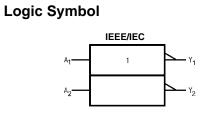
FAIRCHILD

NC7WZU04 TinyLogic[™] UHS Dual Unbuffered Inverter

General Description


Features

- Space saving SC70 6-lead package
- Ultra small MicroPak[™] leadless package
- Unbuffered for crystal oscillator and analog applications
- Balanced Output Drive: ±8 mA at 4.5V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- \blacksquare Low Quiescent Power: I_{CC} < 1 μA at 5V V_{CC}, T_A = 25^{\circ} C

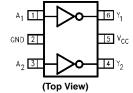
Ordering Code:

FAIRCH SEMICONDI NC7WZU TinyLog	JCTOR TM	S Dual L	Jnbuffered Inverter	March 1999 Revised April 2002
General De The NC7WZU04 child's Ultra High saving SC70 6-le fered circuit desig log applications. CMOS technolog output drive while over a very broa specified to opera inputs are high im voltages up to 7V	is a dual unbu Speed Series o ad package. Th n is intended fo The device is waintaining low d V_{CC} operatin te over the 1.65 pedance when	Iffered inverter fr f TinyLogic [™] in t ne special purpos or crystal oscillate fabricated with a ttra high speed 1 w static power di ng range. The to to 5.5V V _{CC} ra V _{CC} is 0V. Input:	 he space Ultra small MicroPak[™] lead Unbuffered for crystal oscilla Balanced Output Drive: ±8 ri Broad V_{CC} Operating Rang Low Quiescent Power: I_{CC} 	less package ator and analog applications mA at 4.5V V _{CC} e: 1.65V to 5.5V
Ordering C	ode:			
Order Number	j-		Package Description	Supplied As
NC7WZU04P6X	MAA06A	ZU4	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel

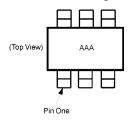
NC7WZU04

Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output

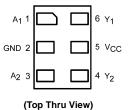

Function Table

Y =	A
Input	Output
Α	Y
L	Н
н	L


H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for SC70



Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < -0.5V	–50 mA
$V_{OUT} > 0.5V, V_{CC} = GND$	+50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	–65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Recommended Operating Conditions (Note 2)

Conditions (Note 2)	
Supply Voltage Operating (V_{CC})	1.8V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Thermal Resistance (θ_{JA})	350°C/W

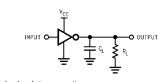
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	v _{cc}	-	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions	
Symbol		(V)	Min	Тур Мах		Min	Max	Units	Conditions	
VIH	HIGH Level	1.8 to 2.7	0.85 V _{CC}			0.85 V _{CC}		V		
	Input Voltage	3.0 to 5.5	0.8 V _{CC}			0.8 V _{CC}		v		
VIL	LOW Level	1.8 to 2.7			0.15 V _{CC}		0.15 V _{CC}	v		
	Input Voltage	3.0 to 5.5			0.2 V _{CC}		0.2 V _{CC}	v		
V _{OH}	HIGH Level	1.65	1.55	1.65		1.55				
	Output Voltage	1.8	1.6	1.79		1.6				
		2.3	2.1	2.29		2.1		V	$V_{IN} = V_{IL}$	$I_{OH} = -100 \ \mu\text{A}$
		3.0	2.7	2.99		2.7				
		4.5	4.0	4.48		4.0				
		1.65	1.26	1.52		1.29				$I_{OH} = -2 \text{ mA}$
		2.3	1.9	2.19		1.9				$I_{OH} = -2 \text{ mA}$
		3.0	2.4	2.82		2.4		V	$V_{IN} = GND$	$I_{OH} = -4mA$
		3.0	2.3	2.73		2.3				$I_{OH} = -6 \text{ mA}$
		4.5	3.8	4.24		3.8				$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level	1.65		0.01	0.2		0.2			
	Output Voltage	1.8		0.01	0.2		0.2			
		2.3		0.01	0.2		0.2	V	$V_{IN} = V_{IH}$	$I_{OL}=100\;\mu A$
		3.0		0.01	0.3		0.3			
		4.5		0.01	0.5		0.5			
		1.65		0.10	0.24		0.24			I _{OL} =2 mA
		2.3		0.12	0.3		0.3			I _{OL} =2 mA
		3.0		0.19	0.4		0.4	V	$V_{IN} = V_{CC}$	$I_{OL} = 4mA$
		3.0		0.29	0.55		0.55			$I_{OL} = 6 \text{ mA}$
		4.5		0.29	0.55		0.55			$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V, GND	
lcc	Quiescent Supply Current	1.65 to 5.5			1.0		10	μΑ	$V_{IN} = 5.5V, 0$	GND
ICCPEAK	Peak Supply Current	1.8		0.2					$V_{OUT} = Open$ $V_{IN} = Adjust for$ Peak I _{CC} Current	
	in Analog Operation	2.5		2				mA		
		3.3		5				ma		
		5.0		15						

