

Chorus/Flange Parameters

Depth

Rate

Regen

LFO Shape

Phase Reversal

Table 2. Chorus/Flange Parameters

Delay

Regen

Input Output

LFO
- Depth
- Rate
- LFO Shape

- Phase
  Reversal

Figure 2.  Chorus/Flange

Tremolo Parameters

Depth

Rate

Table 3. Tremolo Parameters

Spring Reverb Parameters

Spring Time

Spring Mix

Reverb Time

Reverb Liveness

Table 4. Spring Reverb Parameters

LFO

Input Output

- Depth
- Rate
- LFO Shape

Figure 3.  Tremolo

Chirp

Reverb

OutputInput

-Room Size
-Reverb Time
-Reverb Liveness
-HPF

-Spring Time

Spring Mix

Figure 4.  Spring Reverb
2 AN195REV1



AN195
Spring Time refers to the decay time of the initial
metallic spring or chirp sound. Spring mix refers to
the relative amount of chirp sound relative to stan-
dard reverb sound. Reverb liveness refers to the
high frequency decay rate in the standard reverb
sound. Room Size refers to the parameter that con-
trols the apparent size of the modelled room. High
pass filter refers to the output filter which reduces
the high frequency content of the reverb part of the
module.

1.1.4 Delay

Figure 5 shows the Delay effects block diagram.
This module consists of a long delay block with
feedback. Table 5 shows the parameters available
for real-time adjustment.

Delay here refers to the length of the delay line. Re-
gen here refers to the relative amount of feedback
from output to input.

1.1.5 Mixer

There are 3 mixers in the overall effects processing
signal chain. The main signal flow diagram in Fig-
ure 1 on page 1 shows the mixer locations and

Table 6 shows the mixer parameters available for
real-time adjustment.

1.1.6 Signal Flow Control and LFO 
Shapes Selection

Signal flow options are controlled via bits in the
Routing Register. Table 7 shows the bit fields in
this register.

Only one effect from each stage can be selected at
a time. Error checking is not done by the applica-
tion code and is the responsibility of the host. 

Caution Failure to obey the routing rules can lead to 
undesired results.

Room Size

High Pass Filter

Delay Parameters

Delay

Regen

Table 5. Delay Parameters

Spring Reverb Parameters

Table 4. Spring Reverb Parameters (Continued)

Delay

Regen

Input Output

Figure 5.  Delay

Mixer Parameters

Stage 1 Wet/Dry Mix

Stage 2 Mix

Output Wet/Dry Mix

Table 6. Mixer Parameters

Bit Description

0 Reserved (write as 0)

1 Delay Module (0/1 = disable/enable)

2
Spring Reverb Module 
(0/1 = disable/enable)

3 Reserved (write as 0)

4
Chorus/Flange Module 
(0/1 = disable/enable)

5
Tremolo Module 

(0/1 = disable/enable)

6
Chorus Feedback Phase Reversal

(0/1 = disable/enable)

7
Stage Swap

(0/1 = disable/enable)

8
Input Mute

(0/1 = disable/enable)

9 Reserved (write as 0)

10 Reserved (write as 0)

11 LFO shape bitfield 0

12 LFO shape bitfield 1

13-14 Reserved

15 Invert Final Outputs

16-23 Reserved

Table 7. Routing Flag Register Bits
AN195REV1 3



AN195
The Stage Swap bit swaps the effect processing
blocks in stage 1 and stage 2. All other parameters
such as Stage 1 Mix and Stage 2 mix do not get
swapped.

The input mute bit mutes the input signal rather
than the output signal. This action allows the en-
abled effects to decay smoothly.

The LFO shape is meaningful for Chorus/Flange
and Tremolo effects. For Chorus/Flange, the LFO
shape determines the delay modulation waveform.
For Tremolo, the LFO shape determines the ampli-
tude modulation waveform.

The LFO shape is coded in a 2 bit field in the Rout-
ing Flag register bits 11 and 12. Table 8 shows the
LFO shapes that are available.

1.2 Application Messaging Protocol

Application messaging between the micro-control-
ler can use either the SPI or I2C serial interface.
The physical messaging syntax is different for the
SPI and I2C and is available in the CS4812 Data
Sheet. There are several accessible registers in the
control port. The microcontroller will address mul-
tiple control port registers during the boot process,
but actual application messaging will only involve
sending message bytes to the DSP input control
port register which has a MAP address of 0x10.
Further detail about the MAP register is given in
the CS4812 Data Sheet. The boot process is also
described in the CS4812 Data Sheet as a flow chart,
but the specific procedure will also be given as mi-
crocontroller C code for the user’s convenience.

Every application message sent to the CS4812 con-
sists of three bytes. The first data byte is the op-
code, specifying the Audio Effects Parameter. The
following 2 bytes are the data to be written to the
specified parameter. The parameter can take two
forms, depending on the opcode you specify. The
parameter can either be a positive signed fraction
with range 0x0000-0x7FFF, representing 0.0 to 1.0
or an unsigned hex integer with range 0x0000-
0xFFFF. 

Caution This outlined protocol is rigid and must be 
followed without exception – any departure 
from the protocol can result in improper 
chip operation.

The protocol does not implement error checking or
flow control. Table 9 shows a list of effects and
their respective opcodes.

