
Semiconductor Group 03.97, Rel. 01

Microcontrollers
ApNote AP1611

o additional file
APXXXX01.EXE available

Interrupted MUL / DIV

In order to provide fast interrupt response, Multiply/Divide instructions in the
microcontrollers of the C16x family are interruptable.

C. Meinold / Siemens HL MCB PD

Interrupted MUL / DIV

Semiconductor Group 2 of 6 AP1611 03.97

1 Interrupted MUL / DIV Instructions .. 3

2 Detailled Explanation ... 5

3 Handling of interrupted MUL/DIV Instructions
by Task Schedulers of Real-Time Operating Systems .. 6

AP1611 ApNote - Revision History
Actual Revision : Rel.01 Previous Revison: Rel. none
Page of
actual Rel.

Page of
prev. Rel.

Subjects changes since last release)

1 Interrupted MUL / DIV Instructions

Interrupted MUL / DIV

Semiconductor Group 3 of 6 AP1611 03.97

In order to provide fast interrupt response, Multiply/Divide instructions in the
microcontrollers of the C16x family are interruptable. Therefore, in each interrupt service
routine which has interrupted a MUL/DIV instruction and which also uses MUL/DIV, the
status of registers MDH, MDL, and MDC must be saved/restored. In addition, MDC must
be cleared to be correctly initialized for a MUL/DIV instruction which is executed in this
interrupt service routine.

In the following, two possible software implementations will be compared.

Version 1 (unconditional):

Save: SCXT MDC, #0h ; save & clear MDC
PUSH MDH
PUSH MDL

Start: ; perform multiply/divide operation
....

Restore:
POP MDL
POP MDH
POP MDC

Version 2 (conditional):

Save: JNB MDRIU, Start ; test MDRIU for MDH/MDL in use
SCXT MDC, #10h ; save & clear MDC, leave MDRIU = 1
PUSH MDH
PUSH MDL ; implicitly sets MDRIU = 0
BSET Saved_Task_xy ; task specific indication of stored

state
Start: ; perform multiply/divide operation,

implicitly sets MDRIU = 1
....

Restore:
JNB Saved_Task_xy , Done
POP MDL ; implicitly sets MDRIU = 1
POP MDH
POP MDC ; MDRIU = 1 in MDC poped from stack
BCLR Saved_Task_xy

Done:

Note :

For both of the versions shown above, it is assumed that an interrupt routine which has
interrupted a MUL/DIV instruction will return to the interrupted MUL/DIV with RETI at the
end of the service routine, i.e. no stack manipulations of the return address have been
performed. For the special case where e.g. a task scheduler in a real time operating
system modifies the return address see section 'Handling of interrupted MUL/DIV by Task
Schedulers ..'.

The following table compares required code space and estimated execution time
overhead of the save/restore sequences.

Interrupted MUL / DIV

Semiconductor Group 4 of 6 AP1611 03.97

Code
Size

State
Saved

Estimated Execution
Time

Internal ROM/Flash

Estimated Execution
Time

External Bus
Version 1 14

bytes
YES 6 cycles 7 word bus cycles

Version 2, MDRIU = 0 26
bytes

NO 4 (5)1) cycles 6 (4)2) word bus
cycles

Version 2, MDRIU = 1 26
bytes

YES 10 cycles 13 word bus
cycles

Internal ROM/Flash: 1 cycle = 4 TCL (= 100 ns @ 20 MHz internal system clock)
External Bus: 1 bus cycle = f(bus type, MCTC, MTTC, ALECTL)

Notes : 1) 5 cycles if instruction at label Done is double word instruction at odd word
address

2) 4 word bus cycles if multiplexed bus with Tristate Waitstate (MTTC = 0) is
used

Version 1 always pushes 3 words of status information on the system stack each time an
interrupt (which will also use MUL/DIV) occurs. This sequence may be interrupted after
any instruction, even if the status of the interrupted MUL/DIV has not been completely
saved, since any interrupting routine includes an identical save sequence. The order in
which the registers are saved is uncritical.

Version 2 only pushes 3 words of status information if a MUL/DIV instruction was actually
interrupted. If this sequence is interrupted before the status of the interrupted MUL/DIV is
completely saved, the MDRIU flag which is still set will signal to the interrupting routine
that it must save/restore the status of the interrupted MUL/DIV. In this instruction
sequence, the order in which the registers are saved is important: the PUSH MDL
instruction must be the last instruction in the save sequence since it clears MDRIU. Under
worst case conditions (each interrupt routine which uses MUL/DIV interrupts another
routine's MUL/DIV), the stack space required by the 2 versions is identical.

C-compilers for the C16x family may choose implementations which are similar to the
sequences described above, depending whether optimization for code size or execution
speed is performed.