NC7WZU04


NC7WZU04

AC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.65	1.5	5.5	9.8	1.5	11.0			
t _{PHL}		1.8	1.5	4.6	8.1	1.5	8.9			
		2.5 ± 0.2	1.2	3.3	5.7	1.2	6.3	ns	$C_L = 15 \text{ pF},$	Figures 1, 3
		$\textbf{3.3}\pm\textbf{0.3}$	0.8	2.7	4.1	0.8	4.5		$R_L = 1 \ M\Omega$., 0
		5.0 ± 0.5	0.5	2.2	3.3	0.5	3.6			
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.2	4.0	6.4	1.2	7.0		$C_{L} = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8	3.4	5.6	0.8	6.2	ns	$R_L=500\Omega$	1, 3
CIN	Input Capacitance	0		3				pF		
C _{PD}	Power Dissipation	3.3		3.5				pF	(Note 2)	Figure 2
	Capacitance	5.0		5.5				рг	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})($f_{|N}$) + (I_{CC}static).

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

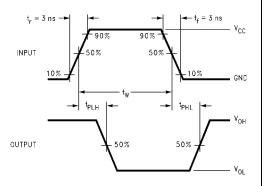
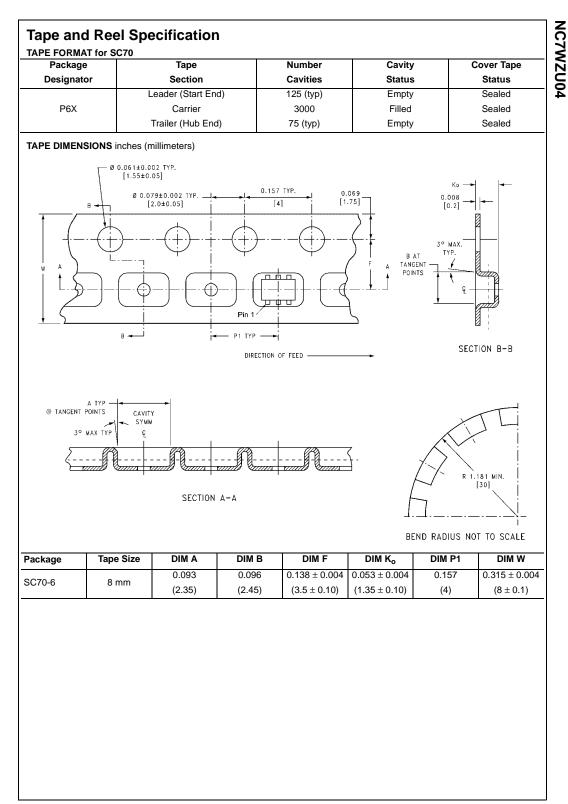
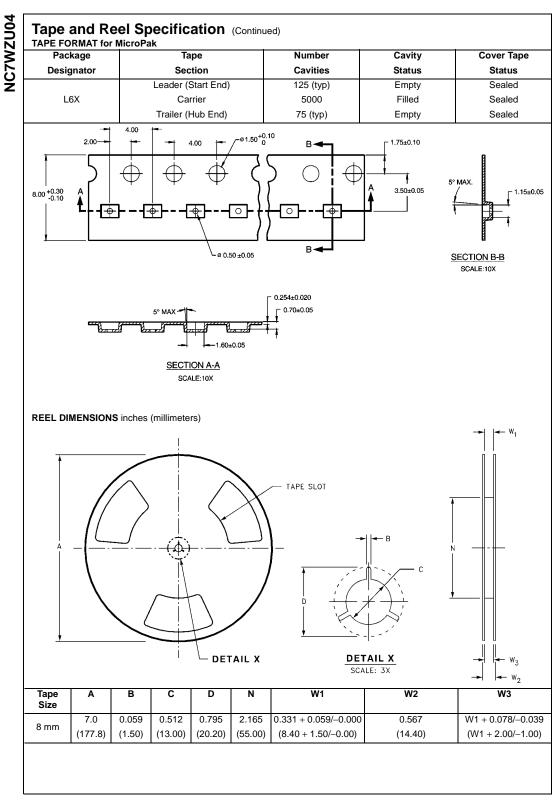
FIGURE 1. AC Test Circuit

