
Copyrig
(P.O. Box 17847, Austin, Texas 78760

(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
\

CRD5460-1
Power Meter Reference Design Board and Software
Preliminary Product Information This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.

Features

�Operates with PC or Stand-Alone without PC
�On-board LCD Data Display or Optional

Electro-Mechanical Totalizer
�Lab Windows/CVITM PC Evaluation Software

– Register Setup & Chip Control
– Current, Voltage and Energy Display
– Power Factor Analysis

�Non-Volatile energy accumulation via
EEPROM

�Non-Volatile Calibration Values via EEPROM
�Current Transformer and

VoltageTransformer Interface
�Header for optional external Analog input
�RS-232 Serial Communication with PC
�Optional Peripheral Daughter Board Header

General Description
The CRD5460 is a stand-alone reference design intend-
ed to demonstrate the functionality and performance of
the CS5460. It is recommended that the CS5460 Data
Sheet be used along with this document. The CRD5460
is intended to be a starting point for designers who are
developing Power Metering applications using the
CS5460 chip.

The CRD5460 includes firmware that can monitor and
display energy, RMS current/voltage, and power factor.
An optional mechanical totalizer can be substituted for
the LCD display for those applications involving only the
non-volatile accumulation of energy usage. The
CRD5460 functions in a Stand-Alone Mode, or with a PC
connected. PC-mode is included as a diagnostic tool.

ORDERING INFORMATION
CRD5460-1 Reference Design Board

IIN-

IIN+

DGNDVA-

VIN+

VIN-

VREFIN

VREFOUT

CS5460

0.1 µF

XIN

XOUT

RESET

SDI

SDO

SCLK
CS
INT

EDIR

EOUT

VA+ VD+ Vp

Port 2

Port 0

SI

SO

CKL

INTO

P1.1

P1.2

TX

RX

Header

Daughter
Board

L

N

L

N

8052
µC

RB

LINE 2500:1 To
Service

RS232

LINE

0.1 µF 0.1 µF

10 Ω
LCD

Current
Transformer

Voltage
Transformer

Power Supply

Mechanical
Totalizer

Optional
analog
Input

Header
1

ht Cirrus Logic, Inc. 2000
All Rights Reserved)

MAR ‘00
DS279RD2

CRD5460-1
TABLE OF CONTENTS
1. INTRODUCTION ... 5

2. HARDWARE ... 5
2.1 General Description ... 5
2.2 Phase 0 Section ... 5

2.2.1 AC Power ... 5
2.2.2 Line Voltage Sense .. 9
2.2.3 Line Current Sense .. 9
2.2.4 Input Filtering .. 9
2.2.5 Bypassing ... 9
2.2.6 Oscillator .. 9
2.2.7 Power Monitor .. 10

2.3 Digital Section .. 10
2.3.1 RS-232 Interface .. 10
2.3.2 Reset Circuit ... 10
2.3.3 Non-Volatile Memory .. 10
2.3.4 Microcontroller .. 10

2.4 Phase1/Phase2 Section .. 10

3. GENERAL OPERATION .. 11
3.1 Overview of the CS5460 .. 11
3.2 Modes of Operation ... 11

3.2.1 S3 DIP Switch .. 11
3.2.1.1 Stand-Alone Mode .. 11
3.2.1.2 PC Mode ... 11

3.2.2 Jumper Settings ... 14

4. PC-MODE SOFTWARE .. 16
4.1 Using the PC-Mode Software .. 17
4.2 Selecting and Testing a COM Port .. 17
4.3 Register Access in the Setup Window ... 17

4.3.1 Refresh Screen Button ... 18
4.3.2 CS5460 Crystal Frequency .. 18
4.3.3 Configuration Register .. 18
4.3.4 Clear Status Register Button .. 18
4.3.5 Exit PC Mode Button .. 18

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

IBM, AT and PS/2 are trademarks of International Business Machines Corporation.
Windows is a trademark of Microsoft Corporation.
Lab Windows and CVI are trademarks of National Instruments.
SPITM is a trademark of Motorola.
MicrowireTM is a trademark of National Semiconductor.

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic website or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.
2 DS279RD2

CRD5460-1
4.3.6 Mask Register / Status Register ... 18
4.3.7 Cycle Count / Pulse Rate / Time Base Registers ... 19
4.3.8 Offset / Gain Registers ... 19
4.3.9 Performing Calibrations .. 19

4.4 Conversion Window ... 19
4.4.1 Continuous Conversions Button ... 19

5. OVERFLOW ERROR: REVS A-C .. 19

6. CALIBRATION ... 20
6.1 Theory of Stand-Alone AC Calibration .. 20

6.1.1 Source of Calibration Input Signals .. 20
6.1.2 Level of Calibration Input Signals ... 20
6.1.3 High-Pass Filters Enabled .. 21
6.1.4 CS5460 Input Amplifiers .. 21
6.1.5 AC-Calibration Diagram ... 21

6.2 Procedure for Stand-Alone AC Calibration .. 21
6.3 Saving Calibration Results .. 22
6.4 Interpreting Calibration Results ... 23

7. CUMULATIVE ENERGY READING ... 23

8. ELECTROMECHANICAL COUNTER .. 24

9. RESETTING THE CRD5460 ... 25

10. COMMUNICATION INTERFACE OPTION .. 26

11. THREE-PHASE OPERATION .. 26

12. SOURCE CODE LISTING .. 27

13. PCB LAYOUT ... 27

14. BILL OF MATERIALS .. 34

15. MICROCONTROLLER SOURCE CODE ... 36
15.1 “nopt” ... 36
15.2 “early” .. 50
15.3 “Init3ph” ... 54
15.4 “Ins3ph” ... 55
15.5 “lcd3” .. 55
15.6 “longdiv” ... 56
15.7 “mult24” ... 58
15.8 “nopt prototypes” ... 59
15.9 “rdee” ... 61
15.10 “rdip” .. 62
15.11 “receive” ... 63
15.12 “rxser” .. 63
15.13 “transfer” .. 64
15.14 “txser” .. 64
15.15 “wr3ph” .. 64
15.16 “Wree” .. 65
DS279RD2 3

CRD5460-1
LIST OF FIGURES
Figure 1. Phase 0 Section ... 6
Figure 2. Digital Section .. 7
Figure 3. Phase 1/2 section... 8
Figure 4. 87C52 Microcode Flow Chart... 14
Figure 5. Start-Up Window .. 15
Figure 6. Setup Window .. 15
Figure 7. Conversion Window ... 16
Figure 8. Typical Calibration Setup ... 27
Figure 9. Silkscreen... 28
Figure 10. Silkscreen Bottom .. 29
Figure 11. Circuit Side... 30
Figure 12. Solder Side... 31
Figure 13. Layer Three.. 32
Figure 14. Bottom Side.. 33

LIST OF TABLES
Table 1. Modes of Operation Summary ... 12
Table 2. Header/Jumper Descriptions .. 13
Table 3. Bill of Materials ... 34
4 DS279RD2

CRD5460-1
1. INTRODUCTION

The CRD5460 power meter reference design board
provides a quick means of prototyping with the
CS5460 Power/Energy Measurement IC. The
CRD5460 board comes populated with a CS5460
Power/Energy IC, an 87C52 micro with firmware,
an LCD display module, an EEPROM, current
transformer, and a RS-232 level shifter. The refer-
ence design is supplied with an external step down
transformer capable of providing power to the
board as well as a voltage-sense input to the
CS5460 chip. The CRD5460 Reference Design is
capable of functioning in a stand-alone mode, but
can be interfaced to an IBM™ compatible PC via an
RS-232 interface. To accomplish this, the board
comes equipped with the necessary 87C52 micro-
controller firmware and a 9-pin RS-232 cable
which physically interfaces the reference design
board to the PC. The 87C52 controls the serial
communication between the CRD5460 and the PC,
enabling quick and easy access to all of the
CS5460’s registers and functions. Additionally,
analysis software for the PC is provided to allow
for easy access to the internal registers of the
CS5460, and to provide a means to display the
computational results that can be read from the
CS5460.

2. HARDWARE

2.1 General Description

The schematic (Figures 1, 2 and 3) is partitioned
into three main sections: I) Phase 0 with sensors in-
cluded, II) Digital processor with LCD display, and
III) Optional Phase1/Phase2 section for monitoring
power in three-phase systems. The Phase 0 section
consists of the CS5460, voltage regulator, and cur-
rent transformer. The digital section consists of the
87C52 microcontroller, 1 64x16 EEPROM, the
hardware switches, the reset circuitry, LCD module
and the RS-232 interface. The Phase1/Phase2 sec-

tion contains the necessary circuitry for support of
up to two additional CS5460 chips. A center-
tapped step-down transformer is provided as a
source of AC for power and voltage sensing. An
optional 3-terminal header (J1) is available for
user-supplied AC power input. Acceptable AC in-
put range to J1/J2 is 14 - 25 VAC, center-tapped.

2.2 Phase 0 Section

The CS5460 is implemented to accurately measure
and calculate: Energy, IRMS, and VRMS when oper-
ating from a 4.096 MHz crystal.

2.2.1 AC Power

As shown in Figure 1, the reference design is pow-
ered by +5VD voltage line that is provided from the
voltage regulator U2. This regulator is powered by
an external AC voltage transformer that is connect-
ed via header J2 or optionally via the screw-termi-
nal header J1. A full-wave rectifier (D1 and D2) is
used with a LM7805 voltage regulator to create the
+5VD supply voltage.

NOTE: Special CRD5460 Voltage Transformer: There
are two ways to plug the Tamura 818A_0001 voltage
transformer (supplied with the CRD5460) into a power
outlet. One way is correct. One way is incorrect and will
lead to inaccurate results. Correct connection to the
power line can be verified by measuring the AC voltage
between external earth ground (third wire in power out-
let) and AGND on the CRD5460 board. [Before making
this measurement, make sure that the RS-232 cable
from the PC is DISCONNECTED from the CRD5460’s
RS-232 port.] If the transformer is connected correctly,
there will be near zero volts AC between earth and
AGND. If the voltage transformer is connected incor-
rectly, there will be a weak 75 VAC that is measurable
between the CRD5460’s AGND and earth ground.

The CRD5460 Voltage Transformer does not have to be
used with the CRD5460. In fact, the Tamura 818A-0001
voltage transformer should never be exposed to more
than 150 VAC on the inputs. Therefore, in areas where
the nominal line voltage is more than 150VAC, the user
must find a suitable transformer, which can be con-
nected to the available J1 header. The output should of
this transformer should be 14-25VAC, center tapped.
DS279RD2 5

C
R

D
5460-1

6
D

S
279R

D
2

Figure 1. Phase 0 Section

C
R

D
5460-1

D
S

279R
D

2
7

Figure 2. Digital Section

C
R

D
5460-1

8
D

S
279R

D
2

Figure 3. Phase 1/2 section

CRD5460-1
2.2.2 Line Voltage Sense

The AC voltage from J1/J2 is also used to supply
the required voltage sense input to the voltage
channel of the CS5460. In order to provide bipolar
voltage levels at the VIN+ and VIN- inputs, the
voltage transformer has a center-tapped output
which are returned to AGND. Each side of the
voltage input is then scaled through a simple resis-
tor-divider network formed by R3/R1 and R4/R2.
R1 and R2 are both adjustable so that the differen-
tial voltage-channel inputs to the CS5460 can be
evenly matched. (More about this later). Headers
J6 and J7 provide options for sensing the voltage
from an external line-voltage sensor which can be
connected via J8. J6 and J7 also have options for
connections to AGND which can be used during
the power meter’s calibration process.

NOTE: Potentiometers R1 and R2 have been provided
on the CRD5460-1 Reference Design Board for conve-
nience. It is recommended that production designs use
fixed resistors for stability and reliability. The same can
be said for R5, which is discussed next.

2.2.3 Line Current Sense

To monitor the line current, there is a PC-mounted
current transformer (T1) with adjustable sense re-
sistor (R5). This configuration provides an isolated
means of measuring the current to the load. The
user must feed one of the two wires that connect
LINE to LOAD straight through T1 one time (no
loops). Either neutral side or line side can be used.
Jumper headers J4 and J5 are provided to allow for
optional inputs from external current sensors via
header J8. Note that resistors R6 and R7 are used to
provide equal ground-referenced differential input
levels at the Iin+ and Iin- pins of the CS5460 from
the sensed current. While the common-mode level
of the voltage and current inputs does not have to
be at AGND, this configuration was chosen to sim-
plify the reference design.

Note that with no current present in the current
transformer 1/2-turn winding, a display of negative

energy is possible and correct. This is because with
no transformer current present, the transformer’s
output voltage will be hovering right above or right
below 0 V. And so the voltage on the current-chan-
nel input may easily fall just below AGND poten-
tial, or may just as easily rise just above AGND.

NOTE: After verifying that the voltage transformer is
plugged into the wall correctly, the user should thread
the line-current loop through the current transformer.
The user might thread the current loop wire in the cor-
rect or incorrect direction. If, after power is turned on,
and WITH SIGNIFICANT CURRENT IN THE LINE, the
CRD5460 LCD display indicates “NEG ENGY” (nega-
tive energy), then the line-current loop wire is threaded
in the wrong direction.

NOTE: The CRD5460’s maximum input current level for
the on-board current transformer (T1) is 5A (RMS). For
loads greater than 5A (RMS), an external sensor must
be used.

2.2.4 Input Filtering

Note that for both the voltage channel (VIN+/VIN-)
and the current channel (Iin+/Iin-), a simple RC net-
work filters the sensors’ outputs to attenuate com-
mon-mode/differential-mode interference that
might be induced in the sensor leads. For the voltage
channel, the 3 dB corner of these filters is ~25.0kHz
(common-mode) and ~26.6kHz (differential mode).
For the current channel, the 3 dB corner of these fil-
ters is ~17.26kHz (common-mode) and ~17.6kHz
(differential mode). These filter networks are de-
fined by R8, R9, C9, C21, and C22 for the voltage
channel, and by R10, R11, C10, C24 and C25 for the
current channel.

2.2.5 Bypassing

Bypass capacitors C19, C20, and C23 are used to
stabilize the voltage and de-couple high-frequency
noise respectively on the VD+, VREFIN, and VA+
input pins.

2.2.6 Oscillator

Y1, C11, and C12 form the oscillator input circuit-
ry. The clock signal that is generated by the
DS279RD2 9

CRD5460-1
CS5460 is wired out of the CPUCLK pin to serve
as a synchronized clock source for other CS5460s
that might be working in parallel (such as a three-
phase application).

2.2.7 Power Monitor

R30 and R31 form a resistor-divider, and the ratio
of their values was chosen to match the voltage
threshold point of the PFMON input pin. If the
voltage level at the input of the voltage regulator
circuitry becomes too low (i.e., if it goes below
threshold), the PFMON input will trip and set a flag
in the CS5460 status register indicating that power
is about to fail.

2.3 Digital Section

Figure 2 illustrates the schematic of the digital sec-
tion. It contains the microcontroller, mode dip-
switches, RS-232 interface chip, a 64x16 EE-
PROM, and an LCD module. The mode dip-
switches aid in setting the different modes of oper-
ation on the reference design board.

2.3.1 RS-232 Interface

The RS-232 interface is configured to communi-
cate at 9600 baud, no parity, 8-bit data, and 1 stop
bit. The microcontroller interfaces to the RS-232
chip (U1) through the RXD and TXD lines. U1 pro-
vides the RS-232 voltage levels necessary for inter-
facing to external PC or other devices.

2.3.2 Reset Circuit

The network formed by D4, R13, R14, S1, U5 and
C16 is used to generate the hardware RESET sig-
nal, which can be initiated by depressing the S1
button or by cycling power. S1 is located on top-
side of PCB. Pressing S1 will asynchronously reset
the reference design circuit. Reset is described in a
later section called 9. Resetting the CRD5460.

2.3.3 Non-Volatile Memory

U6 is a serial EEPROM which is used to store cal-
ibration data for the CS5460. In a metering applica-
tion, calibration data can be established during the
manufacture of each power meter, stored in the EE-
PROM, and then recalled at a later time when the
circuit is powered up. The EEPROM also retains
a cumulative energy sum to record the total energy
that is used over an extended period of time.

2.3.4 Microcontroller

The U4 microcontroller uses three of its four 8-bit
peripheral interfaces (P0-, P1-, and P2-). The P0-
peripheral lines can be used for communication to
an external device via the daughter board header,
J9. The P1- peripheral lines are dedicated for inter-
facing to the CS5460 power chip(s). The P2- lines
(pins 24-31) are used to drive output information to
the LCD1 liquid crystal, as well as to periodically
interrogate the status of the S3 DIP switch. The S3
DIP switch is used to select one of several different
operating modes. The microcontroller derives its
clock from a 20.0 MHz crystal.

