

MICROCIRCUIT DATA SHEET

MNLM158A-X REV 3A0

Original Creation Date: 08/14/95 Last Update Date: 10/15/98 Last Major Revision Date: 03/16/98

LOW POWER, DUAL OPERATIONAL AMPLIFIER

General Description

The LM158 series consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of magnitude of the power supply voltage.

Application areas include transducer amplifiers, dc gain blocks and all the conventional op amp circuits which now can be more easily implemented in single power supply systems. For example, the LM158 series can be directly operated off of the standard +5V DC power supply voltage which is used in digital systems and will easily provide the required interface electronics without requiring the additional \pm 15V DC power supplies.

Industry Part Number

LM158

Prime Die

LM158

Controlling Document

See Features Page

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp	Description	Temp	(°C)
1 2 3 4 5 6 7 8A 8B 9 10 11	Static tests at Static tests at Static tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Functional tests at Switching tests at Switching tests at	+25 +125 -55 +25 +125 +25 +125 -55 +25 +125 +125 -55	

NS Part Numbers

LM158AH-QMLV*** LM158AH-SMD* LM158AH/883 LM158AJ-QMLV**** LM158AJ/883**

Features

- SMD : 5962-8771002GA*, PA**, VGA***, VPA****

(Absolute	Maximum	Ratings)
(Note 1)		-

(NOCE I)	
Supply Voltage, V+	32Vdc
Differential Input Voltage	32Vdc
Input Voltage	-0.3Vdc to +32Vdc
Power Dissipation (Note 2)	830 mW
Output Short-Circuit to GND (Note 3)	
(One Amplifier) V+ \leq 15Vdc and TA = 25 C	Continuous
Maximum Junction Temperature	150 C
<pre>Input Current (Vin < -0.3Vdc) (Note 4)</pre>	
Operating Temperature Range	50mA
operating remperature hange	-55 C to +125 C
Storage Temperature Range	-65 C to +150 C
Lead Temperature J-Pkg (Soldering, 10 seconds) H-Pkg (Soldering, 10 seconds)	260 C 300 C
Thermal Resistance ThetaJA	
H-Pkg (Still Air) (500LF/Min Air Flow) J-Pkg (Still Air) (500LF/Min Air Flow)	155 C/W 80 C/.W 132 C/W 81 C/W
ThetaJC H-Pkg J-Pkg	42 C/W 23 C/W
ESD Tolerance (Note 5)	250V

- Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Note 1: Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. The maximum power dissipation must be derated at elevated temperatures and is
- Note 2: dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. Short circuits from ther output to V+ from Vdc, can cause excessive heating and
- Note 3: eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40 mA independent of the magnitude of V+. At values of supply voltage in excess of +15Vdc, continuous short-circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

(Continued)

This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input $\tt PNP$ Note 4: driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward baised and thereby a acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a volve group for the table. a value greater that -0.3Vdc (at 25C). Note 5: Human body model, 1.5 K ohms in series with 100 pF.

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: All voltages referenced to device ground.

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Icc	Power Supply Current	V+ = 5V, Rl = 100K, Vo = 1.4V				1.2	mA	1, 2, 3
		V+ = 30V, Rl = 100K, Vo = 1.4V				3	mA	1
						4	mA	2, 3
Voh	Output Voltage High	V+ = 30V, Rl = 2K Ohms			26		V	1, 2, 3
		V+ = 30V, Rl = 10K Ohms			27		V	1, 2, 3
Vol	Output Voltage Low	V+ = 30V, Rl = 10K Ohms				40	mV	1
	LOW					100	mV	2, 3
		V+ = 30V, Isink = 1uA				40	mV	1
						100	mV	2, 3
		V+ = 5V, Rl = 10K Ohms				40	mV	1
						100	mV	2, 3
Isink	Output Sink Current	V+ = 15V, Vout = 200mV, Vin = 65 mV			12		uA	1
		V+ = 15V, Vout = 2V, Vin = 65mV			10		mA	1
					5		mA	2, 3
Isource	Output Source Current	V+ = 15V, Vin = 65mV, Vout = 2V				-20	mA	1
						-10	mA	2, 3
Ios	Short Circuit Current	V+ = 5V, Vout = 0V			-60		mA	1
Vio	Input Offset Voltage	V+ = 30V, $Vcm = 0V$, $Rs = 50$ Ohms, $Vo = 1.4V$			-2	2	mV	1
					-4	4	mV	2, 3
		V+ = 30V, Vcm = 28V, Rs = 50 Ohms, Vo = 1.4V			-4	4	mV	2, 3
		V+ = 5V, $Vcm = 0V$, $Rs = 50$ Ohms, Vo = 1.4V			-2	2	mV	1
					-4	4	mV	2, 3
		V+ = 30V, Vcm = 28.5V, Rs = 50 Ohms,Vo = 1.4V			-2	2	mV	1
CMRR	Common Mode Rejection Ratio	V+ = 30V, Vin = 0V to 28.5V, Rs = 50 Ohms			70		dB	1
Iib+	Input BIas Current	V+ = 5V, Vcm = 0V			-50	-1	nA	1
					-100	-1	nA	2, 3