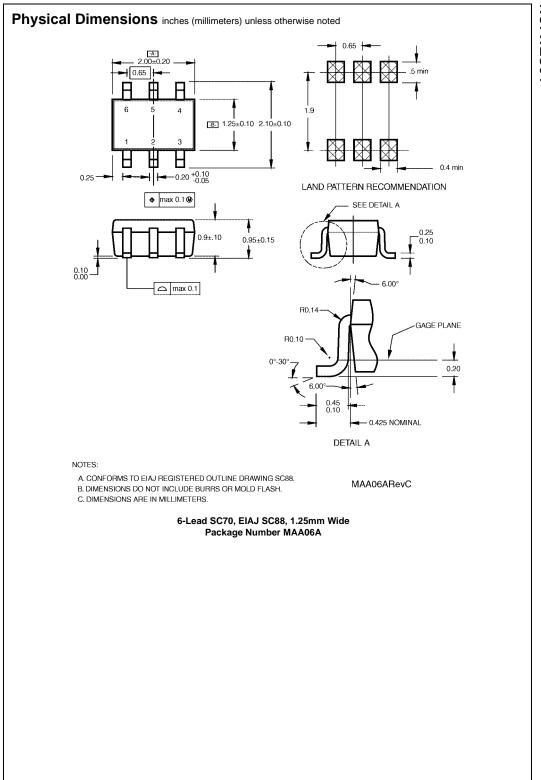
Application Note: When operating the NC7WZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I_{CCPEAK} specification on page 2.

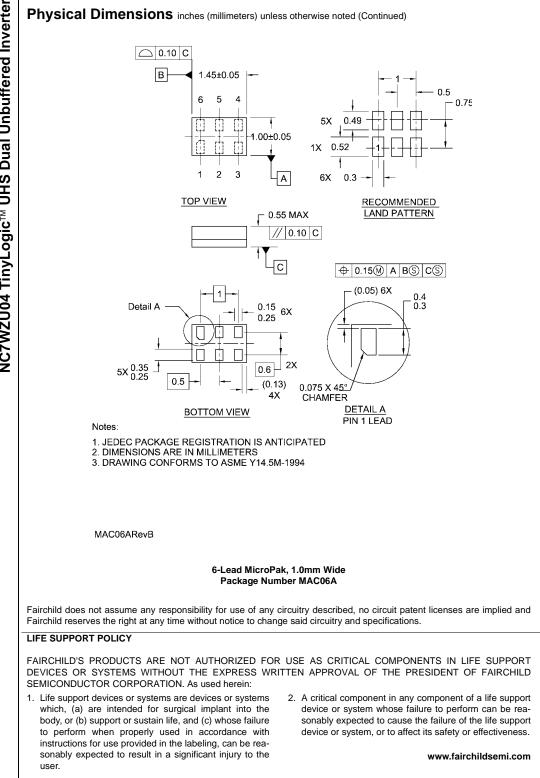
Input = AC Waveform; $t_r = t_f = 1.8$ ns;

PRR = variable; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms



www.fairchildsemi.com

6

NC7WZU04

NC7WZU04 TinyLogic™ UHS Dual Unbuffered Inverter