2.4 Phase1/Phase2 Section

Figure 3 shows the optional second and third phas-
es to allow the reference design to measure poly-
phase loads. The basic configuration of the extra
CS5460’s is very similar to the configuration dis-
cussed earlier (for Phase 0). The required voltage
and current sensors for the one or two phases would
need to be mounted external to the reference design
and connect via the J8 header. The 3-Phase appli-
cation is described in more detail in the section ti-
tled 11. Three-Phase Operation.

The schematic also shows the optional mechanical
totalizer, that can replace the LCD module when a
low cost, non-volatile display is required.
10 DS279RD2

CRD5460-1
3. GENERAL OPERATION

3.1 Overview of the CS5460

The CS5460 chip is the heart of the CRD5460
Power Meter Reference Design. The CS5460 is a
highly integrated device, containing dual ADCs
with a computational unit. The CS5460 and
CRD5460 data sheets should be read thoroughly
and understood before attempting to use the
CRD5460 reference design. The CS5460 contains
a programmable gain amplifier (PGA), two ∆Σ
modulators, two high rate filters, an on-chip refer-
ence, and power calculation engine to compute En-
ergy, VRMS, IRMS, and Instantaneous Power. The
PGA sets the input levels of the current channel at
either 30 mVRMS or 150 mVRMS (for VREFIN =
2.5 V). The on-chip reference can provide the nec-
essary 2.5 V reference. This output (VREFOUT),
along with a 0.1 µF capacitor, is used to supply the
VREFIN pin with 2.5 V. The ∆Σ modulators and
high rate digital filters allow the user to measure in-
stantaneous voltage, current, and power at an out-
put word rate of 4000 Hz when a 4.096 MHz clock
source is used. Measurement of IRMS, VRMS, and
energy takes place once per second with the default
cycle count register setting of 4000.

3.2 Modes of Operation

The CRD5460 Power Meter has two main modes
of operation: Stand-Alone Mode and PC Mode.
Stand-Alone Mode supports several different oper-
ating modes. These modes are controlled by the S3
DIP switch. Stand-Alone Mode allows the
CRD5460 to operate by itself, without a computer.
The various readings are output to the on-board liq-
uid-crystal display. PC Mode allows the user to op-
erate the power meter from a PC that interfaces to
the power meter via the RS-232 connector. The
CRD5460 Power Meter was designed so that the
user can switch back and forth between PC Mode
and Stand-Alone Mode while the meter is operat-
ing.

3.2.1 S3 DIP Switch

The modes of operation are controlled by the S3
DIP switch.

3.2.1.1 Stand-Alone Mode

Stand-Alone Mode is initiated by setting the S3
DIP switches to any non-zero setting during power-
on or system-reset. (Not all S3 combinations are
valid, but if S3 is set to any unused state, the user
receives a message on the LCD display that reads
“?UNKNOWN DIPVALUE”.) Table 1 summariz-
es the various modes of operation. The DIP switch-
es can be set to various values which determine the
particular action that the user wants the meter to
perform. Note, however, that in Stand-Alone
Mode, manual switching of the DIP switches in or-
der to get from one type of operation to the next can
make the CDB5460 power meter go through inter-
mediate operating modes that may not be desirable.
For example, if the user is not careful, he/she may
accidentally cause the meter to write its most recent
calibration values to the on-board EEPROM, over-
writing existing calibration values that were
thought to be saved. The user should therefore plan
a ‘safe’ switching sequence in order to set the DIP
switches from one state to another state without en-
tering any ‘undesirable’ states in between. Note
that in a production meter, the DIP switch functions
would be hard-wired and not subject to change.

3.2.1.2 PC Mode

PC mode allows the user to operate the power
meter from a PC, which interfaces to the power
meter via the RS-232 connector. PC mode is initi-
ated by setting all of the DIP switches on S3 to “0”
(closed). In PC mode, the user runs a LabWindows
program (provided along with the CRD5460). The
CRD5460 PC Mode software is somewhat similar
to that available for the CDB5460 Evaluation
Board. The CRD5460 software allows the user to
read from the various data registers, and to write to
the various configuration and status registers in or-
DS279RD2 11

CRD5460-1
der to control the operation of the CS5460. Volt-
age, current, power, and energy values are read
from the CS5460 data registers and put into PC
memory for on-screen viewing. The power-factor
and phase-angle is calculated by the software, and
these quantities are also displayed.

To exit from PC Mode an return to the Stand-Alone
Mode, the user must execute one PC-mode com-
mand from the software program in order to get
Stand-Alone Mode to start operating. This is done
by using the mouse to click on the soft-button la-
beled “Change DIP SW Then Click to Exit PC
Mode.” (This button is available on-screen in the
PC software program, discussed later).

Note from Table 1 that only certain DIP switch set-
tings should be engaged when the CRD5460 is first
powered up, or reset. The valid boot-up/reset

switch states are indicated in the last column of Ta-
ble 1. Note further that the state of the DIP switch
settings at power-up/reset determine whether de-
fault calibration values (from microcontroller firm-
ware) will be loaded into the calibration registers of
the 5460, or if calibration values stored in the on-
board EEPROM will be downloaded to the
CS5460. Any even switch setting (including mode
“00000”) that is classified as a valid boot-up/reset
state will reset the board with default settings deter-
mined by the microcontroller firmware. A reset
with odd DIP switch settings that are classified as
valid boot-up/reset states will cause the CS5460’s
voltage and current gain registers to be written with
settings from the on-board EEPROM. Please see
the section titled 9. Resetting the CRD5460 for
more specifics on reset of the CRD5460.

Operating Mode

S3
 even: odd:

Cal values Cal Values
come from Micro come from EEPROM

Reset/
Boot-up
allowed?

“PC Mode”
All five switches CLOSED (logic levels: “00000”)
Output is on PC monitor (All other modes are
“Stand-Alone” modes - Output on LCD)

Yes

Display Power Factor (F) and LEAD/LAG status
(Output on LCD display). “00001” or “00010”
S3-1 OPEN, S3-2 thru S3-5 CLOSED, or
S3-2 OPEN, S3-1, S3-3 thru S3-5 CLOSED

Yes

“Cumulative” Energy displayed on top, and Cycle-
Count ENERGY displayed on bottom of LCD.
“00011” or “00100”
S3-1, S3-2, S3-4, S3-5 CLOSED, S3-3OPEN, or
S3-1 and S3-2 OPEN, S3-3 thru S3-5 CLOSED

Yes

RMS-Current and RMS-Voltage displayed. “00101”
or “00110”
S3-2, S3-4, and S3-5 CLOSED, S3-1 and S3-3
OPEN, or S3-1, S3-4 and S3-5 CLOSED and S3-2
and S3-3 OPEN

Yes

“Auto-Cycle” mode--cycles through energy read-
ings, power/power factor, and I(RMS) and V(RMS)
on the LCD display. “00111” or “01000”
S3-4 and S3-5 CLOSED, S3-1 thru S3-3 OPEN, or
S3-1 thru S3-3, and S3-5 CLOSED, S3-4 OPEN.

Yes

Table 1. Modes of Operation Summary

5 4 3 2 1

OPEN

 -OR-

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

OPEN

OPEN

-OR-

5 4 3 2 1 5 4 3 2 1

OPEN

OPEN

-OR-

5 4 3 2 1 5 4 3 2 1

OPEN

OPEN

-OR-

5 4 3 2 1 5 4 3 2 1
12 DS279RD2

CRD5460-1
Initiate CS5460 voltage gain calibration sequence.
“01100”
S3-1, S3-2, and S3-5 CLOSED, S3-3 and S3-4
OPEN.

No

Initiate CS5460 current gain calibration sequence.
“01110”
S3-1 and S3-5 CLOSED, S3-2 thru S3-4 OPEN.

No

Electromechanical counter operation, use default
calibration values. “10000”
S3-1 thru S3-4 CLOSED, S3-5 OPEN.
Must set J10 shunt to connect pins 2 and 3.

Yes

Electromechanical counter operation, use calibra-
tion values on EEPROM (U6). “10001”
S3-2 thru S3-4 CLOSED, S3-1 and S3-5 OPEN.
Must set J10 shunt to connect pins 2 and 3.

Yes

Reset the non-volatile cumulative energy to zero.
“10011”
S3-3 and S3-4 CLOSED, S3-1, S3-2, and S3-5
OPEN.

No

Save (write) the voltage/current offset and gain cal-
ibration values in CS5460 registers to the EEPROM
(U6). “10101”
S3-2 and S3-4 CLOSED, S3-1, S3-3, and S3-5
OPEN.

No

Name Function Description Default Setting Default Jumpers

J4
Switches IIN+ pin on the CS5460 between external
sense option (J8), on-board sensor, and AGND.

IIN+ Set to on-board
current sensor

J5
Switches IIN- pin on the CS5460 between external
sense option (J8), on-board sensor, and AGND.

IIN- Set to on-board
current sensor

J6
Switches VIN+ pin on the CS5460 between external
sense option (J8), on-board sensor, and AGND.

VIN+ Set to on-board
sensor

J7
Switches VIN- pin on the CS5460 between external
sense option (J8), on-board sensor, and AGND.

VIN- Set to on-board
sensor

J10
Controls which signal will cause an interrupt [/INT1] on
the 87C52 microcontroller: PH0_INT is used for LCD
Display, EOUT is used for Electromechanical Counter.

PH0_/INT controls the
87C52’s /INT1 line

J11
Used to control which signal will connect to /WR control
line on the 87C52’s P3 register (pin18).

No connection (not
used at present).

Table 2. Header/Jumper Descriptions

Operating Mode

S3
 even: odd:

Cal values Cal Values
come from Micro come from EEPROM

Reset/
Boot-up
allowed?

Table 1. Modes of Operation Summary (Continued)

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

OPEN

5 4 3 2 1

O O J8_1
O O ISNS+
O O AGND

 IIN+
IIN+

IIN+

O O J8_3
O O ISNS-
O O AGND

IIN-

IIN-
IIN-

O O J8_5
O O VSNS+
O O AGND

VIN+

VIN+
VIN+

O O J8_7
O O VSNS-
O O AGND

VIN-

VIN-
VIN-

 O PH0_/INT
 O /INT1
 O /EOUT

 O PH0_/INT
 O /WR
 O PH1_/INT
DS279RD2 13

CRD5460-1
The execution of the CRD5460 operations is con-
trolled by the 87C52 microcontroller. The firm-
ware in the microcontroller periodically
interrogates the S3 DIP switch, and determines
which actions need to be taken. Figure 4 is a flow
diagram which shows the basic flow of the firm-
ware’s main loop. The topics discussed in this sec-
tion are illustrated by the boxes towards the bottom
of the diagram, particularly with the box that says
“Read DIP Switch.” Also see section 9. Resetting
the CRD5460.

Note from Table 1 that some of the modes concern
calibration values. Gain calibration values for the
current and voltage channels can be obtained and
written to the CS5460 gain and registers. These cal-
ibration values can be saved to the on-board EE-
PROM (U6) and then, at a later time, they can be
written back to the voltage/current gain calibration

registers of the CS5460 by setting the DIP switches
to the proper settings. It is recommended that the
user perform the AC Calibration Procedure that is
described in the section 6. Calibration.

Also note in Table 1 that two of the modes are ded-
icated to operation of the optional electromechani-
cal counter. See section 8. Electromechanical
Counter for more details.

3.2.2 Jumper Settings

There are several headers on the board which allow
the user to select from several different input sourc-
es for the voltage and current channels. Table 2
summarizes the various jumper settings. On-board
sensing components are provided to monitor sin-
gle-phase power line voltage and current, or in the
case of external sensors, output of the sensors can
be interfaced through the J8 connector on the

Hardware Reset
(push S1 or cycle power)

Initialize LCD Module
and RS-232

Read DIP Switch

Read EEPROM and
Write to CS5460

Registers

Write to CS5460
Registers

Send “Start Convert”
to CS5460

Read DIP Switch

Wait for DRDY
From CS5460

Receive Command
via RS-232

Perform the
S3 DIP Switch
Function

Execute Command

EVENODD

Non-ZeroZero

“PC MODE” “STAND-ALONE MODE”

Figure 4. 87C52 Microcode Flow Chart
14 DS279RD2

CRD5460-1
Figure 5. Start-Up Window

Figure 6. Setup Window
DS279RD2 15

CRD5460-1
CRD5460 board. The user must consider the output
levels of the sensors being used, to make sure they
are within the acceptable input ranges of the
CS5460’s voltage and current channels. If the user
wishes, the jumpers can be set so that the cur-
rent/voltage inputs are connected to AGND.

NOTE: This design uses a bipolar differential input
sensing configuration, where AGND is at the midpoints
of the sensors’ input voltage span. Other configurations
can be used. Note from the data sheet for the CS5460
that the CS5460 can be configured for differential or sin-
gle-ended inputs within the acceptable common-mode
range of the inputs.

Looking at Table 2, we see that for normal opera-
tion with the LCD display, the user should verify
that J10 jumper is connecting pins 1 and 2 of J10,
and not pins 2 and 3. (Pins 2 and 3 must be connect-
ed when the electromechanical totalizer/counter is
used instead of the LCD display.)

4. PC-MODE SOFTWARE

The CRD5460 Reference Design board comes with
software and an RS-232 cable to link the evaluation

board to a PC. The evaluation software was devel-
oped with Lab Windows/CVITM (Version 5.0), a
software development package from National In-
struments. The software was designed to run under
Windows 95TM or later, and requires about 3MB of
hard drive space (2MB for the CVI Run-Time En-
gineTM, and 1MB for the evaluation software). Af-
ter installing the software, read the readme.txt file
for any last minute updates or changes.

Installation Procedure

1) Turn on the PC, running Windows 95TM or lat-
er.

2) Insert the Installation Diskette #1 into the PC.

3) Select the Run option from the Start menu.

4) At the prompt, type: A:\SETUP.EXE <enter>.

5) The program will begin installation.

6) If it has not already been installed on the PC,
the user will be prompted to enter the directory
in which to install the CVI Run-Time En-
gineTM. The Run-Time EngineTM manages exe-

Figure 7. Conversion Window
16 DS279RD2

CRD5460-1
cutables created with Lab Windows/CVITM. If
the default directory is acceptable, select OK
and the Run-Time EngineTM will be installed
there.

7) After the Run-Time EngineTM is installed, the
user is prompted to enter the directory in which
to install the CRD5460 software. Select OK to
accept the default directory.

8) Once the program is installed, it can be run by
double clicking on the CRD5460 icon, or
through the Start menu. The user should first
power up the board and then run the software.

9) Note that, beneath the main installation directo-
ry, a sub-directory called “src_code” will be
created which contains the source code for the
AT89C52 Microcontroller. (This is equivalent
to a standard 87C52, which is an 8051 core-
based microcontroller.) The source code was
compiled using the Franklin Advanced Devel-
opment System (Release VIII) available from
Franklin Software, Inc.

NOTE: The software is written to run with 640 x 480 res-
olution; however, it will work with 1024 x 768 resolution.
If the user interface seems to be a little small, the user
might consider setting the display settings to 640 x 480.
(640x480 was chosen to accommodate a variety of
computers).

4.1 Using the PC-Mode Software

Before launching the software, the user should set
up the CRD5460 evaluation board with acceptable
DIP switch settings on S3 (for PC mode, the DIP
settings would be “00000”), and connect it to an
open COM port on the PC using the RS-232 serial
cable. Then, once the board is powered on (i.e,
once the AC voltage supply is connected to the
board), the user can start the PC Mode software.

If the board is powered on (or hardware reset)
while the DIP switches are set to “00000,” then the
CS5460 registers will be written with the firmware-
controlled default settings. This is because “00000”
is considered an even DIP switch setting (see Table

1). If the user wants to run PC Mode using calibra-
tion settings from the EEPROM, the user should
power up the board in one of the odd DIP switch
settings, such as “00001,” and then switch to
“00000” to initiate PC Mode. See section 9. Reset-
ting the CRD5460 for more specifics on resetting
the CRD5460.

When the software is launched, the Start-Up win-
dow appears first (Figure 5). This window contains
information concerning the software’s title, revi-
sion number, copyright date, etc. At the top of the
screen is a menu bar which displays user options.
The menu bar item Menu is initially disabled to
prevent conflicts with other serial communications
devices, such as the mouse or a modem. After se-
lecting a COM port, the Menu item will become
available.

4.2 Selecting and Testing a COM Port

Upon start-up, the user is prompted to select the se-
rial communications port which will interface to
the CDB5460 board. To select the COM port, pull
down the Setup menu option, and select either
COM1 or COM2. Be sure to set the COM port set-
tings to 9600 BAUD, 8 data bits, no parity, 1 stop
bit.