Interrupted MUL / DIV

Semiconductor Group 5 of 6 AP1611 03.97

2 Detailled Explanation

Two status flags are associated with the multiply/divide logic of the C16x microcontrollers:
MDRIU (Multiply/Divide Registers In Use) in register MDC
MULIP (Multiply In Progress) in register PSW

The purpose of flag MDRIU is to indicate to interrupt service routines that the MDL/MDH
registers are in use by another routine, and that these registers must be saved before a
new MUL/DIV is started in the interrupt routine, and restored before return to the
interrupted program section. MDRIU is set to '1' either when MDL or MDH is written to by
software, or when a MUL/DIV instruction has been started. MDRIU is reset to '0' when
MDL is read by software. This means that when MDRIU = 1, either MDL/MDH have been
initialized with the dividend before a Divide instruction, or they contain intermediate
results when a MUL/DIV has been interrupted, or they contain the final result of a
MUL/DIV operation. When accessing MDL/MDH, MDH should be read before MDL to
guarantee the correct semaphore function of the MDRIU flag with respect to interrupts.

After reset, and after any completed MUL/DIV operation, register MDC is set to 0000h. In
case a MUL/DIV instruction has been interrupted, however, register MDC contains
additional status information about how to restart the interrupted instruction (e.g. in which
cycle). In this case, the contents of MDC must be saved/restored along with MDH/MDL in
an interrupt routine which also uses MUL/DIV. In addition, register MDC must be cleared
before a new MUL/DIV is started in an interrupt routine, otherwise a wrong result will be
generated. Although the case that a MUL/DIV has been interrupted could simply be
identified by examining the MULIP flag in the PSW, it is not worth the overhead of testing
this flag and only saving/restoring MDC when MULIP = 1. Therefore, this option is not
considered in the program examples, and MDC is always saved/restored when MDL/MDH
are saved/restored.

The purpose of the MULIP flag is to properly restart an interrupted Multiply instruction.
When a MUL/DIV instruction is interrupted, the CPU automatically saves the PSW, IP
(and CSP if segmentation is enabled) on the internal system stack, and then sets MULIP
= 1 in the PSW of the task which has interrupted the MUL/DIV instruction. The return
address (IP/CSP) saved on the stack in this case is the address of the interrupted
MUL/DIV instruction. When the RETI instruction is executed, the current state of MULIP
(before it is restored from the stack) is tested. If MULIP = 1, the interrupted MUL/DIV will
automatically be restarted and continued from where it was interrupted.

When an interrupt occurs after an instruction other than MUL/DIV, the current PSW
contents (including the current state of MULIP) is saved on the stack, and the MULIP flag
in the PSW of the interrupting task will be set to '0'.

Exception:
When a (higher priority) interrupt occurs immediately after a RETI instruction, and the
state of MULIP was '1' in the cycle before the RETI instruction, MULIP will again be set to
'1' in the PSW of the interrupting task. This is the special case where a MUL/DIV had
been interrupted, the interrupting task has been completed, and the interrupted MUL/DIV
is about to be restarted, but a higher priority interrupt was generated while the RETI
instruction was processed.

Interrupted MUL / DIV

Semiconductor Group 6 of 6 AP1611 03.97

In the first cycle of a restarted Multiply instruction, (only) the multiplier is read again from
the specified register. This situation is different from the case where a Multiply instruction
is originally fetched from memory and started from the beginning: in this case, both the
multiplicand and the multiplier are read in the first cycle. As long as an interrupted Multiply
instruction is returned to by the corresponding RETI instruction, the CPU automatically
handles interrupt nesting correctly via the system stack, and no special actions are
required by the user software.

3 Handling of interrupted MUL/DIV Instructions by Task Schedulers of Real-
Time Operating Systems

Special care of the correct handling of the MULIP flag must be taken by task schedulers
when the return address is modified on the system stack before a RETI is performed to
realize a task switch:

Since the MULIP flag in the PSW of the interrupting task (in this case: interrupt from task
scheduler) is set according to the status of the (last) MUL/DIV instruction (interrupted:
MULIP = 1/not interrupted: MULIP = 0) of the interrupted task, it must be considered as
part of the task context of the interrupted task. Therefore, it must be saved/restored
accordingly by the task scheduler together with the rest of the task context.

The following problems may occur if MULIP in the current PSW and/or the return address
on the system stack have been manipulated by software, and then a RETI istruction is
executed:

- If MULIP = 1 in current PSW and the instruction which is returned to by RETI is not a
Multiply instruction, and this instruction uses a GPR (R0 .. R15/RL0 ..RH7), the wrong
register may be selected and wrong results may be generated.

- If MULIP = 0 in current PSW while RETI returns to an interrupted Multiply instruction,
wrong multiply results will be generated.

