

MILITARY DATA SHEET

MNDS26F31M-X REV 0A0

Original Creation Date: 01/24/96 Last Update Date: 09/26/96 Last Major Revision Date: 01/24/96

QUAD HIGH SPEED DIFFERENTIAL LINE DRIVER

General Description

The DS26F31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26F31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential driver to twisted-pair or parallel-wire transmission lines.

The DS26F31 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times.

The circuit provides an enable and disable function common to all four drivers. The DS26F31M features TRI-STATE outputs and logical OR-ed complementary enable inputs. The inputs are all LS compatible and are all one unit load.

The DS26F31M offers optimum performance when used with the DS26F32 Quad Differential Line Receiver.

Industry Part Number

DS26F31

Prime Die

M631

Controlling Document

7802302M2A*,MEA**,MFA***

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	2	Static tests at	+125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
2	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
MIL BID 003, Meenod 3003	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

NS Part Numbers

DS26F31ME/883 * DS26F31MJ/883 ** DS26F31MW-MLS DS26F31MW/883 ***

Features

- Military temperature range
- Operation from single +5.0V supply
- Outputs won't load line when Vcc = OV
- Output short circuit protection
- Meets the requirements of EIA standard RS-422
- High output drive capability for 100 Ohms terminated transmission lines

(Absolute Maximum Ratings)

Storage Temperature Range	-65 C to +175 C
Lead Temperature Soldering, 60 seconds	300 C
Supply Voltage	7.0V
Input Voltage	7.0V
Output Voltage	5.5V

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for Note 1: actual device operation.

Recommended Operating Conditions

Temperature

-55 C to +125 C

Supply Voltage

4.5V to 5.5V

Electrical Characteristics

DC PARAMETERS

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vih	Logical "1" Input Voltage	Vcc = 4.5V	2		2		V	1, 2, 3
Vil	Logical "0" Input Voltage	Vcc = 5.5V	2			.8	V	1, 2, 3
Voh	Logical "1" Output Voltage	Vcc = 4.5V, Ioh = -20mA, Vil = .8V, Vih = 2V			2.5		V	1, 2, 3
Vol	Logical "0" Output Voltage	Vcc = 4.5V, Iol = 20mA, Vil = .8V, Vih = 2V				.5	V	1, 2, 3
Iih	Logical "1" Input Current	Vcc = 5.5V, Vin = 2.7V				20	uA	1, 2, 3
III	Logical "0" Input Current	Vcc = 5.5V, Vin = .4V				-200	uA	1, 2, 3
Ii	Input Reverse Current	Vcc = 5.5V, Vin = 7V				.1	mA	1, 2, 3
Ioz	TRI-STATE Output Current	Vcc = 5.5V, Vo = .5V				-20	uA	1, 2, 3
		Vcc = 5.5V, Vo = 2.5V				20	uA	1, 2, 3
Vi	Input Clamp Voltage	Vcc = 4.5V, Iin = -18mA				-1.5	V	1, 2, 3
<pre>Isc(min)</pre>	Output Short Circuit Current	Vcc = 5.5V, Vo = 0V			-30		mA	1, 2, 3
<pre>Isc(max)</pre>	Output Short Circuit Current	Vcc = 5.5V, Vo = 0V				-150	mA	1, 2, 3
Icc Dis	Power Supply Current	Vcc = 5.5V, Vin = .8V or 2V, Ven = .8V, Ven = 2V				50	mA	1, 2, 3
Icc En	Power Supply Current	Vcc = 5.5V, Ven = 2V, Ven = .8V				40	mA	1, 2, 3