Once the serial link is established between the PC
and the evaluation board, the user is ready to access
the internal registers of the CS5460, collect data,
and perform analysis on the collected data.

4.3 Register Access in the Setup Window

The Evaluation software provides access to the
CS5460’s internal registers in the Setup Window
(Figure 6). The user can enter the Setup Window by
pulling down Menu and selecting Setup Window,
or by pressing F2 on the keyboard.

In the Setup Window, all of the CS5460’s registers
are displayed in hexadecimal value, and also de-
coded to provide easier access. Refer to the
CS5460 data sheet for information on register func-
tionality and definitions.
DS279RD2 17

CRD5460-1
4.3.1 Refresh Screen Button

The user should see several push-buttons icons on
the screen at this time. In the lab-Windows envi-
ronment, left-clicking on these buttons with the
mouse will initiate the indicated action. The Re-
fresh Screen button will update the contents of the
screen by reading all the register values from the
part. This usually takes a couple of seconds, but it
is a good idea to press the Refresh Screen button
when entering the Setup Window, or after modify-
ing any registers to reflect the current status of the
part.

4.3.2 CS5460 Crystal Frequency

The CS5460 accepts a wide range of crystal input
frequencies, and can therefore run at many differ-
ent sample rates. The crystal frequency being used
on the CRD5460 runs at 4.096MHz, which is the
default setting of this field. The user should never
have to change this field unless a new crystal (with
different frequency) is mounted on the board.

4.3.3 Configuration Register

In the Configuration Register box, the contents of
the Configuration Register can be modified by typ-
ing a hexadecimal value in the HEX: box, or by
changing any of the values below the HEX: box to
the desired settings.

NOTE: When changing the value of the reset bit to ‘1’
(RS, bit 7 in the Configuration Register), the part will be
undergo a ‘software reset,’ and all registers will return to
their default values. Press the Refresh Screen button
after performing a reset to update the screen with the
new register values.

NOTE: Although the CRD5460 software allows the user
to modify any of the bits in the Configuration Register,
changing certain bits may cause the software and board
to behave erratically. For the CRD5460 Power Meter
Reference Design to function properly, the Interrupt
Output function should be set to the default Active Low,
and the Eout / Edir Function should be set to the default
Normal.

4.3.4 Clear Status Register Button

At the bottom of the Configuration Register box,
the user should see a button labeled “Clear Status
Register.” If the S3 DIP switch is set to PC-Mode,
then left-clicking on this soft button (with the
mouse) will clear the status register, with the ex-
ception of the Watch-Dog Timer bit.

4.3.5 Exit PC Mode Button

Another button located at the bottom of the Status
Register box is called “Change DIP SW Then
EXIT PC mode” If the user wants to get out of PC-
Mode and use the CRD5460 in Stand-Alone mode,
the user should first change the S3 DIP switch to
the desired Stand-Alone setting and then, using the
mouse, left-click on this button. Then the PC will
relinquish control of the CS5460 and allow the
CRD5460 to function in Stand-Alone Mode.

4.3.6 Mask Register / Status Register

The Mask and Status Registers are displayed in
hexadecimal and decoded in this box to show the
function of each bit. The Mask Register can be
modified by typing a value in the HEX: box, or by
checking the appropriate check boxes for the bits
that are to be masked. The Status Register cannot
be directly modified. It can only be reset by left-
clicking on the Clear Status Register Button. The
HEX: box for this register, and the bit ‘indicator
lights’ are displayed only. An indicator light that is
on (red-colored) means that the corresponding bit
in the Status Register is set (except the Invalid
Command bit, which is inverted). If a bit is not set,
then the color of the indicator light will be gray.

NOTE: The value present in the Mask Register may be
changed by the software during certain operations to
provide correct functionality of the CRD5460 board.
Therefore, the user should not be surprised to find that
certain bits in the Status Register have changed state
since the last time the user cleared the Status Register.
18 DS279RD2

CRD5460-1
4.3.7 Cycle Count / Pulse Rate / Time Base
Registers

These three boxes display the values of the Cycle
Count, Pulse Rate, and Time Base Registers in both
hexadecimal and decimal format. All three regis-
ters can be modified by typing a value in the corre-
sponding Value: or HEX: box.

4.3.8 Offset / Gain Registers

In the Offset and Gain Register boxes, the offset
and gain registers for both channels are displayed
in hexadecimal and decimal. These registers can be
modified directly by typing the desired value in the
hexadecimal display boxes.

4.3.9 Performing Calibrations

AC-Calibration algorithm can be initiated by the
user in Stand-Alone Mode. Refer to section 6. Cal-
ibration.

4.4 Conversion Window

The Conversion Window (Figure 7) allows the user
to see the results of continuous conversions on all
six data registers, perform data averaging, and view
the computed phase angle and power factor. The
Conversion Window can be accessed by pulling
down the Menu option, and selecting Conversion
Window, or by pressing F3 on the keyboard. In
general, the readings on the conversion screen rep-
resent scaled values, which are dependent on the
values in the gain calibration registers.

4.4.1 Continuous Conversions Button

This button initiates the CS5460 IC into continuous
conversion mode (C=1, see CS5460 datasheet)
whereby it will continuously sample the instanta-
neous voltage and current from the sensors, and
compute the resulting power. The screen is updat-
ed at the end of each computation cycle, and so
only the most recent instantaneous voltage, current,
and power values will be displayed. In addition,
the program will update RMS-current, RMS-volt-

age, and energy calculations after each computa-
tion cycle. The duration of each computation cycle
is based on the number in the CS5460’s cycle-
count register. For a cycle-count of 4000, the dura-
tion of the computation cycle is one second. Also
note that the power factor is computed, as well as
the phase angle between current and voltage, with
an indicator on whether the current leads or lags the
voltage. Finally, the conversion window provides
‘mean’ and ‘standard deviation’ values for each
quantity so that an average of the results of each
computation cycle can be computed. The user can
change the value in the “samples to average” box in
order to set the number of computation cycles to
average. (Remember this only sets the number of
computation cycles to average; it does not set the
value of the cycle-count register). Clicking on the
‘Stop’ button terminates this data collection pro-
cess. There are some speed limitations when oper-
ating in continuous mode. For example, the value
of the cycle-count register cannot be set to a value
which exceeds the thru-put capability of the RS-
232 connector. If any of these limitations are ex-
ceeded, the user will be prompted to change some
settings before proceeding.

5. OVERFLOW ERROR: REVS A-C

Before discussing calibration, the user should be
made aware of an error in first two silicon revs
(revs A and B) of the CS5460. Refer to the CS5460
Errata for further details. To work around this
problem with the CS5460 in the CRD5460 Refer-
ence Design, the following deviation is made from
normal operation:

The values of the voltage/current gain registers are
set to one-half the normal value. The nominal gain
setting is 0.5, instead of 1.0. The firmware on the
87C52 micro-controller has been programmed to
compensate for this divide-by-two action in the
gain registers--Before the values of the CS5460’s
output registers are displayed to the screen and/or
liquid-crystal display, the microcontroller will
DS279RD2 19

CRD5460-1
multiply the results by 2 in order to get the true
voltage/current values (and multiply by 4 to get the
energy and power values). Note that the actual re-
sults in the CS5460 registers will be at one-half (or
one-fourth) of their normal value. The measure-
ment results in the Conversion Window of the PC
Mode software do not reflect the actual register val-
ues inside the CS5460. Before being displayed,
these register values are multiplied by 2 (or 4).
However, the register values that are displayed in
the Setup Window of the PC Mode software do re-
flect the actual register values of the CS5460.

6. CALIBRATION

In this section, the ‘on-board’ calibrations (in
Stand-Alone Mode) are discussed. For the
CRD5460 Reference Design, performing the on-
board AC calibrations in Stand-Alone Mode is the
preferred mode of calibration.

It is worth noting here that once a calibration has
been completed, the data in the calibration registers
of the CS5460 can be saved to the on-board EE-
PROM for later use. This is discussed in a later sec-
tion 6.3 Saving Calibration Results. (See Table 1 to
find the DIP switch setting that will write the cali-
bration values to the EEPROM.)

6.1 Theory of Stand-Alone AC
Calibration

The CS5460 IC is designed to perform an automat-
ic internal offset calibration and gain calibration for
both the voltage and current channels. These are
DC calibrations. The CRD5460 Reference Design
provides an alternative way to calibrate the power
meter so that an AC signal can be used as the cali-
bration signal. In practical applications such as this
reference design (AC power meter), an AC calibra-
tion usually proves to be more useful than a DC cal-
ibration. The microcontroller on the CRD5460 has
been programmed to sample the AC (RMS) value
of the calibration signal that is presented across the
voltage and current inputs, and program the volt-

age/current gain values accordingly. It is assumed
that the voltage/current channel high-pass filters
are turned on inside the CS5460. This removes all
DC-content from the sensed voltage/current sig-
nals, and so no offset calibration is performed. This
section describes the AC calibration method.

The AC-calibration signals for voltage and current
channels must be supplied by the user. The calibra-
tion signals can be can be taken off of the on-board
voltage and current sensors that interface to the
power-line, or alternatively, they can be applied to
the CRD5460 through the J8 header inputs. For
the calibration procedure described here, we need
to make some assumptions about how/where the
calibration signals are applied. These assumptions
are described in Sections 6.1.1 through 6.1.4. Be-
fore the CRD5460 is shipped from the factory, it is
calibrated in this way.

6.1.1 Source of Calibration Input Signals

We assume that the voltage and current calibration
signals are from a power-line source, and are being
fed through the on-board voltage and current sen-
sors. This means that the voltage input is taken to
be coming from the line input transformer, and fed
to the CRD5460 board through the J2 connector,
and the current signal is going through a 1/2-turn
winding on the on-board current transformer (T1).
The J4, J5, J6, and J7 headers should have their
jumpers set to the on-board sensor inputs. (See Ta-
ble 2.)

6.1.2 Level of Calibration Input Signals

We assume that the nominal full-scale level of the
voltage signal will be 150V (RMS) and the full-
scale level of the line-current will be 5A (RMS).
The user must be able to supply these signal levels.
These levels were chosen to support metering of a
standard 115VAC line. [Note that, in this docu-
ment, the term ‘VAC’ has the same meaning as the
term ‘RMS-volts.’ And so 150VAC = 150 V
(RMS).] The maximum level of 150 VAC will al-
20 DS279RD2

CRD5460-1
low for linearity of 0.1% for line voltages between
75VAC - 150VAC (see CS5460 datasheet on linear
accuracy range of voltage channel). The maximum
current level of 5A (RMS) allows for linear line-
current measurements on the current channel in the
load curve range between 0.03A and 5A.

6.1.3 High-Pass Filters Enabled

Because the CRD5460 is intended to be an AC
power meter, the CS5460’s internal high-pass fil-
ters should be on, which renders the CS5460 insen-
sitive to DC input signals. The high-pass filters for
the voltage/current channels are turned on by de-
fault on the CRD5460 Reference Design at power-
up. Since the high-pass filters remove all of the DC
content from the sensed voltage and current sig-
nals, there is no need to perform current/voltage
offset calibrations. Therefore, only gain calibra-
tions are performed, and they are AC-gain calibra-
tions, not DC.

6.1.4 CS5460 Input Amplifiers

It is assumed that the input PGAs on the voltage
and current channel are both at the “x10” gain set-
ting. This is the default of the CRD5460 at power-
up. In the “x10” setting, the maximum input volt-
age level that should be applied voltage and current
channel inputs is ~176 mV (RMS). To allow for
some over-ranging capability on the meter, we will
adjust the on-board sensor gains so that the full-
scale power-line values of 150V (RMS) and 5A
(RMS) will present a 150mV (RMS) signal across
the inputs of the voltage and current inputs. This
will allow for some over-ranging capability. For
example, on the voltage channel, the meter will be
able to monitor line voltages up to ~176VAC be-
fore the meter’s input range is exceeded.

6.1.5 AC-Calibration Diagram

Figure 8 is a diagram of a typical calibration setup.
The user-supplied variac and adjustable load is one
way for the user to provide the 150V calibration
signal, as well as the 5A (RMS) calibration signal.

The user could adjust the load so that the 150 volts
(RMS) source generates 5A (RMS) of current
through the line. At 150V, the transformer that
comes with the CRD5460 Reference Design can
still be used to supply power to the board and to de-
liver the voltage sense signal. However, the user is
advised not to expose this transformer to line-volt-
ages greater than 170VAC for extended periods of
time. Note that it is not necessary to provide both
calibration signals at the same time.

6.2 Procedure for Stand-Alone AC
Calibration

The following AC-Calibration procedure uses a
‘safe’ switching sequence, which assures that the
user will not enter any undesirable modes of oper-
ation and/or enter into modes in the wrong order.

1) Turn the R5 POT fully counter-clockwise so
that the resistance between terminals 2 and 1 is
minimized.

2) Turn the R1 and R2 POTs fully counter-clock-
wise so that the resistance between terminals 2
and terminal 1 (from wiper to AGND) is mini-
mized.

3) Set the J4 and J5 jumpers so that they connect
the current channel inputs of the CS5460 (Iin+
and Iin-) to the on-board current burden resistor
(R5). Set the J6 and J7 jumpers so that they
connect the voltage channel inputs of the
CS5460 (Vin+ and Vin-) to the on-board volt-
age sensors. (They should now be connected to
wipers of R1/R2 POTs.)

4) Set the S3 DIP switch to “00010” (Power Fac-
tor and Lead/Lag status displayed). Activate
power on the CRD5460. This activation of
power will apply the voltage sense signal to the
CRD5460. Also, the user should apply the load
current signal to the CRD5460 by engaging the
load to the line voltage.

5) With a full load current of 5A, measure the
voltage across terminals 1 and 2 of the R5 POT,
DS279RD2 21

CRD5460-1
and adjust R5 until this voltage measures
150mV (RMS).

6) With 150 volts (RMS) across the voltage trans-
former, measure the voltage across terminals
1 and 2 of the R1 POT with a voltmeter, and ad-
just R1 until this voltage measures 0.075 V
(RMS). Then measure the voltage across termi-
nals 1 and 2 of the R2 POT with a voltmeter,
and adjust R2 until this voltage measures 0.075
V (RMS).

7) Set the S3 DIP switches to “00110” (RMS-cur-
rent and RMS-voltage displayed).

8) Set the S3 SIP switches to “01110.” This ini-
tiates the current gain calibration. Wait for one
computation cycle to complete. The LCD
should display the word “IGAINCAL” and also
a hex number that is equal to the current gain
cal value. (Waiting for 5 seconds will insure
that the computation cycle has completed. De-
pending on the value in the cycle-count regis-
ter, the minimum waiting time will vary.)

9) Set the S3 DIP switches to “00110” (RMS-cur-
rent and RMS-voltage displayed).

10) Set the S3 DIP switches to “00100” (cumula-
tive energy and energy for most recent compu-
tation cycle displayed).

11) Set the S3 SIP switches to “01100.” This ini-
tiates the voltage gain calibration. Wait for one
computation cycle to complete. The LCD
should display the word “VGAINCAL” and
also a hex number that is equal to the voltage
gain cal value. (Waiting for 5 seconds will in-
sure that the computation cycle has completed.
Depending on the value in the cycle-count reg-
ister, the minimum waiting time will vary.)

12) Set the S3 DIP switches to “00100” (cumula-
tive energy and energy for most recent compu-
tation cycle displayed).

The system is now calibrated. A value of 0.6 in the
CS5460s RMS-Current register will now indicate

that a current of 5A (RMS) is present through the
line. A value of 0.6 in the RMS-voltage register
will indicate a line voltage of 150V (RMS). With
the calibration signals still applied to the
CRD5460, the user can verify that the current/volt-
age measurements were calibrated to 0.6 by setting
the S3 DIP switches to “00101” and noting that the
RMS current and RMS voltage values should be
measuring very near to 0.6. If the user goes into PC
Mode and goes to the Setup Window in the PC-
Mode software program, and uses the mouse to
left-click on the “Refresh Screen” button, the user
should see new calibration values in the “Volt.”
and “Curr.” gain register boxes.

Once the CRD5460 is powered down, the values in
the CS5460s calibration registers will be lost. If the
user wants to save these calibration values to the
on-board EEPROM (U6) so that these values can
be restored after a power-down, execute the next
section 6.3 Saving Calibration Results immediate-
ly. We say ‘immediately’ because there is a risk of
accidentally re-running the calibrations for volt-
age/current gain if the S3 DIP switch is set back to
a calibration setting. The user must be careful not
to set the DIP switches back to these calibration
modes until the calibration values that were just ob-
tained are no longer needed, or have been saved to
the EEPROM.