Electrical Characteristics

DC PARAMETERS (Continued)

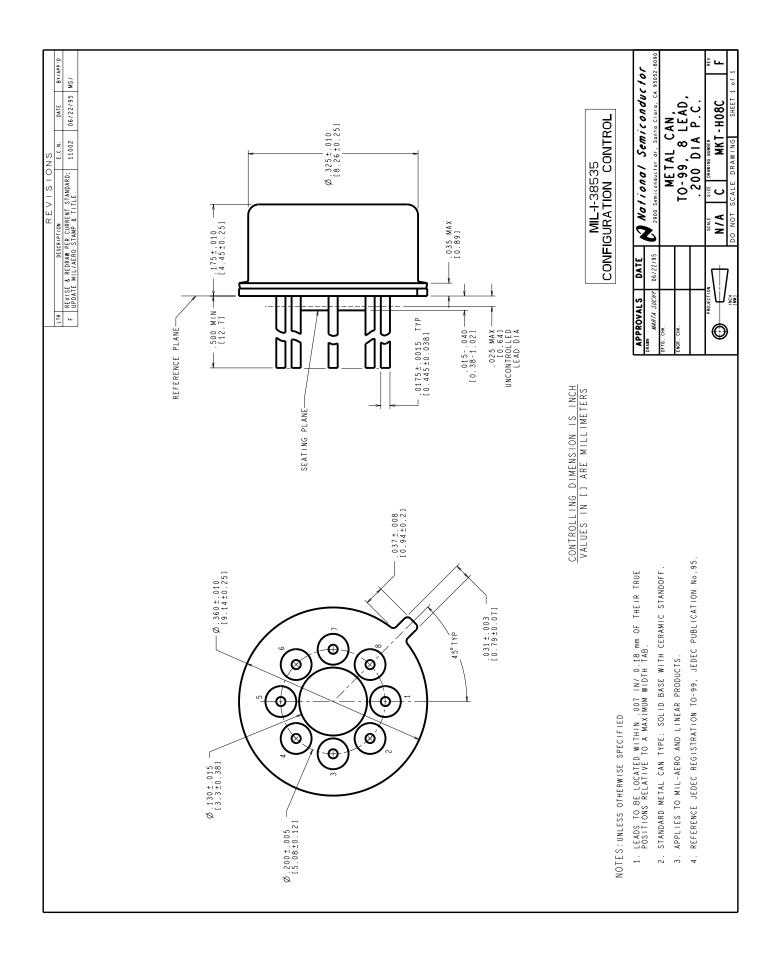
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: All voltages referenced to device ground.