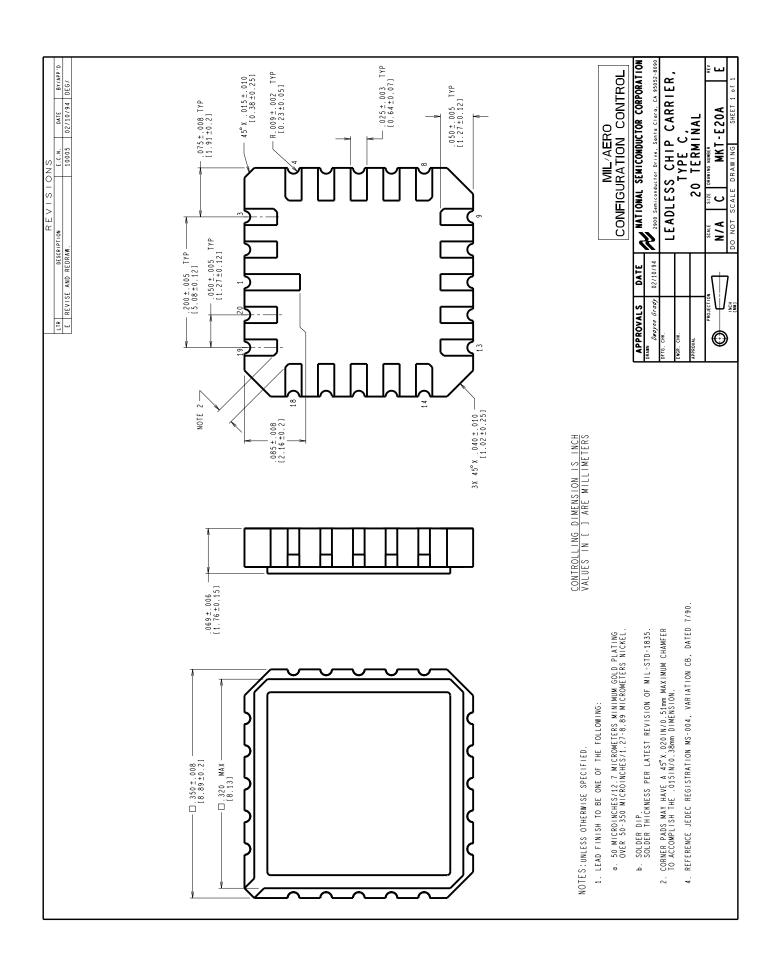
Electrical Characteristics

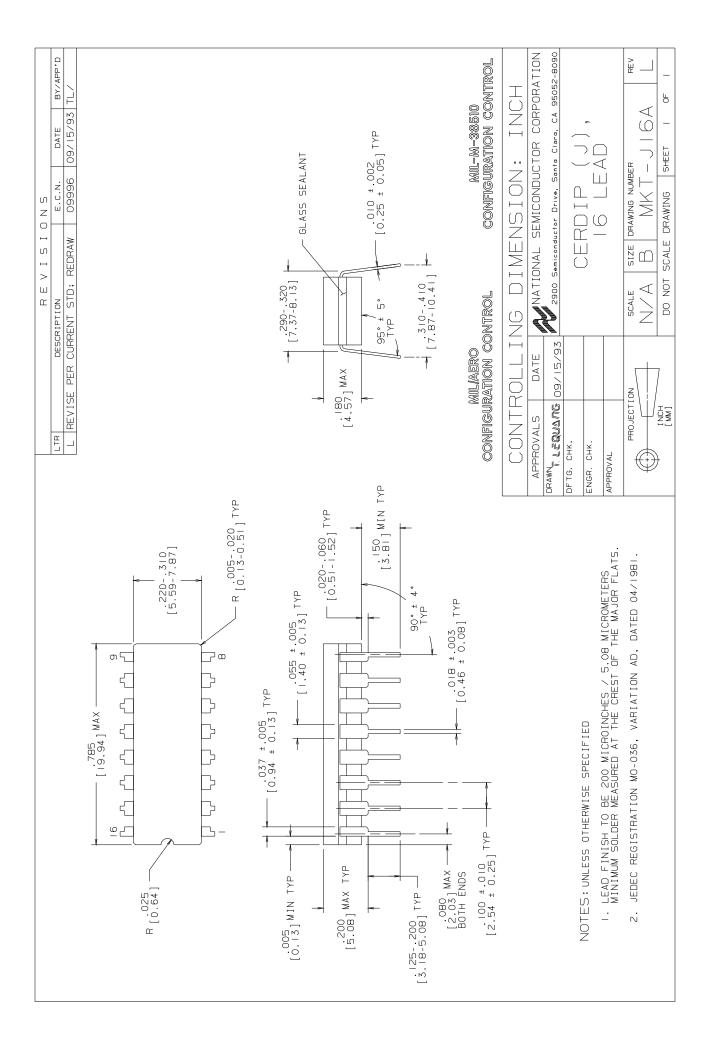
AC PARAMETERS: PROPAGATION DELAY TIME:

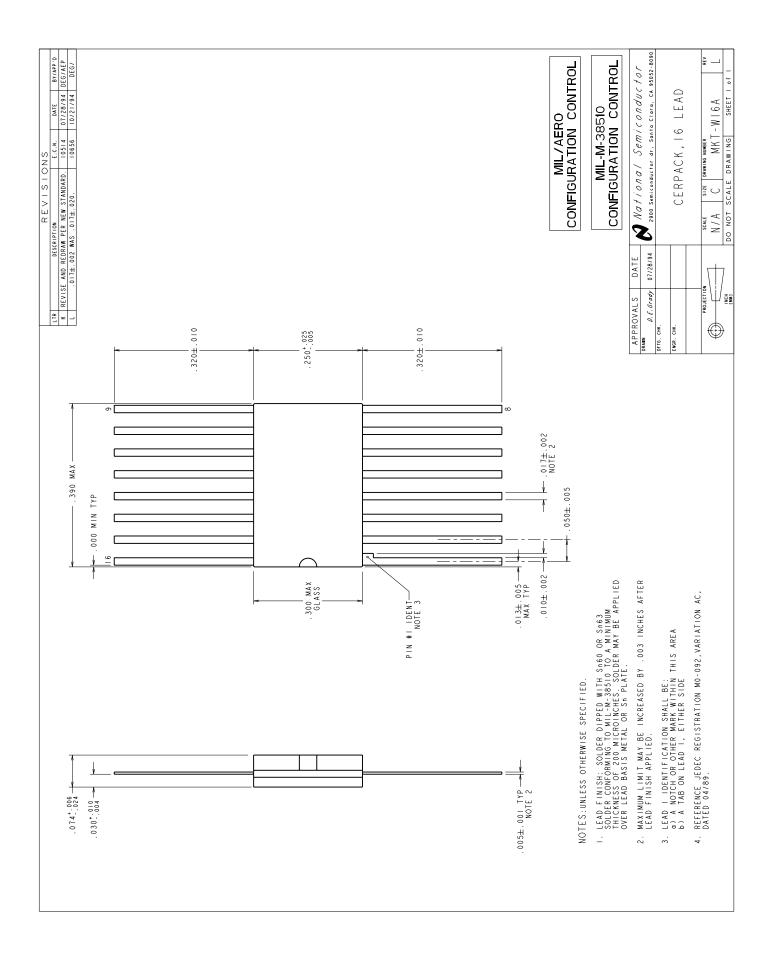
(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Vcc = 5V, Cl = 50pF or equivalent impedance provided by diode load

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
tPLH	Input to Output		3			16	nS	9
			3			24	nS	10, 11
		Cl = 30pF	4			15	nS	9
			4			23	nS	10, 11
tPHL	Input to Output		3			17	nS	9
			3			25	nS	10, 11
		Cl = 30pF	4			15	nS	9
			4			23	nS	10, 11
tLZ	Disable Time		3			38	nS	9
			3			56	nS	10, 11
		CL = 10 pF	4			35	nS	9
			4			53	nS	10, 11
tHZ	Disable Time		3			23	nS	9
		3			30	nS	10, 11	
		CL = 10 pF	4			20	nS	9
			4			27	nS	10, 11
tZL	Enable Time		3			28	nS	9
			3			40	nS	10, 11
		CL = 30pF	4			25	nS	9
			4			37	nS	10, 11
tZH	Enable Time		3			32	nS	9
		3			52	nS	10, 11	
		CL = 30 pF	4			30	nS	9
		4			50	nS	10, 11	
Skew	Output to Output		3			6	nS	9
			3			9	nS	10, 11
		Cl = 30pF	4			4.5	nS	9
			4			7	nS	10, 11
						1	1	L

Note 1: Power dissipation must be externally controlled at elevated temperatures.


Note 2: Note 3: Parameter tested go-no-go only.


Note 3: Tested at 50pF, system capacitance exceed 10 and 30pF. Note 4: Testing at 50pF guarantees limits at 10 and 30pF.


Graphics and Diagrams

GRAPHICS#	DESCRIPTION		
E20ARE	LDLESS CHIP CARRIER, TYPE C 20 TERMINAL(P/P DWG)		
J16ARL	CERDIP (J), 16 LEAD (P/P DWG)		
W16ARL	CERPAC (W), 16 LEAD (P/P DWG)		

See attached graphics following this page.