6.3 Saving Calibration Results

Once calibration values have been obtained, these
calibration values (in the gain registers) can be
saved for future use by writing them to the on-
board EEPROM (U6). Referring to Table 1, setting
the S3 DIP switches to certain codes will cause the
values in the calibration registers (on the CS5460)
to be written to the EEPROM. If the user wants
these calibration values to be read back into the
CS5460 registers, that can be done by resetting (or
re-booting) the CRD5460 with the S3 DIP switch
to certain odd-numbered values. This is useful if
the user wants to power down the CRD5460 for a
22 DS279RD2

CRD5460-1
period of time, but does not want to loose the re-
sults of a calibration.

To write the calibration register values that are
presently in the CS5460 to the EEPROM, the user
should follow the following S3 switch sequence.
We assume that the user is starting from Stand-
Alone Mode and S3 DIP switches are set to
“00100,” so that the LCD is displaying RMS-Volt-
age/RMS-Current.

1) Set the S3 DIP switches to “00101” (RMS-cur-
rent and RMS-voltage displayed).

2) Set the DIP switches to “10101.” This will ini-
tiate the microcontroller to write the calibration
values in the CS5460 to the EEPROM.

3) Set the S3 DIP switches to “00101” (RMS-cur-
rent and RMS-voltage displayed).

4) Set the S3 DIP switches to “00100” (RMS-cur-
rent and RMS-voltage displayed).

Once the above procedure has been completed, the
user can reboot the CRD5460 in any of the valid
odd-numbered DIP switches (see Table 1) and the
calibration values will be recalled from the EE-
PROM and copied the CS5460’s current/voltage
gain registers. The cal values will remain in the EE-
PROM until they are overwritten.

6.4 Interpreting Calibration Results

Once the above AC Calibration has been per-
formed, we will know that a value of “0.6” in the
CS5460’s RMS-Current register will indicate a line
current of 5A (RMS), and a value of “0.6” in the
RMS-voltage register will indicate 150V (RMS)
across the line. Conversion factors can be generat-
ed for current and voltage. Define a voltage con-
version constant, K1, whose value would be
150/0.6 = 250. Then define a current conversion
constant, K2, whose value would be 5/0.6 = 8.33.
These constants can be used to convert the readings
from the instantaneous Current/Voltage and RMS-
Current/-Voltage registers into readings that are
quantified in volts and amps.

7. CUMULATIVE ENERGY READING

One may have noticed in Table 1 that the “00011”
and “00100” DIP switch settings will display two
energy readings. The energy value in the bottom-
half of the LCD display represents the energy cal-
culated over the most recent calculation cycle. The
energy value on the top-half of the LCD display
displays the value of the ‘cumulative energy’. The
cumulative energy represents the total energy that
has been monitored by the meter.

The cumulative energy value is stored in the on-
board EEPROM (U6). Storing the cumulative en-
ergy in this non-volatile memory allows the
CRD5460 to be used to monitor energy that is con-
sumed over a long period of time, and keep this in-
formation even when the power is turned off.
When the CRD5460 is powered back up, the cumu-
lative energy reading is restored. This cumulative
energy reading is retained until the EEPROM reset
command is given from the S3 DIP switch, or if the
register that holds the cumulative energy over-
flows.

To get a sense of how much energy is represented
by the cumulative energy value, note the following:
After each computation cycle, the 87C52 micro-
controller takes the energy calculation from the
CS5460 and adds it to a running energy sum. As
the sum gets larger and larger, it will eventually
overflow. The cumulative energy value will incre-
ment by one every 10th time that the 24-bit energy
sum overflows.

To convert the cumulative energy reading to Watt-
hrs, the following computation is performed: First
we assume that the Stand-Alone AC Calibration
procedure was performed (see section 6. Calibra-
tion). After calibration is performed, a value of 0.6
in the RMS-Current register indicates a line current
of 5A (RMS) and 0.6 in the RMS-voltage register
indicates a line voltage of 150V (RMS). If the volt-
age and current are in phase (pure resistive line
load), then the energy consumed over a one-second
DS279RD2 23

CRD5460-1
interval is 5A x 150V = 750 Watt-seconds. Since
the voltage is in phase with the current, the value in
the energy register will be equal to the product of
the RMS-Current and RMS-Voltage register val-
ues. And so the energy register value is 0.6 x 0.6 =
0.36. The above calibration assumes that the
CRD5460 was set to default firmware values,
which means that the computation cycle time is one
second. Therefore, a value of 0.36 in the energy
register (after one computation cycle) corresponds
to 750 Watt-seconds of energy.

The user should note that the running energy sum
will overflow when the sum reads or exceeds 1.0,
and so the energy register will overflow for every
2083.3 Watt-seconds of energy that is consumed,
because 2083.3 = 750 x (1/.36) (approximately).
The cumulative energy value that is stored on the
EEPROM (and displayed on the LCD) increments
its register value by one every 10th time that the
running energy sum overflows. Therefore, one in-
crement of the cumulative energy reading corre-
sponds to 10 x 2083.3 Watt-seconds = 20833 Watt-
seconds, or 5.785 Watt-hrs.

As an example, suppose that the cumulative energy
reading seen on the top-line of the LCD display
reads 00000026. (The energy reading is a decimal
number.) The total energy consumed would then
be calculated as 26 x 5.785 Watt-hrs = 150.4 Watt-
hrs.

One should also note that if the AC-Calibration has
been performed, then the real (average) power (in
Watts) over one computation cycle is calculated by
multiplying the value in the energy register by
2083.3. For this power calculation, the cycle-count
register value must be set to 4000.

8. ELECTROMECHANICAL COUNTER

The CRD5460 Reference Design has an optional
footprint location for an electromechanical
counter/totalizer monitoring device. Instead of the
LCD display, the electromechanical counter can be
placed on the board as the on-board output device.

The user can connect the counter to the board using
wires if it is desirable to mount the counter else-
where. Note that the counter and the LCD display
can be wire-connected to the CRD5460 simulta-
neously, but only one of the two devices can be
mounted on the CRD5460 assembly at one time. If
the user is interested in obtaining an electrome-
chanical counter, they might considering ordering a
GO 635 132 Counter, available from Danaher Con-
trols (5211 Parkcrest Drive Suite 205 Austin, TX
78731 USA).

The electromechanical counter provides a non-vol-
atile way to record and display the accumulated en-
ergy. It is driven by the microcontroller. To use the
electromechanical counter, the user must set the
J10 jumper to the EOUT side, so that the jumper is
connecting pins 2 and 3 of J10. With the electrome-
chanical counter mounted onto the CRD5460
board, the user should be able to boot up the
CRD5460 in an appropriate DIP switch setting for
electro-mechanical counter operation. (See Table 1
for proper DIP switch settings).

Referring to Figure 3 of the schematic, we see that
the input to the electromechanical counter/totalizer
circuitry is from the P3-0 line from the microcon-
troller. The microcontroller firmware is configured
such that the electromechanical counter will incre-
ment every time an EOUT pulse is sensed on the
microcontroller’s /INT1 line. Therefore, the elec-
tromechanical counter displays an exact count of
the number of EOUT pulses are generated over
time.

The electromechanical totalizer reading is similar
(but not identical) to the total cumulative energy
value that was discussed in the last section. Since
the electromechanical counter will increment by
one with every EOUT pulse received, we can deter-
mine the amount of energy that is represented by
one ‘count’ on the counter by calculating how
much energy is represented by one EOUT pulse
from the CS5460. This is done by looking at the
24 DS279RD2

CRD5460-1
contents of the pulse-rate register, the offset/gain
registers, and determining the voltage/current lev-
els that are represented by full-scale readings in the
instantaneous voltage/current registers. (The full-
scale readings are present when the registers mea-
sure 0.9999999.)

The CRD5460’s boot-up default value for the
pulse-rate register is 0x3C0 HEX. This corre-
sponds to a pulse-rate frequency of 30Hz (see
CS5460 data sheet). This implies that the EOUT
pin will issue 30 pulses per second if the voltage
and current channels are given full-scale inputs,
and if the values in the CS5460’s voltage/current
gain registers are set to unity. If the user calibrates
the CRD5460 using the calibration procedure that
was described in this document, then the voltage
and current RMS registers will read 0.6 when the
line-voltage and line-current are at 150V (RMS)
and 5A (RMS) respectively. This implies that the
full-scale DC line-voltage and line-current values
will equal 250 volts and ~8.3333 amps respective-
ly. We multiply this voltage and current together,
we see that the instantaneous power in this situation
will be ~2.0833 kilo-Watts. If the CS5460 gener-
ates 30 pulses over one second, and if the energy
consumed over that one-second period is 2.0833
kWatt-sec, then each pulse would represent 69.444
Watt-sec, or 0.000019290 KW-hrs. However,
these numbers need to be further adjusted: The
voltage and current gain registers are nominally 0.5
for the CRD5460 (see section 5. Overflow Error:
Revs A-C), and so we must multiply the above re-
sult by (1/0.5)(1/0.5) = 4. Therefore, the actual
amount of energy that is represented by one pulse
is 277.778 Watt-sec, or 0.000077161 kW-hrs. This
is also the amount of energy that is represented by
one increment on the electromechanical counter.
Even though the pulse rate register is set for 30 Hz,
the frequency of EOUT would actually be at (30) x
(0.5) x (0.5) = 7.5 Hz when the values of the volt-
age/current registers read at 0.9999999.

Note that in the above discussion, we assumed that
the voltage/current gain values were set to the de-
fault value of 0.5. Once the user calibrates the
CRD5460, the user should note the new calibration
values of the voltage/current gain registers, and use
these instead of the nominal ‘0.5’ values. The actu-
al gain register values obtained from calibration
should be used when calculating the amount of en-
ergy per pulse.

One final note about the electromechanical counter
is that its maximum increment rate is ~10 incre-
ments per second. When using the electromechan-
ical counter, the Pulse-Rate Register value should
not be increased to a frequency that would cause
more than 10 clicks per second on the counter. If
the user used the AC calibration process described
in this document, then the user should remember to
always keep the Pulse-Rate Register value below
110Hz. A setting above this frequency may result
in inaccurate results from the electromechanical
counter.

9. RESETTING THE CRD5460

There are two ways to reset the CRD5460 Refer-
ence Design board: hardware reset and software re-
set. Pressing on S1 (or cycling power) will cause an
asynchronous hardware reset of the system. The
software reset, by contrast, is a synchronous reset
which is initiated through the CRD5460 PC Mode
software program. Initiating the software reset is
done in the PC Mode software by using the mouse
to ‘check’ on the “Reset Part” box. The “Reset
Part” box is one of the options inside the “Config-
uration Register” box in the Setup Window.

The hardware and software resets are different. The
hardware reset (pressing S1) is just like recycling
the power to the board (power supplied through
J2). The user should take note of the state of the S3
DIP switches before resetting the CRD5460, be-
cause not all DIP switch settings are valid for a re-
set. Only certain DIP switch settings allow for a
successful system reset. See Table 1. It is also im-
DS279RD2 25

CRD5460-1
portant to remember that when a hardware reset oc-
curs, the state of the S3 DIP switch determines
whether the initial values of the voltage/current
gain registers are set from the most-recently saved
values in the on-board EEPROM, or by the default
values in the micro-controller. If the S3 DIP switch
is set to a valid even value, then a hardware reset (or
power cycle on the board) will cause the microcon-
troller (U7) to write preset default register values to
the CS5460. If the S3 DIP switch is set to a valid
odd value, then at hardware reset/power cycle, the
CS5460 voltage/current gain calibration registers
will be set to the values that were last saved to the
EEPROM (U6). (Note that the “00000” DIP switch
setting is considered an even setting.)

Initiating the software reset is equivalent to assert-
ing the RS bit in the Configuration Register of the
CS5460. It will cause the CS5460 to use its own
hard-coded default register values, which were de-
termined when the part was designed. Note that
these values may be different than the preset de-
fault register values that would come from the mi-
crocontroller/EEPROM during a hardware reset of
the CRD5460. Also note that the software reset can
only be done from PC mode.

The difference between a hardware and software
reset can be seen in Figure 4. The hardware reset is
seen at the top. When a hardware reset is initiated,
the entire CRD5460 goes through its boot-up se-
quence. A software reset is initiated as one of the
RS-232 commands seen in the lower-left hand cor-
ner of Figure 4. It is simply one of the commands
that is sent to the microcontroller while running in
PC Mode. It merely resets the CS5460, not the en-
tire power meter.

To summarize, there are three different reset sce-
narios:

1) Asynchronous hardware reset (or power cycling
the CRD5460) when the DIP switches are set to an
even (and valid) value. Initial register values come
from microcontroller. They are as follows:

Voltage Offset Register: 0 (decimal)

Voltage Gain Register: 0.5 (decimal)

Current Offset Register: 0 (decimal)

Current Gain Register: 0.5 (decimal)

Cycle-Count Register: 4000 (decimal)

Configuration Register: 0x61 (HEX)

Time Base Register: 0x83126C (HEX)

Pulse Rate Register: 0x3C0 (HEX)

2) Asynchronous hardware reset (or power cycling
the CRD5460) when the DIP switches are set to an
odd (and valid) value. The voltage/current offset
and gain calibration register values come from the
EEPROM, other register values are set as listed
above in 1).

3) Synchronous software reset from the CRD5460
software program. Initial register values come from
default values that were designed into the CS5460.
See CS5460 datasheet for default values.

Each of these reset situations results in a different
unique set of initial register values to be written to
the CS5460.

10. COMMUNICATION INTERFACE
OPTION

As shown in Figure 2, the control/data lines are
connected to the P0-0 thru P0-7 interface lines of
the 87C52. An optional daughter card which has a
CS8900 Ethernet controller is being developed for
use with the CRD5460 reference Design (should be
available by Dec. 1999). It is connected via the J9
header.

11. THREE-PHASE OPERATION

A future revision of the 87C52 firmware,
CRD5460 PC-Mode software and documentation
will provide details on poly-phase operation of the
CRD5460 Reference Design.
26 DS279RD2

CRD5460-1
12. SOURCE CODE LISTING

The C-language source code listings for the C-lan-
guage/assembly language source code for the mi-
crocontroller (U7) are included at the end of this
document. The microcontroller code is compiled
and burned into the 87C52 microcontroller during
the manufacture of the CRD5460. The microcode
was developed using the Franklin Compiler Devel-
oper’s Kit (Version 8.63).

13. PCB LAYOUT

The CS5460 should be placed entirely over an ana-
log ground plane with both the VA- and DGND
pins of the device connected to the analog plane.
Place the analog-digital plane split immediately ad-
jacent to the digital portion of the chip. Figures 9,

10, 11, 12, 13 and 14 show the layout of the
CDB5460. A bill of materials is also included.

NOTE: See Applications Note 18 for more detailed lay-
out guidelines. Before layout, please call for our Free
Schematic Review Service.