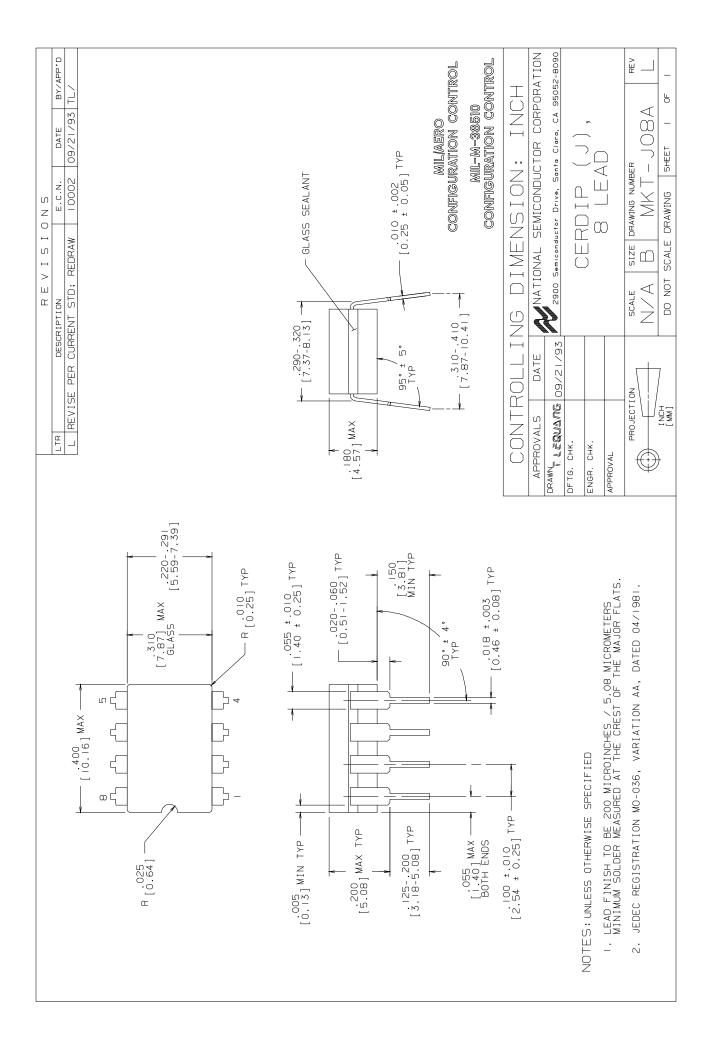
SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Iib-	Input BIas Current	V+ = 5V, $Vcm = 0V$			-50	-1	nA	1
					-100	-1	nA	2, 3
Iio	Input Offset Current	V + = 5V, V cm = 0V			-10	10	nA	1
					-30	30	nA	2, 3
PSRR	Power Supply Rejection Ratio	V + = 5V to 30V, V cm = 0V			65		dB	1
Vcm	Common Mode Voltage Range	V+ = 30V	1			28.5	V	1
	vortage nange		1			28.0	V	2, 3
Vdiff	Differential Input Voltage		2			32	V	1, 2, 3
Avs	Large Signal Gain	V+ = 15V, Rl = 2K Ohms, Vo = 1V to 11V			50		V/mV	4
					25		V/mV	5,б

