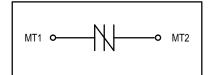
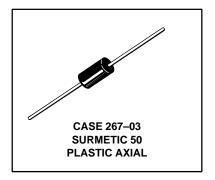
Sidac High Voltage Bilateral Triggers


...bi–directional devices designed for direct interface with the ac power line. Upon reaching the breakover voltage in each direction, the device switches from a blocking state to a low voltage on–state. Conduction will continue like an SCR until the main terminal current drops below the holding current. The plastic axial lead package provides high pulse current capability at low cost. Glass passivation insures reliable operation. Applications are:


- High Pressure Sodium Vapor Lighting
- Strobes and Flashers
- Ignitors
- High Voltage Regulators
- Pulse Generators
- · Ordering Information:

Shipped in Tape & Reel – Add "RL" suffix to device number, i.e. MKP3V120RL

MKP3V120 MKP3V240

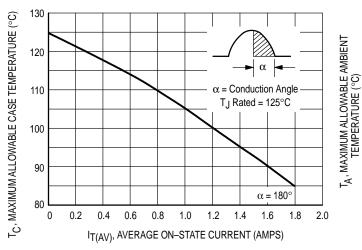
SIDACs 1 AMPERE RMS 120 and 240 VOLTS

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating		Symbol	Min	Max	Unit
Repetitive Breakover Voltage	MKP3V120 MKP3V240	V(BO)	110 220	130 250	Volts
Off–State Repetitive Voltage		V _{DRM}	_	±90	Volts
On–State RMS Current		IT(RMS)	_	1	Amp
On–State Surge Current (Non–repetitive) (60 Hz One Cycle Sine Wave, Peak Value)		ITSM	_	20	Amps
Operating Junction Temperature Range		TJ	-40	+125	°C
Storage Temperature Range		T _{stg}	-40	+150	°C
Lead Solder Temperature (Lead Length ≥ 1/16" from Case, 10 s Max)		_	_	+230	°C

THERMAL CHARACTERISTICS

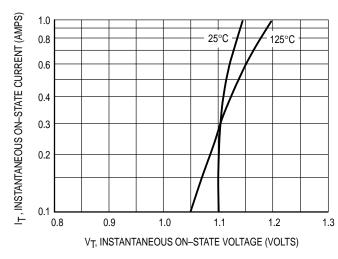
Characteristic	Symbol	Min	Max	Unit
Thermal Resistance, Junction to Lead (Lead Length = 3/8")	$R_{ heta JL}$	_	15	°C/W



MKP3V120 MKP3V240

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted; both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Repetitive Breakover Voltage	MKP3V120 MKP3V240	V(BO)	110 220	_ _	130 250	Volts
Breakover Current	I(BO)	_	_	200	μΑ	
Repetitive Peak Off–State Current (60 Hz Sine Wave, $V_D = 90 \text{ V}$)		I _{DRM}	_	_	10	μΑ
Forward "On" Voltage (I _{TM} = 1 A Peak)		V _{TM}	_	1.1	1.5	Volts
Dynamic Holding Current (60 Hz Sine Wave, $R_L = 100\Omega$)		lн	_	_	100	mA
Switching Resistance		RS	0.1	_	_	kΩ
Maximum Rate of Change of On–State Current		di/dt		50	_	A/μs


CURRENT DERATING

 T_{A} , MAXIMUM ALLOWABLE AMBIENT TEMPERATURE (°C) 140 α = Conduction Angle 120 T_J Rated = 125°C 100 80 $\alpha = 180^{\circ}$ 60 40 20 0 0.2 0.4 0.6 8.0 1.0 1.2 1.4 1.6 1.8 I_{T(AV)}, AVERAGE ON-STATE CURRENT (AMPS)

Figure 1. Maximum Case Temperature

Figure 2. Maximum Ambient Temperature

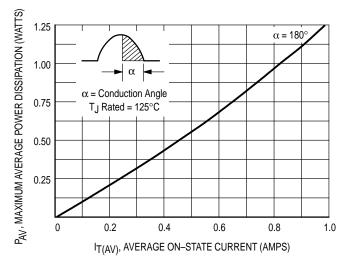


Figure 4. Power Dissipation

THERMAL CHARACTERISTICS

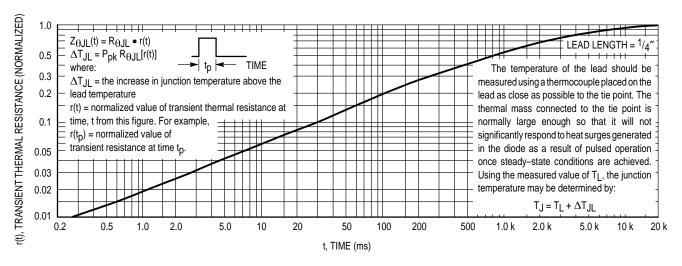


Figure 5. Thermal Response

TYPICAL CHARACTERISTICS

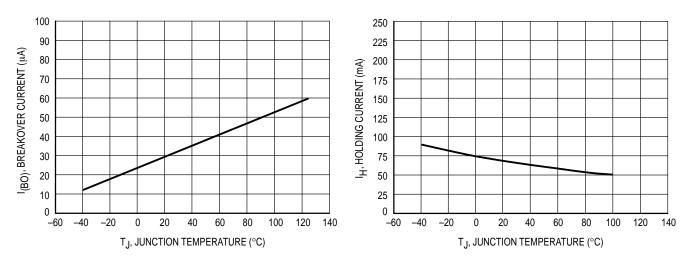


Figure 6. Breakover Current

Figure 7. Holding Current

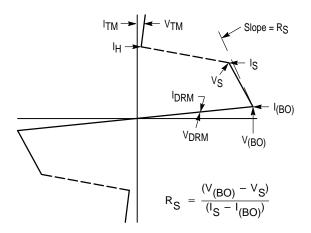
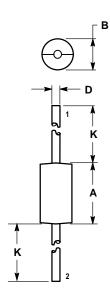



Figure 8. V-I Characteristics

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.370	0.380	9.40	9.65	
В	0.190	0.210	4.83	5.33	
D	0.048	0.052	1.22	1.32	
K	1.000		25.40		

CASE 267-03

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141, 4–32–1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609

Motorola Fax Back System - US & Canada ONLY 1-800-774-1848

- http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26629298

HOME PAGE: http://motorola.com/sps/

MKP3V120/D