Figure 8. Typical Calibration Setup

Variac

Adjustable
Load

CRD5460

I
V

CS5460
DS279RD2 27

CRD5460-1
Figure 9. Silkscreen
28 DS279RD2

CRD5460-1
Figure 10. Silkscreen Bottom
DS279RD2 29

CRD5460-1
Figure 11. Circuit Side
30 DS279RD2

CRD5460-1
Figure 12. Solder Side
DS279RD2 31

CRD5460-1
Figure 13. Layer Three
32 DS279RD2

CRD5460-1
Figure 14. Bottom Side
DS279RD2 33

CRD5460-1
14. BILL OF MATERIALS

Qty Reference Manufacturer Mfg PN Description
1 R13 DALE CRCW0603101FT RES, 100-OHM, 0603, 1/16W, 1%
3 R6-7 R12 DALE CRCW06031001F RES, 1K, 0603, 1/16W, 1%

2 R28-29 DALE CRCW06031002F RES, 10K, 0603, 1/16W, 1%
1 R18 DALE CRCW0603100FT RES, 10-OHM, 0603, 1/16W, 1%
1 R31 DALE CRCW06031502F RES, 15K, 0603, 1/16W, 1%

2 D1-2 MOTOROLA 1N4001 GENERAL PURPOSE RECTIFIER
1 D4 MOTOROLA 1N4148 GENERAL PURPOSE SIGNAL DIODE
7 R19-21, R24-27 DALE CRCW06032000F RES, 200-OHM, 0603, 1/16W, 1%

2 R3-4 DALE CRCW06032702FT RES, 27K, 0603, 1/16W, 1%
1 R14 DALE CRCW06032203F RES, 220K, 0603, 1/16W, 1%
1 R30 DALE CRCW06033902F RES, 39K, 0603, 1/16W, 1%

1 RN1 BOURNS 4609X-101-103 RES NETWORK, 10K, BUSSED, SIP-9
2 R10-11 DALE CRCW08054750F RES, 475 OHMS, 0805, 1/10W, 1%.100ppm
2 R8-9 DALE CRCW06035101F RES, 5.1K, 0603, 1/16W, 1%

1 U6 MICROCHIP 93C46B /ST SERIAL EEPROM, 1K, 5.0V, TSSOP8
1 U4 ATMEL AT89C52-20JC MICROCONTROLLER, 5V, 8K ROM, PLCC44
1 BOX1 ALTECH PC1111-7-TO PLASTIC ENCLOSURE

2 R1-2 BOURNS 3262W-1-102 POT, CERMET, MULTITURN, TOP ADJ, 1K
1 R17 BOURNS 3262W-1-203 POT, CERMET, MULTITURN, TOP ADJ, 20K
1 R5 BOURNS 3262W-1-101 POT, CERMET, MULTITURN, TOP ADJ, 100 OHM

1 J3 AMP 748390-5 CONNECTOR, D-SUB, DE9, FEMALE, RT.
ANGLE

1 T1 CR MAGNETICS CR8348-2500-N CURRENT TRANSFORMER
1 U3 CRYSTAL SEMI CS5460-BS POWER/ENERGY MONITORING IC
1 LCD1 OPTREX DMC50448N LCD MODULE, DIGI-KEY# 73-1106-ND

1 C6 PANASONIC ECE-A1CU332 CAP, ELEC, 3300uF, 20%, 16V
4 C11-12, C14-15 KEMET C0603C100J5GAC CAP, COG, 10pF, 5% 50V, 0603
2 C21-22 KEMET C1210C102J5GAC CAP, COG, 1000pF, 5% 50V, 1210

2 C24-25 KEMET C1210C103J5GAC CAP, COG, .01uF, 5% 50V, 1210
1 C9 KEMET C1206C271J5GAC CAP, COG, 270pF, 5% 50V, 1206
1 C10 KEMET C1206C472J5GAC CAP, COG, 4700pF, 5% 50V, 1206

2 J10-11
4 J4-7
1 J2 SAMTEC TSW-103-08-G-S-

RA
HEADER, RT-ANGLE, 3X1, GOLD PLATED

1 J9 SAMTEC HEADER,8X2,.1 IN CTR

1 JP1 JUMPER WIRE
1 D3 PANASONIC LN1351C LED, SMT 3216 , GREEN
1 U2 NATIONAL SEMI LM7805CT VOLTAGE REGULATOR, 5V, TO-220

1 U1 TEXAS INST MAX232D DUAL RS-232 DRIVER / RECEIVER
1 U5 FAIRCHILD NC7SZ04M5 SINGLE INVERTER, SOT23-5 CASE
1 S1 C&K PTS645TL50 SWITCH, MOMENTARY, PUSHBUTTON

64 TP1-64
1 XFMR1 TAMURA 818A_0001 WALL TRANSFORMER, CENTER TAPPED

Table 3. Bill of Materials
34 DS279RD2

CRD5460-1
14 C1-5 C7-, C13 C16, C18-
20, C23 C44

KEMET C0805C104K5RAC CAP, X7R, .1uF, 10% 50V, 0805

1 Y1 CAL CRYSTAL CRYSTAL, HC49S CASE, 4.096MHz

1 Y2 ACME GENERIC CRYSTAL, HC49S CASE, 20MHz
1 R16 DALE CRCW0603101FT RES, 100-OHM, 0603, 1/16W, 1% (NO-POP)
7 R15, R44-46, R60-62 DALE CRCW06031002F RES, 10K, 0603, 1/16W, 1% (NO-POP)

2 R34 R50 DALE CRCW0603100FT RES, 10-OHM, 0603, 1/16W, 1% (NO-POP)
2 R47 R63 DALE CRCW06031502F RES, 15K, 0603, 1/16W, 1% (NO-POP)
1 D10 MOTOROLA 1N4001 GENERAL PURPOSE RECTIFIER (NO-POP)

5 D5-9 MOTOROLA 1N4148 GENERAL PURPOSE SIGNAL DIODE (NO-POP)
14 R35-37, R40-43, R51-53,

R56-59
DALE CRCW06032000F RES, 200-OHM, 0603, 1/16W, 1% (NO-POP)

1 R22 DALE CRCW06032201F RES, 2.2K, 0603, 1/16W, 1% (NO-POP)
1 Q1 MOTOROLA 2N3906 TRANSISTOR, PNP, TO-92 CASE (NO-POP)

8 R38-39, R48-49, R54-55,
R64-65

DALE CRCW06035101F RES, 5.1K, 0603, 1/16W, 1% (NO-POP)

1 J1 AMP 10224-1 TERMINAL BLOCK, 3 TERM, .2" CENTERS
(NO-POP)

2 U7-8 CRYSTAL SEMI CS5460-BS POWER/ENERGY MONITORING IC (NO-POP)
4 C33-34, C42-43 KEMET C1210C103J5GAC CAP, COG, .01uF, 5% 50V, 1210 (NO-POP)
4 C30-31, C39-40 KEMET C1210C102J5GAC CAP, COG, 1000pF, 5% 50V, 1210 (NO-POP)

2 C26-27 KEMET C1206C472J5GAC CAP, COG, 4700pF, 5% 50V, 1206 (NO-POP)
2 C35-36 KEMET C1206C271J5GAC CAP, COG, 270pF, 5% 50V, 1206 (NO-POP)
1 J8 SAMTEC HEADER, 14X2 (NO-POP)

1 CNT1 HENGSTLER 635-1 MECHANICAL COUNTER, 5V (NO-POP)
1 S3 GRAYHILL 76SB05 5 POSITION DIP SWITCH (NO-POP)
1 S2 C&K PTS645TL50 SWITCH, MOMENTARY, PUSHBUTTON (NO-

POP)
7 C17, C28-29, C32, C37-38,

C41
KEMET C0805C104K5RAC CAP, X7R, .1uF, 10% 50V, 0805 (NO-POP)

Qty Reference Manufacturer Mfg PN Description

Table 3. Bill of Materials (Continued)
DS279RD2 35

CRD5460-1
15. MICROCONTROLLER SOURCE CODE

15.1 “nopt”
#pragma debug /* default is no-debug*/
#pragma code /* ASSEMBLY source lines in list file */

#include <intrins.h> /*REQD FOR _lrol_() */
#include "nopt.h" /*prototypes, sfr equates, sbit declarations*/

 /*globals */
char command,gpc,

high_c, mid_c,low_c, /* for reading EEPROM */
high_byte, mid_byte, low_byte,/* from "read_register()" etc. */
temp1, dipval, /* dip switch variables */
qty, /* for counting cumulative energy */

 NUMERATOR[6], /* gets modified by LONG_DIVIDE */
 DENOMINATOR[6], /* not modified by LONG_DIVIDE */
 NUMERATOR_BYTES, /* QUANTITY OF NUM or DENOM BYTES */
 QUOTIENT_BYTES, /* QUANTITY OF QUOTIENT BYTES */
 QUOTIENT[6]; /* LONG_DIVIDE OUTPUT ARRAY */
bdata int calls;
long sum,reg_a;
int s, max=32760, ind=200;

union dual {char auc[4]; long ans; };
union dual var;

union both {char ach[2]; int wht;};
union both bwe;

union pair {long arr[8]; int grp[16];};
union pair xyz;

main()
{

EA = 0x00; /* Disable all interrupts */
Delay(max); /*20 milliseconds */
Delay(max); /*20 milliseconds */
Delay(max); /*20 milliseconds */
Delay(max); /*20 milliseconds */
Delay(max); /*20 milliseconds */
Delay(max); /*20 milliseconds */

P1 = 0xb7; /*eeprom not selected*/
COMM = 0x00; /* LED on*/
P3 = 0xFF; /*Set up port 3 to all inputs or special functions*/
SCON = 0x72; /*8 bit UART*/

/*Set TI to enable TXSER UART function*/
/*Transmission Rate is 9600,N,8,1*/

TMOD = 0x20; /*Use TIMER1, 8-bit auto-reload */
TH1 = 0xF5; /*Initialize to auto-reload to F5 for 20.000MHz external clock*/
PCON = 0x80; /* when set, run at 9600 Baud, when clear, 4800 baud */
TCON = 0x40; /* Turn internal UART timer ON */

/*Reset Serial Port*/
CS = 0x00;
SDI = 0x01; /*SET SDI PIN*/
for(s=0;s<31;s++)/*Clock in 3 bytes of FF and then seven 1’s*/

{
SCLK = 0x01; /*SET SCLK*/
SCLK = 0x00; /*CLR SCLK*/
}

SDI = 0x00; /*Now clock in a single 0*/
SCLK = 0x01; /*SET SCLK*/
SCLK = 0x00; /*CLR SCLK*/
CS = 0x01;

Delay(max);
Delay(max);
36 DS279RD2

CRD5460-1
Delay(max);
Delay(max);
Delay(max); /* Allow LED to be seen*/
Delay(max);

COMM = 0x01; /* LED off*/

dipval = RD_DIP();/*READ THE 5 POSIT DIP SWITCH*/
switch(dipval)

{
case 0x01: /*STANDALONE modes using FLASH Cal values*/
case 0x03:
case 0x05:

 case 0x07:
case 0x09:
case 0x11:

 lcdmi();
 usefv();
 hcreg();

break;

 /* MODES using DEFAULT Cal Values */
case 0x00:
case 0x02:
case 0x04:
case 0x06:
case 0x08:
case 0x0a:
case 0x10:
lcdmi();

 hcreg();
high_c = 0x20; /*gain one half */
mid_c = 0;
low_c = 0;
command = 0x44; /*write, current gain reg*/
write_to_register(command,low_c,mid_c,high_c);
high_c = 0x20; /*gain one half */
mid_c = 0;
low_c = 0;
command = 0x48; /*write, voltage gain reg*/
write_to_register(command,low_c,mid_c,high_c);
break;

default:
undip();
break;
} /*END OF first SWITCH ON DIPVAL*/

write_to_register(0x74, 0x00, 0x00, 0x80);/* write, int mask reg */
CS = 0x00; /*Clear CSb*/
transfer_byte(0xE8); /* Continuous Conversion */
CS = 0x01; /* Set CSb */

while(1)
 {
 while(dipval == 0) /*PC mode, no cumulative energy*/

{
write_to_register(0x5E, 0x00, 0x00, 0x80); /* Clear interrupt */
command = RXSER(); /*Get F9, etc from PC, (waits on RS-232)*/
decode_command(command);/*one F9 call waits on STOP RS-232 before return*/
dipval = RD_DIP();

 if(dipval)
 {

write_to_register(0x74, 0x00, 0x00, 0x80);/* write, int mask reg */
CS = 0x00; /*Clear CSb*/
transfer_byte(0xE8); /* Continuous Conversion */
CS = 0x01; /* Set CSb */
}

} /*end of PC mode*/
DS279RD2 37

CRD5460-1
calls=0;
sum = 0;

do {
 if(calls < 16)
 {
 sum = sum + early();
 calls++;
 }
 }

while (INTB != 0); /*P3-3 low TO GET PAST HERE*/
switch(dipval) /* the value at reset*/

{
case 0x01: /*POWER FACTOR */
case 0x02:
gete();
pwfk();

 break;

case 0x03: /* DISPLAY total cumulative energy*/
case 0x04:
gete();
cume();
break;

case 0x05: /*Display RMS volts, RMS amps */
case 0x06:
gete();
rmsd();
break;

case 0x07: /*automatic cycle through modes*/
case 0x08:
gete();
temp1++;
if(temp1 > 29)temp1 = 0;
if(temp1 < 10) pwfk();
if((temp1 > 9) && (temp1 < 20))cume();

 if((temp1 >19) && (temp1 < 30))rmsd();
break;

case 0x10: /* Electromechanical counter, NO cumulative energy

to flash */
 case 0x11:
 MECH = 0x00;/* move INT1 jumper (J10) to EOUT */

Delay(6000);
MECH = 0x01;
break;

case 0x0c: /*calibrate voltage gain*/
read_register(0x18); /*for Vrms */
shif(); /* gain APPROX half, volts x 2*/
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x56); /* "V" */
TXSER(0x56);
WR_LCD(0x47); /* "G" */
TXSER(0x47);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x4C); /* "L" */
TXSER(0x4C);
38 DS279RD2

CRD5460-1
 TXSER(0x0D);
TXSER(0x0A);
NUMERATOR_BYTES=6;
QUOTIENT_BYTES =3;

 NUMERATOR[0]=0X33; /*LS*/
 NUMERATOR[1]=0X33;
 NUMERATOR[2]=0X33;
 NUMERATOR[3]=0X33;

NUMERATOR[4]=0X13;
NUMERATOR[5]=0X00; /*MS*/
DENOMINATOR[0]=0X00; /*LS*/
DENOMINATOR[1]=0X00;
DENOMINATOR[2]=low_byte;
DENOMINATOR[3]=mid_byte;
DENOMINATOR[4]=high_byte;
DENOMINATOR[5]=0X00; /*MS*/
LONG_DIVIDE();

 if(OV)
{
QUOTIENT[0]=0X00;
QUOTIENT[1]=0X00;
QUOTIENT[2]=0X20;
}

 write_to_register(0x48,QUOTIENT[0],QUOTIENT[1],QUOTIENT[2]); /*low,mid,high*/
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x30); /* "0" */
TXSER(0x30);
WR_LCD(0x58); /* "X" */
TXSER(0x58);
LCD_3(QUOTIENT[2],QUOTIENT[1],QUOTIENT[0]); /*high,mid,low*/

 TXSER(0x0D);
TXSER(0x0A);

 while(RD_DIP()==0x0c);/*wait for dip switch change */
 break;

 case 0x0e:/*calibrate current gain*/
read_register(0x16); /*for Irms */
shif(); /*cut gain in half, curr x 2*/
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x47); /* "G" */
TXSER(0x47);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x4C); /* "L" */
TXSER(0x4C);

 TXSER(0x0D);
TXSER(0x0A);
NUMERATOR_BYTES=6;
QUOTIENT_BYTES =3;

 NUMERATOR[0]=0X33; /*LS*/
 NUMERATOR[1]=0X33;
 NUMERATOR[2]=0X33;
 NUMERATOR[3]=0X33;

NUMERATOR[4]=0X13;
NUMERATOR[5]=0X00; /*MS*/
DS279RD2 39

CRD5460-1
DENOMINATOR[0]=0X00; /*LS*/
DENOMINATOR[1]=0X00;
DENOMINATOR[2]=low_byte;
DENOMINATOR[3]=mid_byte;
DENOMINATOR[4]=high_byte;
DENOMINATOR[5]=0X00; /*MS*/
LONG_DIVIDE();

 if(OV)
{
QUOTIENT[0]=0X00;
QUOTIENT[1]=0X00;
QUOTIENT[2]=0X20;
}

 write_to_register(0x44,QUOTIENT[0],QUOTIENT[1],QUOTIENT[2]); /*low,mid,high*/
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x30); /* "0" */
TXSER(0x30);
WR_LCD(0x58); /* "X" */
TXSER(0x58);
LCD_3(QUOTIENT[2],QUOTIENT[1],QUOTIENT[0]); /*high,mid,low*/

 TXSER(0x0D);
TXSER(0x0A);

 while(RD_DIP()==0x0e);/*wait for dip switch change */
 break;

case 0x15: /*save cal values to FLASH*/
read_register(0x02); /*for I offset val */
WR_EE(0x00,0x00,high_byte); /*high_byte ends up at eeprom addr 1 */
WR_EE(0x01,mid_byte,low_byte); /*the rest at addr 2 and 3 */
read_register(0x04); /*for I gain val */
WR_EE(0x02,0x00,high_byte); /*high_byte ends up at eeprom addr 5 */
WR_EE(0x03,mid_byte,low_byte); /*the rest at addr 6 and 7 */
read_register(0x06); /*for V offset val */
WR_EE(0x04,0x00,high_byte); /*high_byte ends up at eeprom addr 9 */
WR_EE(0x05,mid_byte,low_byte); /*the rest at addr a and b */
read_register(0x08); /*for V gain val */
WR_EE(0x06,0x00,high_byte); /*high_byte ends up at eeprom addr d */
WR_EE(0x07,mid_byte,low_byte); /*the rest at addr e and f */
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x53); /* "S" */
TXSER(0x53);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x56); /* "V" */
TXSER(0x56);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
WR_LCD(0x44); /* "D" */
TXSER(0x44);
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x4C); /* "L" */
TXSER(0x4c);
WR_LCD(0x20); /* "SP" */
TXSER(0x20);
WR_LCD(0x56); /* "V" */
TXSER(0x56);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x4C); /* "L" */
TXSER(0x4c);
40 DS279RD2