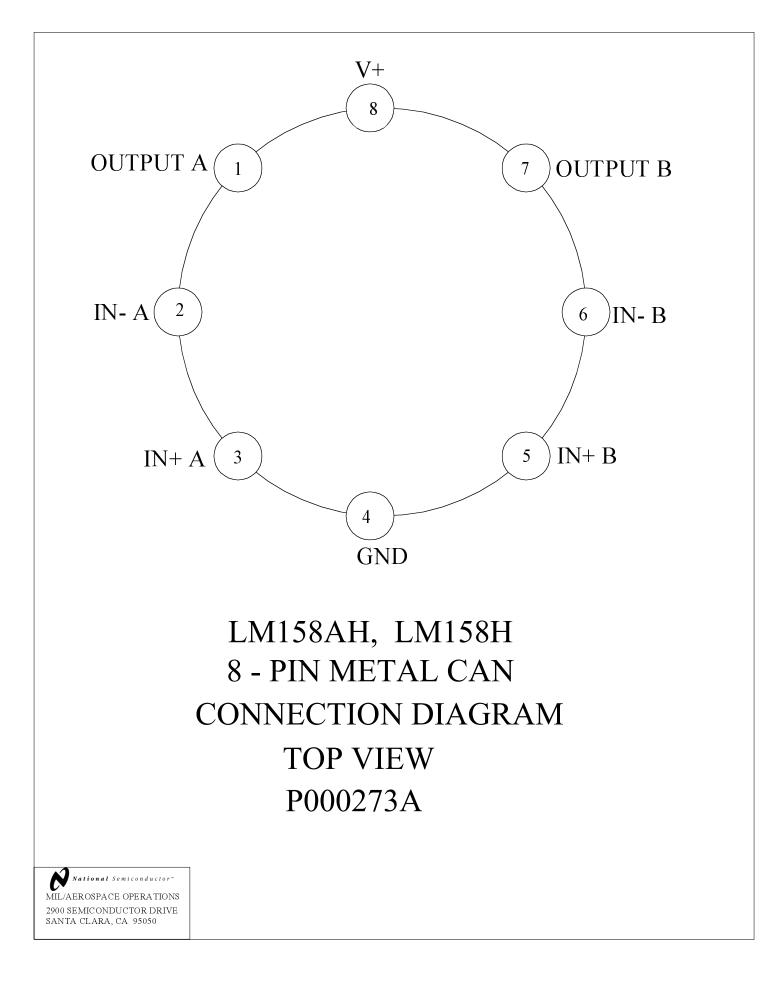
DC PARAMETERS: DRIFT VALUES

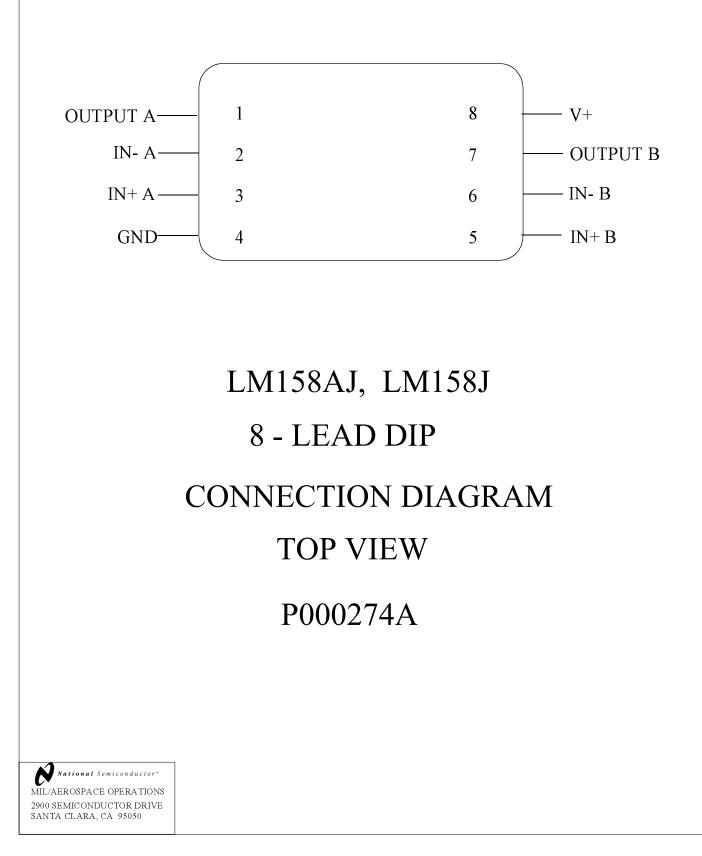
Vio	Input Offset Voltage	V+ = 30V, Vcm = 0V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
		V+ = 30V, Vcm = 28V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
		V+ = 5V, Vcm = 0V, Rs = 50 Ohms, Vo = 1.4V		-0.5	0.5	mV	1
Iib+	Input Bias Current	V+ = 5V, Vcm = 0V		-10	10	nA	1
Iib-	Input Bias Current	V+ = 5V, Vcm = 0V		-10	10	nA	1

Graphics and Diagrams


GRAPHICS#	DESCRIPTION
08571HRC2	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (B/I CKT)
09294HR01	CERDIP (J), 8 LEAD (B/I CKT)
H08CRF	METAL CAN (H), TO-99, 8LD, .200 DIA P.C. (P/P DWG)
J08ARL See attached graphics fol	CERDIP (J), 8 LEAD (P/P DWG)


<u>grap</u> ۱g pag


Graphics and Diagrams (Continued)


GRAPHICS#	DESCRIPTION	
P000273A	METAL CAN (H), 8 LEAD (PINOUT)	
P000274A	CERDIP (J), 8 LEAD (PINOUT)	

See attached graphics following this page.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
2AL	м0001409	10/15/98	Barbara Lopez	Changes: Corrected typo, AVS test limits moved to min column from max column. Changed CMRR condition to: V+ = 30V, Vin = 0V to 28.5V, Rs = 50 Ohms.
3A0	M0002807	10/15/98	Barbara Lopez	Update MDS: MNLM158A-X Rev. 2AL to MNLM158A-X Rev. 3A0. Added "QMLV" devices to MDS. Add reference to "QMLV" device to SMD number. Added Burn-In, Pinout an MKT outline. Changed Drift statement.