Bit 12 Bit 11 LFO Shape

0 0 Sine Wave

0 1 Triangle

1 0 Inverted Rectified Sine

1 1 Trapezoid

Table 8. LFO Shape Bits

Effect Opcode Range

Output Wet/Dry Mix 0x00 0x0000-0x7FFF

Spring Level 0x01 0x0000-0x7FFF

Reverb Liveness 0x02 0x0000-0x7FFF

Reverb Time 0x03 0x0000-0x7FFF

Spring Time 0x04 0x0000-0x7FFF

Reverb HPF 0x05 0x0000-0x7FFF

Reverb Room Size 0x06 0x0000-0x7FFF

Chorus Rate 0x07 0x0000-0x7FFF

Chorus Depth 0x08 0x0000-0x7FFF

Chorus Delay 0x09 0x0000-0x7FFF

Chorus Regen 0x0a 0x0000-0x7FFF

Tremolo Rate 0x0b 0x0000-0x7FFF

Tremolo Depth 0x0c 0x0000-0x7FFF

Delay Time 0x0d 0x0000-0x7FFF

Delay Regen 0x0e 0x0000-0x7FFF

Routing Register 0x0f 0x0000-0xFFFF

Stage 1 Wet/Dry Mixl 0x10 0x0000-0x7FFF

Stage 2 Mix 0x11 0x0000-0x7FFF

Table 9. Effect Parameter Opcodes and Ranges
4 AN195REV1



AN195
1.2.1 Application Messaging Example

An application messaging example is given below to illustrate a complete host-boot procedure in pseudo-
code. The microcontroller should observe a 50 microsecond byte-to-byte latency to prevent corruption of
the DSP input buffer. Please note that this pseudo-code example is believed to be correct but is subject to
change.

//Start of Program
int Chorus_Regen_Value[3] = {0x0A, 0x40, 0x00};
int *ptr;

while (TRUE) {
// Assert DSP Reset HW 
Signal(RST, low);
// De-assert DSP Reset HW 
Signal(RST, high);

// Configure the converters and clocks
//LJ-24 bit, DSCK=1, SCK/Fs=64
Write_CP_Byte( 0x0d, 0xab);
//DAC from DSP
Write_CP_Byte( 0x06, 0x90);
//DSP=16.384 MIPS,
Write_CP_Byte( 0x03, 0x80)
//give PIO control to DSP;
Write_CP_Byte( 0x0f, 0x06);

// Send Control Port Configuration
// Set /DSPRS bit in CP reg 4 to 0
Write_CP_Byte( 0x04, 0xa4);
// Set DSPBOOT bit in CP reg 4 to 1
Write_CP_Byte( 0x04, 0xa5);
// Set /DSPRS bit in CP reg 4 to 1
Write_CP_Byte( 0x04, 0xa7);

// Prepare DSP for Application Download
Write_CP_Byte( 0x10, 0x00);
Write_CP_Byte( 0x10, 0x00);
Write_CP_Byte( 0x10, 0x04);

// Wait for Boot Ready response from DSP with 0.5 second time-out
Time = 0;
while (Read_Signal(nREQ) && (Time < 0.5)) {}
if ((Time >= 0.5) continue;
if (Read_CP_Byte( 0x1b) != 0x01) continue;

// Download Application Code
Send_CP_Msg(0x10, Application_Download_Image, Download_Image_Size);

// Wait for DSP Boot Success response from DSP with 0.5 second time-out
Time = 0;
while (Read_Signal(nREQ) && (Time < 0.5)) {}
if (Time >= 0.5) continue;
if (Read_CP_Byte( 0x1b) != 0x02) continue;

// Acknowledge DSP Boot Success
Write_CP_Byte( 0x10, 0x00);
Write_CP_Byte( 0x10, 0x00);
Write_CP_Byte( 0x10, 0x05);

// Clear DSPBOOT bit in CP reg 4
Write_CP_Byte( 0x04, 0xa6);

// Send Desired Application Parameter Configuration
Send_CP_Msg(0x10, Application_Parameter_Image, Parameter_Image_Size);

// Example showing setting of Chorus_Regen_Value to 0.5.
Send_CP_Msg(0x10, Chorus_Regen_Value, 3);
AN195REV1 5



AN195
break;
}

// Main Program Loop

while (TRUE) {
// Read Control Input Switches
Read_Control_Inputs(*Control_Parameters);
// Send Commands to DSP
if (Control_Parameter_Change) {
Send_CP_Msg(0x10, Application_Parameter, 3)
}
}
// Subroutines

// Send single byte message to DSP Control Port
void Write_CP_Byte(byte MAP, byte Data) {
CP_Start_Condition();
Send_Byte(Chip_Address);
Send_Byte(MAP_Byte);
Send_Byte(Data);
CP_Stop_Condition();
}
// Send multi-byte message to DSP Control Port
void Send_CP_Msg(byte MAP, byte *Data_Ptr, int Byte_Count) {
int i, *p = Data_Ptr;
CP_Start_Condition();
Send_Byte(Chip_Address);
Send_Byte(MAP_Byte);
for ( i=0; i<Byte_Count; i++)0x
Send_Byte(*p++);
CP_Stop_Condition();
}

// These are low level routines that are specific to the micro-controller and the SPI or I2C 
interface used.
void Send_Byte (int Byte) {....}
void CP_Start_Condition(void) {...}
void CP_Stop_Condition(void) {...}
6 AN195REV1



• Notes •