CRD5460-1
WR_LCD(0x53); /* "S" */
TXSER(0x53);

 TXSER(0x0D);
TXSER(0x0A);

 while(RD_DIP()==0x15); /*wait for dip switch change */
 break;

case 0x13:/* clear out energy accum registers */
WR_EE(0X08,0x00,0x00); /*total bin MS*/
WR_EE(0x09,0x00,0x00); /*total bin LS*/
RD_EE(0x08); /*most sig cum energy to high_c ,mid_c ,low_c*/
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
WR_LCD(0x55); /* "U" */
TXSER(0x55);
WR_LCD(0x4D); /* "M" */
TXSER(0x4d);
WR_LCD(0x20); /* "SP" */
TXSER(0x20);
WR_LCD(0x43); /* "C" */
TXSER(0x43);
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x30); /* "0" */
TXSER(0x30);
WR_LCD(0x58); /* "X" */
TXSER(0x58);
LCD_3(high_c,mid_c,low_c);
TXSER(0x0d);
TXSER(0x0a);

 while(RD_DIP()==0x13); /*wait for dip switch change */
 break;

default: /*default for switch on dipval*/
undip();
break;

} /*end of switch on dipval */
write_to_register(0x5E, 0x00, 0x00, 0x80); /* Clear CS5460 interrupt */
dipval=RD_DIP();
} /*end of while one*/

} /*end of main*/

void Delay(int fin)
{
for(s=0;s<fin;s++);
}

void write_to_register(char command,char low,char mid,char high) /*write to wildcat*/
{
CS = 0x00; /* Clear CSb */
transfer_byte(command);
transfer_byte(high);
transfer_byte(mid);
transfer_byte(low);
CS = 0x01; /* Set CSb */
}

void read_register(char command) /*read wildcat*/
{

DS279RD2 41

CRD5460-1
CS = 0x00; /*Clear CSb*/
transfer_byte(command);
high_byte = receive_byte(); /*Receive Bytes*/
mid_byte = receive_byte();
low_byte = receive_byte();
CS = 0x01; /*Set CSb*/
}

void decode_command(char command)
{
data int j;
data unsigned char cnt;

switch (command)
{
/*THE FOLLOWING CASES WRITE TO CS5460 REGISTERS*/
case 0x40: /* Config Register */
case 0x42: /* Current Offset Register */
case 0x44: /* Current Gain Register */
case 0x46: /* Voltage Offset Register */
case 0x48: /* Voltage Gain Register */
case 0x4A: /* Cycle Count Register */
case 0x4C: /* Pulse Rate Register */
case 0x4E: /* Last Current Value */
case 0x50: /* Last Voltage Value */
case 0x52: /* Last Power Value */
case 0x54: /* Last Total Energy Value */
case 0x56: /* Last RMS Current Value */
case 0x58: /* Last RMS Voltage Value */
case 0x5A: /* Timebase Calibration Register */
case 0x5E: /* Error/Status Register */
case 0x74: /* Interrupt Mask Register */
case 0x5C: /* RoEo Register */
case 0x70: /* PDEF Register */
case 0x72: /* PwrDn Register */
case 0x76: /* Test Register */
low_byte = RXSER(); /*Receive data low byte first*/
mid_byte = RXSER(); /*from the PC*/
high_byte = RXSER();
write_to_register(command,low_byte,mid_byte,high_byte);
break;

/*THE FOLLOWING CASES ARE FOR READING THE CS5460*/
case 0x00: /* Config Register */
case 0x02: /* Current Offset Register */
case 0x04: /* Current Gain Register */
case 0x06: /* Voltage Offset Register */
case 0x08: /* Voltage Gain Register */
case 0x0A: /* Cycle Count Register */
case 0x0C: /* Pulse Rate Register */
case 0x0E: /* Last Current Value */
case 0x10: /* Last Voltage Value */
case 0x12: /* Last Power Value */
case 0x14: /* Last Total Energy Value */
case 0x16: /* Last RMS Current Value */
case 0x18: /* Last RMS Voltage Value */
case 0x1A: /* Timebase Calibration Register */
case 0x1E: /* Error/Status Register */
case 0x34: /* Interrupt Mask Register */
case 0x1C: /* RoEo Register */
case 0x30: /* PDEF Register */
case 0x32: /* PwrDn Register */
case 0x36: /* Test Register */
read_register(command); /* Read register’s content */
TXSER(low_byte); /* Transfer bytes to PC*/
TXSER(mid_byte);
TXSER(high_byte);
break;

case 0xF9: /*PC GUI related continuous convert with lead/lag */
write_to_register(0x74, 0x00, 0x00, 0x80);/* mask for DRDY bit */
CS = 0x00; /*Clear CSb*/
42 DS279RD2

CRD5460-1
transfer_byte(0xE8); /* Continuous Conversion */
CS = 0x01; /* Set CSb */
do {

cnt = 128; /*cnt >128 is "current lagging" for Labwindows*/
calls=0;
sum = 0;
do {

 if(calls < 16)
 {
 sum = sum + early(); /*long plus integer*/
 calls++;
 }
 }

while (INTB != 0);
for (temp1 = 0x0E; temp1 <= 0x18; temp1 = temp1 + 2)
 {

read_register(temp1); /* Get Value */
TXSER(low_byte); /* Send info to PC */
TXSER(mid_byte);
TXSER(high_byte); /*total 18 bytes sent up*/
}

if(sum & 0x80000000)cnt++; /*LAGGING*/

 else cnt--; /*LEADING*/
 TXSER(cnt); /*send the lead/lag info up*/
 write_to_register(0x5E, 0x00, 0x00, 0x80); /* Clear "data ready" */

}
while (RI != 1); /* Do until PC sends another byte */
CS = 0x00; /*Clear CSb*/
transfer_byte(0xA0); /* Send HALT */
CS = 0x01; /* Set CSb */
write_to_register(0x5E, 0x00, 0x00, 0x80); /* Clear interrupt */
RI = 0; /* throw out byte */
break;

default:
break;
} /* END switch on command */

} /* END decode_command*/

/* ROUTINE TO MAKE BCD AND ASCII */
/* NOT SUITABLE FOR FRACTIONS */
/* ALWAYS OUTPUTS 8 DIGITS, with any leading ZEROs */
void LCD_D(void)
{
char j,n;
xyz.arr[0]= 1L;
xyz.arr[1]= 10L;
xyz.arr[2]= 100L;
xyz.arr[3]= 1000L;
xyz.arr[4]= 10000L;
xyz.arr[5]= 100000L;
xyz.arr[6]= 1000000L;
xyz.arr[7]=10000000L;
var.auc[3]=low_byte;
var.auc[2]=mid_byte;
var.auc[1]=high_byte;
var.auc[0]=0;

for(n=7;n >= 0;n--)
{
j=0;
if(var.ans >= (xyz.arr[n]))

{
 do

{
 var.ans = var.ans - xyz.arr[n];
DS279RD2 43

CRD5460-1
 j++;
}

while(var.ans >= xyz.arr[n]);
}

WR_LCD(j + 0x30);
TXSER(j + 0x30);
}

TXSER(0x0D);
TXSER(0x0A);
}

/*USED TO CONVERT TWO BYTES TO FRACTIONAL*/
void LCD_F(void)
{
int n;
char j,m;
long dfr,d50k;
d50k = 50000L;
xyz.grp[0]= 1;
xyz.grp[1]= 3;
xyz.grp[2]= 6;
xyz.grp[3]= 12;
xyz.grp[4]= 24;
xyz.grp[5]= 49;
xyz.grp[6]= 98;
xyz.grp[7]= 195;
xyz.grp[8]= 391;
xyz.grp[9]= 781;
xyz.grp[10]= 1562;
xyz.grp[11]= 3125;
xyz.grp[12]= 6250;
xyz.grp[13]= 12500;
xyz.grp[14]= 25000;
bwe.ach[0]=high_byte;
bwe.ach[1]=mid_byte;
n=1;
dfr = 0;
for(j=0; j < 15; j++)

{
if(bwe.wht & n)

{
dfr = dfr + (long)xyz.grp[j];
}

 n = n << 1;
 }
if(bwe.wht & n)
dfr = dfr + d50k;

WR_LCD(0X2E); /*DOT*/
TXSER(0X2E);

xyz.arr[0]= 1L;
xyz.arr[1]= 10L;
xyz.arr[2]= 100L;
xyz.arr[3]= 1000L;
xyz.arr[4]= 10000L;
for(m=4; m >= 0; m--)

{
j=0;
if(dfr >= xyz.arr[m])

{
 do

{
 dfr = dfr - xyz.arr[m];
 j++;

}
while(dfr >= xyz.arr[m]);
}

WR_LCD(j + 0x30);
TXSER(j + 0x30);
44 DS279RD2

CRD5460-1
}
TXSER(0x0D);
TXSER(0x0A);
}

/*ROUTINE USED FOR POS SIGNED DATA, TO SHIFT 3 BYTES LEFT ONE BIT*/
void shif()
{
var.auc[3]=low_byte;
var.auc[2]=mid_byte;
var.auc[1]=high_byte;
var.auc[0]=0;
var.ans = _lrol_(var.ans,1);
high_byte=var.auc[1];
mid_byte= var.auc[2];
low_byte= var.auc[3] & 0xfe;
}

/***************************POWER FACTOR ROUTINE *************************************/
void pwfk()

{
/*set up to multiply (vrms*irms) using existing globals*/
read_register(0x16);/*IRMS*/
shif(); /* curr gain was cut in half,

so times two */
NUMERATOR[0]=low_byte;

 NUMERATOR[1]=mid_byte;
 NUMERATOR[2]=high_byte;

read_register(0x18);/*VRMS*/
shif(); /*volt gain was cut in half, so

times two */
DENOMINATOR[0]= low_byte;
DENOMINATOR[1] = mid_byte;
DENOMINATOR[2] = high_byte;
MULT24();

/*set up to divide (ener-
gy/(vrms*irms)*/

DENOMINATOR[5]=QUOTIENT[5];
DENOMINATOR[4]=QUOTIENT[4]; /*Vrms x Irms */
DENOMINATOR[3]=QUOTIENT[3];
DENOMINATOR[2]=QUOTIENT[2];
DENOMINATOR[1]=QUOTIENT[1]; /*Vrms x Irms */
DENOMINATOR[0]=QUOTIENT[0];

NUMERATOR_BYTES = 6;
 QUOTIENT_BYTES=2;

read_register(0x14); /*energy to low_byte, mid_byte, high_byte*/
if(high_byte & 0x80)

{
nege();

 }
shif(); /*signed to unsigned*/
shif();
shif(); /*cut gain in half, energy x 4*/
NUMERATOR[5]=high_byte;
NUMERATOR[4]=mid_byte;
NUMERATOR[3]=low_byte;

LONG_DIVIDE(); /*energy/(vrms*irms)*/
 if(OV)

{
QUOTIENT[1]=0XFF;
QUOTIENT[2]=0XFF;
}

INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x46); /* "F" */
DS279RD2 45

CRD5460-1
TXSER(0x46);
WR_LCD(0x20); /* "SPACE" */
TXSER(0x20);
high_byte=QUOTIENT[1];
mid_byte =QUOTIENT[0];
LCD_F();
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
if(sum & 0x80000000)

{
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x20); /* "SPACE" */
TXSER(0x20);
WR_LCD(0x4C); /* "L" */
TXSER(0x4C);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x47); /* "G" */
TXSER(0x47);
WR_LCD(0x53); /* "S" */

 TXSER(0x53);
 TXSER(0x0D);

TXSER(0x0A);
}

 else
 {

WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x20); /* "SPACE" */
TXSER(0x20);
WR_LCD(0x4C); /* "L" */
TXSER(0x4C);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x44); /* "D" */
TXSER(0x44);

 WR_LCD(0x53); /* "S" */
 TXSER(0x53);

TXSER(0x0D);
TXSER(0x0A);

 }
}

void cume() /*Display total cumulative energy*/
{
RD_EE(0x08); /*reads total cum energy 0x08 and 0x09 to high_c etc*/
INS_LCD(0X01); /*TOP LINE no label*/
Delay(ind);
TXSER(dipval);
low_byte=low_c;
mid_byte=mid_c;
high_byte=high_c;
LCD_D(); /* "87654321" cumulative energy */
read_register(0x14); /*cycle energy to high_byte,mid_byte,low_byte*/
if(high_byte & 0x80)

{
nege();

 }
shif(); /* x 2, for SIGNED output*/
shif();
shif(); /*gain is half, energy x 4*/
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
WR_LCD(0x20); /* "SPACE" */
46 DS279RD2

CRD5460-1
TXSER(0x20);
LCD_F(); /*one calc cycle energy */
}

void rmsd()
{
read_register(0x16); /*for Irms, high_byte,mid_byte,low_byte */
shif(); /*gain was cut in half, curr x 2 */
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x20); /* "SPACE" */
TXSER(0x20);

 LCD_F();
read_register(0x18); /*for Vrms */
shif(); /*gain was cut in half, volts x 2*/
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x56); /* "V" */
TXSER(0x56);
WR_LCD(0x20); /* "SPACE" */
TXSER(0x20);
LCD_F();
}

void nege(void)
{
temp1=RD_DIP();
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
WR_LCD(0x47); /* "G" */
TXSER(0x47);
WR_LCD(0x20); /* "SP" */
TXSER(0x20);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x47); /* "G" */
TXSER(0x47);
WR_LCD(0x59); /* "Y" */
TXSER(0x59);
TXSER(0x0D);
TXSER(0x0A);
Delay(max);
Delay(max);
Delay(max);
}

void undip(void)
{

temp1=RD_DIP();
INS_LCD(0X01); /*TOP LINE*/
Delay(ind);
TXSER(dipval);
WR_LCD(0x3F); /* "?" */
TXSER(0x3F);
WR_LCD(0x55); /* "U" */
TXSER(0x55);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x4B); /* "K" */
DS279RD2 47

CRD5460-1
TXSER(0x4B);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
WR_LCD(0x4F); /* "O" */
TXSER(0x4F);
WR_LCD(0x57); /* "W" */
TXSER(0x57);
WR_LCD(0x4E); /* "N" */
TXSER(0x4E);
TXSER(0x20); /*RS-232 space*/
INS_LCD(0XC0); /*BOTTOM LINE*/
Delay(ind);
TXSER(0x20);
WR_LCD(0x44); /* "D" */
TXSER(0x44);
WR_LCD(0x49); /* "I" */
TXSER(0x49);
WR_LCD(0x50); /* "P" */
TXSER(0x50);
WR_LCD(0x56); /* "V" */
TXSER(0x56);
WR_LCD(0x41); /* "A" */
TXSER(0x41);
WR_LCD(0x4C); /* "L" */
TXSER(0x4C);
WR_LCD(0x55); /* "U" */
TXSER(0x55);
WR_LCD(0x45); /* "E" */
TXSER(0x45);
TXSER(0x0D);
TXSER(0x0A);
while((RD_DIP() == temp1));/*wait for dip switch change */
dipval = RD_DIP();
}

void lcdmi()
{
INIT_LCD(0X03); /*START LCD MODULE INIT*/
Delay(max); /* > 4.1 milliseconds */
INIT_LCD(0X03);
Delay(max); /* > 100 microseconds */
INIT_LCD(0X03);
Delay(max); /* > 100 microseconds */
INIT_LCD(0X02);
Delay(max); /* > 100 microseconds */
INS_LCD(0X28); /* possible to poll busy flag */
Delay(ind);
INS_LCD(0X01);
Delay(ind);
INS_LCD(0X06);
Delay(ind);
INS_LCD(0X0C); /*END OF LCD MODULE INIT*/
Delay(ind);
}

void usefv()
{
RD_EE(0x00);
command = 0x42; /*write, current offset reg*/
write_to_register(command,low_c,mid_c,high_c);

RD_EE(0x02);
command = 0x44; /*write, current gain reg*/
write_to_register(command,low_c,mid_c,high_c);

RD_EE(0x04);
command = 0x46; /*write, voltage offset reg*/
write_to_register(command,low_c,mid_c,high_c);

RD_EE(0x06);
command = 0x48; /*write, voltage gain reg*/
48 DS279RD2

CRD5460-1
write_to_register(command,low_c,mid_c,high_c);
}

void hcreg()
{
command = 0x40; /*write, config reg*/
low_c = 0x61; /* 0x000061*/
mid_c = 0x00;
high_c = 0x00;
write_to_register(command,low_c,mid_c,high_c);

command = 0x4A; /*write, cycle cnt reg*/
low_c = 0xa0; /*0x000fa0 = 4000*/
mid_c = 0x0f;
high_c = 0x00;
write_to_register(command, low_c, mid_c, high_c);

command = 0x5A; /*write, time base reg*/
low_c = 0x6c; /*0x7fffff = unity*/
mid_c = 0x12; /*0x83126C = 1.024 */
high_c = 0x83;
write_to_register(command,low_c, mid_c, high_c);

command = 0x4C; /*write, pulse rate reg*/
low_c = 0xc0; /*0x0fa000 = default */
mid_c = 0x03; /*0x0003c0 = 30 */
high_c = 0x00; /*0x0000a0 = 5 */
write_to_register(command, low_c, mid_c, high_c);
}

void gete()
{
read_register(0x14); /*cycle energy to high_byte,mid_byte,low_byte*/
if(high_byte & 0x80)nege();
shif(); /* x 2, for SIGNED output*/
shif();
shif(); /*gain is half, energy x 4*/
var.auc[3]=low_byte; /*CYCLE energy*/
var.auc[2]=mid_byte;
var.auc[1]=high_byte;
var.auc[0]=0;
reg_a = reg_a + var.ans; /* accumulate LS cycle energy */
var.ans = reg_a; /*any overflow into var.auc[0]*/
if(var.auc[0]) /* if accumulation over 24 bits */
 {

qty++; /*increment overflow count */
var.auc[0]=0; /* overflow amount deleted */
reg_a = var.ans; /*reg_a overflow deleted */
if(qty > 9)

{
qty = 0; /*most variables global*/
RD_EE(0x08); /*reads total cum energy 0x08 and 0x09*/
var.auc[3] = low_c;
var.auc[2] = mid_c;
var.auc[1] = high_c;
var.ans++;
high_c=var.auc[1];
mid_c =var.auc[2];
low_c =var.auc[3];
WR_EE(0X08,0x00,high_c);
WR_EE(0x09,mid_c,low_c);
}

}
}
DS279RD2 49

CRD5460-1
15.2 “early”

$DEBUG
TCOD SEGMENT CODE ; TCOD RELOCATABLE
PUBLIC EARLY ; Make subroutine global
EXTERN DATA (CALLS)
RSEG TCOD ; Assemble to a certain segment
EARLY:

CLR 0D5H ; START WITH CLEAR "POS" BIT
CLR 0D1H ; START WITH CLEAR "POSNEG" BIT

 CLR 090H ; CHIP SELECT BAR
MOV R1,#0H

loop1:
MOV A,#10H ; Read Command for channel A (VOLTAGE)
RLC A ; Rotate into Carry
MOV P1.1, C ; Put MSB on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 6 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 5 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 4 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 3 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 2 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put bit 1 on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

RLC A ; Rotate into Carry
MOV P1.1, C ; Put LSB on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

;READ CHANNEL A HIGH BYTE (NO WRITING WILDCAT ON SPI)

SETB P1.1 ; Set SDI to avoid reading config register..
MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate MSB into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 6 into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 5 into Acc
SETB P1.3 ; Toggle SCLK
50 DS279RD2

CRD5460-1
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 4 into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 3 into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 2 into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 1 into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate LSB into Acc
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK
MOV R2, A ; CHAN A HI BYTE

; **** READ MID BYTE OF CHANNEL A, SEND READ COMMAND FOR CHANNEL B ****
 MOV B,#0EH ; "READ CURRENT" COMMAND

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 7 into Acc
MOV C, 0F7H ; Get Channel B command bit 7
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 6 into Acc
MOV C, 0F6H ; Get Channel B command bit 6
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 5 into Acc
MOV C, 0F5H ; Get Channel B command bit 5
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 4 into Acc
MOV C, 0F4H ; Get Channel B command bit 4
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 3 into Acc
MOV C, 0F3H ; Get Channel B command bit 3
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 2 into Acc
MOV C, 0F2H ; Get Channel B command bit 2
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
DS279RD2 51

CRD5460-1
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 1 into Acc
MOV C, 0F1H ; Get Channel B command bit 1
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate LSB into Acc
MOV C, 0F0H ; Get Channel B command bit 0
MOV P1.1, C ; Put bit on SDI
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK
MOV R3, A ; MID BYTE CHAN A

; **** GET HIGH BYTE OF CHANNEL B, SEND STATUS (5E) ****

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate MSB into Acc
CLR P1.1 ; First Command bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 6 into Acc
SETB P1.1 ; Second Command Bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 5 into Acc
CLR P1.1 ; Third Command Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 4 into Acc
SETB P1.1 ; Fourth Command Bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 3 into Acc

; Fifth Command Bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 2 into Acc

; Sixth Command Bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 1 into Acc

; Seventh Command Bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate LSB into Acc
CLR P1.1 ; Eighth Command Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK
MOV R4, A ; HIGH BYTE CHAN B (CURRENT)

; **** GET MIDDLE BYTE OF CHANNEL B, SEND HIGH STATUS (80) ****
MOV C, P1.2 ; Put SDO into Carry
52 DS279RD2

CRD5460-1
RLC A ; Rotate MSB into Acc
SETB P1.1 ; First bit = 1
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 6 into Acc
CLR P1.1 ; Second Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 5 into Acc

; Third Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 4 into Acc

; Fourth Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 3 into Acc

; Fifth Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 2 into Acc

; Sixth Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate Bit 1 into Acc

; Seventh Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

MOV C, P1.2 ; Put SDO into Carry
RLC A ; Rotate LSB into Acc

; Eighth Bit = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK
MOV R5, A ; MID BYTE CHAN B (CURRENT)

; **** SEND MID STATUS BYTE (00) ****
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 6 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 5 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 4 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 3 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 2 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 1 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; LSB = 0
SETB P1.3 ; Toggle SCLK
DS279RD2 53

CRD5460-1
CLR P1.3 ; Toggle SCLK

; **** SEND LOW STATUS BYTE (00) ****
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 6 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 5 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 4 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 3 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 2 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; Bit 1 = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

; LSB = 0
SETB P1.3 ; Toggle SCLK
CLR P1.3 ; Toggle SCLK

;volts R2:R3 current R4:R5

 INC R1
MOV ACC,R1
JB ACC.7, QRT

 MOV A,R2
JNB ACC.7,POS ;IF VOLTS POS, JUMP TO POS:
JNB 0D5H,SAV ;IF VOLTS STARTED NEG, GO TO SAV
SETB 0D1H ;SET POSNEG BIT
JMP SAV ;GO TO THE SAV

POS:
SETB 0D5H ;SET "POS" BIT
JNB 0D1H,SAV ;UNLESS "POSNEG" SET, GO TO SAV
JNB CALLS.0,QRT
MOV A,R5 ;CURRENT LS

 MOV R7,A ;current LS
 MOV A,R4 ;CURRENT MS
 MOV R6,A ;CURRENT MS
QRT:
 SETB 090H ;RAISE CHIP SELECT BAR

RET
SAV:

MOV A,R5 ;CURRENT LS
 MOV R7,A ;current LS
 MOV A,R4 ;CURRENT MS
 MOV R6,A ;CURRENT MS

LJMP LOOP1 ;LOOP1 IS TOO FAR FOR RELATIVE JUMP
END

15.3 “Init3ph”
;THIS ROUTINE IS THE NIBBLE WRITER USED IN INITIALIZATION OF THE LCD

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _INIT_LCD ; Make subroutine global

RSEG TCOD ;Assemble to a certain segment
_INIT_LCD:
 MOV ACC, R7 ;Move passed byte to ACC
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;HI-Z THE DIP SWITCH
54 DS279RD2

CRD5460-1
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK
 RET ;Exit subroutine
END

15.4 “Ins3ph”
;THIS ROUTINE IS PASSED AN INSTRUCTION WHICH IS WRITTEN TO THE LCD

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _INS_LCD ; Make subroutine global

RSEG TCOD ;Assemble to a certain segment
_INS_LCD:
 MOV ACC, R7 ;Move passed byte to ACC
 SWAP A ;PUT HI NIBBLE AT LOW END
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;HI Z DIP SWITCHES
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK

 MOV ACC, R7 ;Move passed byte to ACC
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;HI Z DIP SWITCHES
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK

;checks for not busy. This code works but has been replaced by a delay (for 200)
; SETB P2.0 ;bit zero will be read
; SETB P2.1 ;bit one will be read
; SETB P2.2 ;bit two will be read
; SETB P2.3 ;bit 3 for busy bit
; SETB P2.5 ;R/W TO READ
;LA1:
; SETB P2.6 ;RAISE E CLOCK
; MOV C,P2.3 ;BUSY BIT TO CARRY FLAG
; CLR P2.6 ;LOWER E CLOCK
; SETB P2.6 ;RAISE E CLOCK FOR LOWER NIBBLE
; CLR P2.6 ;LOWER E CLOCK FOR LOWER NIBBLE
; JC LA1 ;AGAIN IF CARRY SET
 RET ; Exit subroutine
END

15.5 “lcd3”
;THIS ROUTINE IS PASSED AN INSTRUCTION WHICH IS WRITTEN TO THE LCD

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _INS_LCD ; Make subroutine global

RSEG TCOD ;Assemble to a certain segment
_INS_LCD:
 MOV ACC, R7 ;Move passed byte to ACC
 SWAP A ;PUT HI NIBBLE AT LOW END
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;HI Z DIP SWITCHES
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK

 MOV ACC, R7 ;Move passed byte to ACC
DS279RD2 55

CRD5460-1
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;HI Z DIP SWITCHES
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK

;checks for not busy. This code works but has been replaced by a delay (for 200)
; SETB P2.0 ;bit zero will be read
; SETB P2.1 ;bit one will be read
; SETB P2.2 ;bit two will be read
; SETB P2.3 ;bit 3 for busy bit
; SETB P2.5 ;R/W TO READ
;LA1:
; SETB P2.6 ;RAISE E CLOCK
; MOV C,P2.3 ;BUSY BIT TO CARRY FLAG
; CLR P2.6 ;LOWER E CLOCK
; SETB P2.6 ;RAISE E CLOCK FOR LOWER NIBBLE
; CLR P2.6 ;LOWER E CLOCK FOR LOWER NIBBLE
; JC LA1 ;AGAIN IF CARRY SET
 RET ; Exit subroutine
END

15.6 “longdiv”
;This program is set up as a function for calling from Franklin C compiler
;The EXTERN DATA here should be GLOBAL in the C program. See Bob’s write-up
;on the use and limitations of this general purpose routine

$DEBUG

TCOD SEGMENT CODE ;Relocatable, called from C, with identical name

EXTRN DATA(NUMERATOR, DENOMINATOR, QUOTIENT)
EXTRN NUMBER(NUMERATOR_BYTES, QUOTIENT_BYTES)
PUBLIC LONG_DIVIDE, TIMES_TWO_AND_COMPARE

RSEG TCOD ;Assemble to a certain segment
BYTE_COUNT EQU R2
BIT_COUNT EQU R3
HIGHEST_NUMERATOR_BYTEEQU R4 ;pointer
HIGHEST_DENOMINATOR_BYTEEQUR5 ;pointer

LONG_DIVIDE:
MOV A,#NUMERATOR
MOV R0,#NUMERATOR_BYTES
ADD A,@R0
DEC A
MOV R4,A
MOV A,#DENOMINATOR
MOV R0,#NUMERATOR_BYTES
ADD A,@R0
DEC A
MOV R5,A
MOV R0,#QUOTIENT_BYTES
MOV A,@R0
MOV B,#8
MUL AB
JNB OV,$+4 ;to MOV bit_count
RET
MOV BIT_COUNT,A ;BITS IN QUOTIENT

ALGORITHM:
CALL TIMES_TWO_AND_COMPARE
MOV F0,C ;TEMP SAVE qn IN F0

; SHIFT qn INTO QUOTIENT:
MOV R0,#QUOTIENT_BYTES

 MOV A,@R0
MOV BYTE_COUNT,A ;BOB’S INDIRECT LOAD
MOV R0,#QUOTIENT
56 DS279RD2

CRD5460-1
Q_SHIFT:
MOV A,@R0
RLC A
MOV @R0,A
INC R0
DJNZ BYTE_COUNT,Q_SHIFT

JNB F0,BIT_COUNT_TEST
MOV R0,#NUMERATOR_BYTES
MOV A,@R0
MOV BYTE_COUNT,A ;BOB’S INDIRECT LOAD
MOV R0,#NUMERATOR
MOV R1,#DENOMINATOR
CLR C

SUBTRACT:
MOV A,@R0
SUBB A,@R1
MOV @R0,A
INC R0
INC R1
DJNZ BYTE_COUNT,SUBTRACT

BIT_COUNT_TEST:
DJNZ BIT_COUNT,ALGORITHM
CLR OV
RET

TIMES_TWO_AND_COMPARE:
MOV R0,#NUMERATOR_BYTES
MOV A,@R0
MOV BYTE_COUNT,A ;6, Bob’s indirect load
MOV R0,#NUMERATOR ;pointer to LS num byte
CLR C

LEFT_SHIFT: ;SHIFTS ENTIRE 6-BYTE NUM (one bit left)
MOV A,@R0 ;move byte to accum
RLC A ;shift accum left
MOV @R0,A ;put accum back
INC R0 ;point to next higher byte
DJNZ BYTE_COUNT,LEFT_SHIFT ;dec r2, jump back six times
JC ERROR ;CY = 1 if TIMES_TWO indicates overflow

MOV R0,#NUMERATOR_BYTES
MOV A,@R0
MOV BYTE_COUNT,A ;6, BOB’S INDIRECT, load BYTE_COUNT again
MOV A,HIGHEST_NUMERATOR_BYTE ;R4
MOV R0,A ; R0 points highest num
MOV A,HIGHEST_DENOMINATOR_BYTE ;R5
MOV R1,A ;R1 points highest den

COMPARISON:
MOV A,@R0
MOV B,@R1
CJNE A,B,DONE ;SETS CY IF NUMERATOR < DENOMINATOR

;CLEARS CY IF NUMERATOR >= DENOMINATOR
DEC R0
DEC R1
DJNZ BYTE_COUNT,COMPARISON

DONE: CPL C ;CLEARS CY IF NUMERATOR < DENOMINATOR
;SETS CY IF NUMERATOR >= DENOMINATOR

RET ;THUS CY = qn

ERROR: SETB OV
POP ACC
POP ACC
RET

END
DS279RD2 57

CRD5460-1
15.7 “mult24”
;USING LONG DIV VARIABLE NAMES FOR THIS MULTIPLY ROUTINE
$DEBUG

TCOD SEGMENT CODE ;Relocatable, called from C, with identical name

EXTRN DATA(NUMERATOR, DENOMINATOR, QUOTIENT) ;ARRAY POINTERS
PUBLIC MULT24

RSEG TCOD ;Assemble to a certain segment
MULT24:

MOV R0,#NUMERATOR
MOV A,@R0

 MOV R1,#DENOMINATOR
 MOV B,@R1
 MUL AB ; "NUMERATOR[0]" x "DENOMINATOR[0]"
 MOV QUOTIENT,A
 MOV (QUOTIENT + 1),B
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0
 MOV B,@R1
 MUL AB ; "NUMERATOR[1]" x "DENOMINATOR[0]"
 ADD A,(QUOTIENT + 1) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 1),A ;
 MOV A,B ;
 ADDC A,#0 ;ADD ANY C FLAG
 MOV (QUOTIENT + 2),A;
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0 ;
 MOV B,@R1 ;
 MUL AB ; "NUMERATOR[2]" x "DENOMINATOR[0]"
 ADD A,(QUOTIENT + 2) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 2),A ;
 MOV A,B ;
 ADDC A,#0 ;ADD ANY C FLAG
 MOV (QUOTIENT + 3),A;

 DEC R0
 DEC R0

INC R1

MOV A,@R0
MOV B,@R1

 MUL AB ; "NUMERATOR[0]" x "DENOMINATOR[1]"
 ADD A,(QUOTIENT + 1) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 1),A ;
 MOV A,B ;
 ADDC A,(QUOTIENT + 2);ADD ANY C FLAG
 MOV (QUOTIENT + 2),A;
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0
 MOV B,@R1
 MUL AB ; "NUMERATOR[1]" x "DENOMINATOR[1]"
 ADD A,(QUOTIENT + 2) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 2),A ;
 MOV A,B ;
 ADDC A,(QUOTIENT + 3);ADD ANY C FLAG
 MOV (QUOTIENT + 3),A;
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0 ;
 MOV B,@R1 ;
 MUL AB ; "NUMERATOR[2]" x "DENOMINATOR[1]"
 ADD A,(QUOTIENT + 3) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 3),A ;
 MOV A,B ;
 ADDC A,#0 ;ADD ANY C FLAG
 MOV (QUOTIENT + 4),A;

 DEC R0
 DEC R0
58 DS279RD2

CRD5460-1
INC R1

MOV A,@R0
MOV B,@R1

 MUL AB ; "NUMERATOR[0]" x "DENOMINATOR[2]"
 ADD A,(QUOTIENT + 2) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 2),A ;
 MOV A,B ;
 ADDC A,(QUOTIENT + 3);ADD ANY C FLAG
 MOV (QUOTIENT + 3),A;
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0
 MOV B,@R1
 MUL AB ; "NUMERATOR[1]" x "DENOMINATOR[2]"
 ADD A,(QUOTIENT + 3) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 3),A ;
 MOV A,B ;
 ADDC A,(QUOTIENT + 4);ADD ANY C FLAG
 MOV (QUOTIENT + 4),A;
 INC R0 ;ONLY R0 INCREMENTED HERE

MOV A,@R0 ;
 MOV B,@R1 ;
 MUL AB ; "NUMERATOR[2]" x "DENOMINATOR[2]"
 ADD A,(QUOTIENT + 4) ;ADD , MAYBE SET C FLAG
 MOV (QUOTIENT + 4),A ;
 MOV A,B ;
 ADDC A,#0 ;ADD ANY C FLAG
 MOV (QUOTIENT + 5),A;

RET

END

15.8 “nopt prototypes”
/*PROTOTYPES*/

void gete(void);
void hcreg(void);
void usefv(void);
void lcdmi(void);
void undip(void);
void nege(void);
void rmsd(void);
void cume(void);
void pwfk(void);
void Delay(int);
void shif(void);
void LCD_D(void);
void LCD_F(void);
void decode_command(char command);
void write_to_register(char command,char low,char mid, char high);
void read_register(char command);
extern int early(void);
extern void TXSER(char);
extern char RXSER(void);
extern char receive_byte(void);
extern void transfer_byte(char);
extern void LCD_3(char,char,char);
extern void WR_LCD(char);
extern void INS_LCD(char);
extern voidLONG_DIVIDE(void);
extern void MULT24(void);
extern void WR_EE(char,char,char);
extern char RD_DIP(void);
extern void RD_EE(char);

extern void INIT_LCD(char);
DS279RD2 59

CRD5460-1
/* BYTE Register equates for the register ports */
sfr P0 = 0x80;
sfr P1 = 0x90;
sfr P2 = 0xA0;
sfr P3 = 0xB0;
sfr PSW = 0xD0;
sfr ACC = 0xE0;
sfr B = 0xF0;
sfr SP = 0x81;
sfr DPL = 0x82;
sfr DPH = 0x83;
sfr PCON = 0x87;
sfr TCON = 0x88;
sfr TMOD = 0x89;
sfr TL0 = 0x8A;
sfr TL1 = 0x8B;
sfr TH0 = 0x8C;
sfr TH1 = 0x8D;
sfr IE = 0xA8;
sfr IP = 0xB8;
sfr SCON = 0x98;
sfr SBUF = 0x99;

/*Interface Equates*/
sbit CS = 0x90; /* 5460 Chip Select */
sbit SDI = 0x91; /* 5460 Serial Data In */
sbit SDO = 0x92; /* 5460 Serial Data Out */
sbit SCLK = 0x93; /* 5460 Serial Clock */
sbit DCLK= 0x94; /* 5460 Clock output */
sbit INTRQ= 0xB2; /* USB Interrupt */
sbit INTB= 0xB3; /* 5460 Interrupt */
sbit EDIR= 0xB4; /* 5460 Energy Direction signal */
sbit EOUT = 0xB5; /* 5460 Energy Output signal */
sbit COMM = 0x97;
sbit MECH = 0xa0; /*for the mechanical counter p2.0*/
/* BIT Register */

/* Accumulator */
sbit ABIT7 = 0xE7;
sbit ABIT6 = 0xE6;
sbit ABIT5 = 0xE5;
sbit ABIT4 = 0xE4;
sbit ABIT3 = 0xE3;
sbit ABIT2 = 0xE2;
sbit ABIT1 = 0xE1;
sbit ABIT0 = 0xE0;

/* B Register */
sbit BBIT7 = 0xF7;
sbit BBIT6 = 0xF6;
sbit BBIT5 = 0xF5;
sbit BBIT4 = 0xF4;
sbit BBIT3 = 0xF3;
sbit BBIT2 = 0xF2;
sbit BBIT1 = 0xF1;
sbit BBIT0 = 0xF0;

/* PSW */
sbit CY = 0xD7;
sbit AC = 0xD6;
sbit F0 = 0xD5;
sbit RS1 = 0xD4;
sbit RS0 = 0xD3;
sbit OV = 0xD2;
sbit P = 0xD0;

/* TCON */
sbit TF1 = 0x8F;
sbit TR1 = 0x8E;
60 DS279RD2

CRD5460-1
sbit TF0 = 0x8D;
sbit TR0 = 0x8C;
sbit IE1 = 0x8B;
sbit IT1 = 0x8A;
sbit IE0 = 0x89;
sbit IT0 = 0x88;

/* IE */
sbit EA = 0xAF;
sbit ES = 0xAC;
sbit ET1 = 0xAB;
sbit EX1 = 0xAA;
sbit ET0 = 0xA9;
sbit EX0 = 0xA8;

/* IP */
sbit PS = 0xBC;
sbit PT1 = 0xBB;
sbit PX1 = 0xBA;
sbit PT0 = 0xB9;
sbit PX0 = 0xB8;

/* P3 */
sbit RD = 0xB7;
sbit WR = 0xB6;
sbit T1 = 0xB5;
sbit T0 = 0xB4;
sbit INT1 = 0xB3;
sbit INT0 = 0xB2;
sbit TXD = 0xB1;
sbit RXD = 0xB0;

/* SCON */
sbit SM0 = 0x9F;
sbit SM1 = 0x9E;
sbit SM2 = 0x9D;
sbit REN = 0x9C;
sbit TB8 = 0x9B;
sbit RB8 = 0x9A;
sbit TI = 0x99;
sbit RI = 0x98;

15.9 “rdee”
;THIS ROUTINE reads the flash eeprom. void RD_EE(char addr);
;PASSED ADDR FOR MS WORD, NEXT WORD ALSO READ
$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ;Relocatable, called from C, with identical name

PUBLIC _RD_EE ; Make subroutine global

EXTRN DATA (HIGH_C, MID_C, LOW_C)

RSEG TCOD ; Assemble to a certain segment
_RD_EE:
 CLR P1.7 ;TURN ON LED
 SETB P1.0 ;CSB 5460 PH-0
 SETB P1.4 ;CSB 5460 PH-1
 SETB P1.5 ;CSB 5460 PH-2
 CLR P1.3 ;EEPROM CLOCK
 SETB P1.2 ;PULLUP RESISTOR FOR DO

;"READ" START BIT
 SETB P1.6 ;CS HI
 SETB P1.1 ;DI HI
 NOP
 SETB P1.3 ;CLK HI
 NOP
 CLR P1.3 ;CLK LOW

MOV ACC,R7 ;passed addr
DS279RD2 61

CRD5460-1
ORL A,#80H ;"READ" CODE

MOV R1,#08H
LBL3:

ACALL LBL2 ;WRITE CODE, ADDR
DJNZ R1,LBL3

MOV R1,#08H
LBL4:

ACALL LBL1 ;READ 31..24 (ZEROS)
DJNZ R1,LBL4

MOV R1,#08H
LBL5:

ACALL LBL1 ;READ DATA 23..16
DJNZ R1,LBL5

 MOV HIGH_C,ACC

MOV R1,#08H
LBL6:

ACALL LBL1 ;READ DATA 15..8
DJNZ R1,LBL6

 MOV MID_C,ACC

MOV R1,#08H
LBL7:

ACALL LBL1 ;READ DATA 7..0
DJNZ R1,LBL7

 MOV LOW_C,ACC

CLR P1.6 ;CS LOW
SETB P1.7 ;LED OFF

 RET ;Exit subroutine

LBL1:
 SETB P1.3 ;CLK HI

MOV C,P1.2 ;DO TO FLAG
RLC A ;FLAG TO BIT 0

 CLR P1.3 ;CLK LOW
 RET

LBL2:
RLC A ;LEFT BIT TO FLAG
MOV P1.1,C ;FLAG TO DI
NOP

 SETB P1.3 ;CLK HI
 NOP
 CLR P1.3 ;CLK LOW
 RET

END

15.10 “rdip”
;THIS ROUTINE reads the dip sw
$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC RD_DIP ; Make subroutine global

RSEG TCOD ; Assemble to a certain segment
RD_DIP:

 MOV ACC,#1Fh
 MOV P2,ACC

NOP
 MOV ACC,P2 ;READ DIP
 SETB P2.7 ;HI Z DIPS
 ANL ACC,#1FH ;MASK OFF DIP BITS
 MOV R7,ACC ; RETURN THIS
62 DS279RD2

CRD5460-1
 RET ;Exit subroutine
END

15.11 “receive”
;**
;* Routine - RECEIVE_BYTE
;* Input - none
;* Output - Byte received is placed in R7
;* Description - This subroutine receives 1 byte from converter
;**

; The function prototype is: char RECEIVE_BYTE(void);

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC RECEIVE_BYTE; Make subroutine global

RSEG TCOD ; Assemble to a certain segment
RECEIVE_BYTE:

MOV R1,#08 ; Set count to 8 to receive byte
SETB P1.1 ; Set SDI when not in use

LOOP: ; Receive the byte
MOV C,P1.2 ; Move bit to carry
RLC A ; Rotate A in preparation for next bit
SETB P1.3 ; Set SCLK
CLR P1.3 ; Clear SCLK
DJNZ R1,LOOP ; Decrement byte, repeat loop if not zero

MOV R7,A ; Byte to be returned is placed in R7
RET ; Exit subroutine

END

15.12 “rxser”
;**
;* Routine - RXSER
;* Input - none
;* Output - Byte received is placed in R7
;* Description - This subroutine receives 1 byte from converter
;* via UART. It uses the RS-232 serial protocol to transmit
;* one byte from a PC/UART system to the 8051.
;**

; The function prototype is: char RXSER(void);

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC RXSER ; Make subroutine global

RSEG TCOD ; Assemble to a certain segment
RXSER:

JNB SCON.0,$; Poll RI
MOV R7,SBUF ; Place received byte in R7
CLR SCON.0 ; Reset RI bit
RET

END
DS279RD2 63

CRD5460-1
15.13 “transfer”
;**
;* Routine - transfer_byte
;* Input - Byte to be transmitted is placed in Accumulator
;* Output - None
;* Description - This subroutine sends 1 byte to converter
;**

;The function prototype is: void TRANSFER_BYTE(char);

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _TRANSFER_BYTE ; Make subroutine global

RSEG TCOD ; Assemble to a certain segment
_TRANSFER_BYTE:

MOV A, R7 ; Move byte to be transmitted to ACC
MOV R1,#08 ; Set count to 8 to transmit byte
CLR P1.3 ; Clear SCLK

loop: ; Send Byte
RLC A ; Rotate Accumulator, send MSB 1st
MOV P1.1,C ; Transmit MSB first through C bit
SETB P1.3 ; Set SCLK
CLR P1.3 ; Clear SCLK
DJNZ R1,loop ; Decrement byte, repeat loop if not zero
SETB P1.1 ; Reset SDI to one when not transmitting
RET ; Exit subroutine

END

15.14 “txser”
;**
;* Routine - TXSER
;* Input - Byte to be transmitted is placed in R7
;* Output - None
;* Description - This subroutine transfers 1 byte from converter
;* via UART. It uses the RS-232 serial protocol to transmit
;* one byte from a 80C51 to the PC/UART system. To
;* function properly, the programmer must first initialize the
;* TI bit in the SCON register to 0X01.
;**

;The function prototype is: void TXSER(char);

$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _TXSER ; Make subroutine global

RSEG TCOD ;Assemble to a certain segment
_TXSER: JNB SCON.1,$; Poll TI

CLR SCON.1 ; Reset TI
MOV SBUF, R7 ; Move byte to output register
RET ; Exit subroutine

END

15.15 “wr3ph”
;THIS ROUTINE IS PASSED ASCII WHICH IS WRITTEN TO LCD DISPLAY AT THE CURSOR
$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _WR_LCD ; Make subroutine global
64 DS279RD2

CRD5460-1
RSEG TCOD ;Assemble to a certain segment
_WR_LCD:
 MOV ACC, R7 ;Move passed byte to ACC
 SWAP A ;PUT HI NIBBLE AT LOW END
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;Bit for HI-Z DIP SWITCH
 SETB ACC.4 ;RS HI FOR ASCII
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK

 MOV ACC, R7 ;Byte to ACC again, no swap
 ANL ACC,#0FH ;CLEAR HI NIBBLE OF ACCUM
 SETB ACC.7 ;Bit for HI-Z THE DIP SWITCH
 SETB ACC.4 ;RS HI FOR ASCII
 MOV P2,ACC ;MOVE ACCUM TO PORT 2
 SETB P2.6 ;RAISE E CLOCK
 CLR P2.6 ;LOWER E CLOCK
;check for not busy. This code works, but has been replaced by the txser delay
; SETB P2.3 ;DATA7 LINE IS FOR INPUT
; SETB P2.5 ;R/W TO READ
;LAB1:
; SETB P2.6 ;RAISE E CLOCK
; MOV C,P2.3 ;BUSY BIT TO CARRY FLAG
; CLR P2.6 ;LOWER E CLOCK
; SETB P2.6 ;RAISE E CLOCK FOR LOWER NIBBLE
; CLR P2.6 ;LOWER E CLOCK FOR LOWER NIBBLE
; JC LAB1 ;AGAIN IF CARRY SET
 RET ;Exit subroutine
END

15.16 “Wree”
;THIS ROUTINE writes 16 BITS TO eeprom. void WR_EE(addr,ZERO,HI) OR void WR_EE(addr,MID,LOW);
$DEBUG
USING 0 ; Use register bank 0
TCOD SEGMENT CODE ; Relocatable, called from C, with identical name

PUBLIC _WR_EE ; passing = underscore

RSEG TCOD ; Assemble to a certain segment
_WR_EE:
 CLR P1.7 ;TURN ON LED
 SETB P1.0 ;CSB 5460 PH-0
 SETB P1.4 ;CSB 5460 PH-1
 SETB P1.5 ;CSB 5460 PH-2
 CLR P1.6 ;GET FLASH CS LOW
 CLR P1.3 ;EEPROM CLOCK LOW
 SETB P1.2 ;PULLUP RESISTOR FOR SDO
 NOP
 NOP
; EWEN START BIT
 SETB P1.6 ;CS HI
 SETB P1.1 ;DI HI
 NOP
 SETB P1.3 ;CLK HI
 NOP
 CLR P1.3 ;CLK LOW

MOV ACC,#30H ;"EWEN" CODE,ADDR
MOV R1,#08H

LBL3:
ACALL LBL1
DJNZ R1,LBL3
CLR P1.6 ;CS LOW

 NOP
;"WRITE" START BIT
 SETB P1.6 ;CS HI
 SETB P1.1 ;DI HI
 NOP
 SETB P1.3 ;CLK HI
 NOP
DS279RD2 65

CRD5460-1
 CLR P1.3 ;CLK LOW
MOV ACC,R7 ;ADDR BYTE (from C PROGRAM)
ORL A,#40H ;"WRITE" CODE to bits 7, 6
MOV R1,#08H

LBL4:
ACALL LBL1
DJNZ R1,LBL4

MOV ACC,R5 ;THE MS BYTE
MOV R1,#08H

LBL5:
ACALL LBL1
DJNZ R1,LBL5

MOV ACC,R3 ;LS BYTE
MOV R1,#08H

LBL6:
ACALL LBL1
DJNZ R1,LBL6

CLR P1.6 ;CS LOW
SETB P1.3 ;CLK HI
SETB P1.6 ;CS HI
CLR P1.3 ;CLK LOW

LBL2:
SETB P1.3 ;CLK HI
NOP
CLR P1.3 ;CLK LOW
JNB P1.2,LBL2 ;WAIT FOR BUSYBAR HI
CLR P1.6 ;CS LOW

 SETB P1.7 ;TURN OFF LED
 RET ;Exit subroutine

LBL1:
RLC A ;LEFT BIT TO FLAG
MOV P1.1,C ;FLAG TO DI

 NOP
 SETB P1.3 ;CLK HI
 NOP
 CLR P1.3 ;CLK LOW
 RET
END
66 DS279RD2

• Notes •

