

Technical Data Sheet

SSC P200 PL Network Interface Controller

4MHZ

CS*

VSSD 3

XIN 4

хоит 🛛 5

VDDD 6

INT* 7

SCLK 8

SDO 09

SDI 110

20 0 VSSD

18 🛛 VDDA

17 🛛 SI

16 🛛 C1

15 C2

14 T SO

13 VSSA

12 RST*

11 🛛 TS

SSC

P200

Features

- Enables Low-cost Networking Products
- EIA-600 (CEBus) Compatible Channel Access with Unacknowledged Services
- EIA-600 Physical Layer Transceiver
- Spread Spectrum Carrier™ Communication Technology
- SPI Host Processor Interface
- Single +5 Volt Power Supply Requirement
- 20 Pin SOIC Package

Introduction

The Intellon SSC P200 PL Network Interface Controller is a highly integrated spread spectrum communication transceiver and channel access interface for implementing low-cost networking products. The SSC P200 provides the Data Link Layer (DLL) control logic for EIA-600 channel access using unacknowledged services, a Spread Spectrum Carrier™ (SSC) transceiver, signal conditioning circuitry, and an SPI compatible host interface. A minimum of external circuitry is required to connect the SSC P200 to the AC power line, a twisted pair cable, or other communication medium. The SSC P200 is used with a host microcontroller to construct simple sensor and actuator devices for use in lighting control, process monitoring, access control, point-of-sale, telemetry and other systems requiring low-cost network capability.

The inherent reliability of SSC signaling technology and incorporation of basic data link functionality combine to provide substantial improvement in network and communication performance over other low-cost communication methods. The SSC P200 is the ideal basic communications element for a wide variety of low-cost networking applications.

SSC P200 Node Block Diagram

Absolute Maximum Ratings (1)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage	-0.3 to 7.0	V
V _{IN}	Input Voltage at any Pin	V _{SS} -0.3 to V _{DD} +0.3	V
T _{STG}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (Soldering, 10 seconds)	300	°C

Note:

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages.

Recommended Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit
V _{DD}	DC Supply Voltage	4.5	5.0	5.5	V
Fosc	Oscillator Frequency		12 +/- 0.3%		MHz
T _A	Operating Temperature	-40	+25	+85	°C
	Humidity		non-condensing		

Electrical Characteristics

Conditions: $V_{DD} = 4.5$ to 5.5 V T= -40 to +85°C

Symbol	Parameter	Min	Typical	Max	Units
V _{OH}	Minimum High-level Output Voltage	2.4			V
V _{OL}	Maximum Low-level Output Voltage (1)			0.4	V
VIH	Minimum High-level Input Voltage	2.0			V
VIL	Maximum Low-level Input Voltage			0.8	V
Hys	Minimum Input Hysteresis	350			mV
IIL	Maximum Input Leakage Current			+/-10	μA
V _{SO}	SSC Signal Output Voltage (2)		4		V _{P-P}
I _{DD}	Total Power Supply Current		25		mA

Notes:

1. $I_{OL} = 2 \text{ mA}$

2. $Z_L = 2K \Omega \parallel 10 pF$

SSC P200 Control Timing

Symbol	Parameter	Min	Typical	Max	Unit
t _{RL}	RST* Pulse Width	150			nsec
t _{RESET}	Power-on Reset to Host Interface Active	10			msec

Pin	Mnemonic	Name	Description
1	4MHZ	4 MHz Clock Out	4 MHz clock output available for host microcontroller.
2	CS*	Chip Select	Digital input, active low. Enables serial peripheral interface.
3	VSSD	Digital Ground	Digital ground reference.
4	XIN	Crystal Input	Connected to external crystal to excite the IC's internal oscillator and digital clock.
5	XOUT	Crystal Output	Connected to external crystal to excite the IC's internal oscillator and digital clock.
6	VDD _D	Digital Supply	5.0 VDC +/- 10% digital supply voltage with respect to VSS_{D} .
7	INT*	Interrupt	Digital output, active low. Attention request to host microcontroller.
8	SCLK	SPI Data Clock	Serial peripheral interface clock input from host microcontroller.
9	SDO	SPI Data Out	Data output to host microcontroller serial peripheral interface. SDO is` tristate when CS* is false.
10	SDI	SPI Data In	Data input from host microcontroller serial peripheral interface.
11	TS	Tristate	Active low digital output signal driven from the same internal signal that enables the output amplifier.
12	RST*	Reset	Active low digital input.
13	VSSA	Analog Ground	Analog ground reference.
14	SO	Signal Output	Analog signal output. Tristate enabled with internal TS signal.
15	C2	Capacitor 2	Connection for 680pF capacitor to ground.
16	C1	Capacitor 1	Connection for 680pF capacitor to ground.
17	SI	Signal Input	Analog signal input.
18	VDD _A	Analog Supply	5.0 VDC +/- 10% analog supply voltage with respect to VSS_A .
19	TP0	Test Point 0	Reserved pin for testing.
20	VSSD	Digital Ground	Digital ground reference.

SSC P200 Pin Assignments

٦

SSC P200 Node Overview

The SSC P200 may be used in a wide variety of applications. A typical power line node application using the SSC P200 is illustrated in Figure 1. Resource intensive Data Link functions and Physical layer services of the protocol are provided by the SSC P200. Specific DLL services include transmission and reception of unacknowledged (UNACK) EIA-600 compatible packets, byte-to-symbol conversion for transmitted packets, symbol-to-byte conversion for received packets, transmit channel access based on packet priority and EIA-600 access rules, and CRC generation for transmitted packets and error checking of received packets.

The Host Microcontroller generates and decodes device addresses, interprets commands and data for the User Application and performs end to end protocol functions.

Output signal amplification and filtering, input signal filtering, and coupling of the node to the power line are performed using external components.

Figure 1. SSC P200 Power Line Node Application

SSC P200 Host Interface

SSC P200 interface to the Host system is supported through a Serial Peripheral Interface (SPI) using five I/O lines. A hardware, active-low, Reset (RST*) signal is also supplied by the Host. A simple protocol is used to transfer commands and data between the host and SSC P200. These commands and data include packets to be transmitted, received packets, status and configuration information.

SSC P200 Power Line Interface

Analog data is transferred between the AC power line and the SSC P200 over the P200 Signal In (SI) and Signal Out (SO) pins. In transmit mode, SSC "chirps" from the SSC P200 SO pin are filtered by the Pre-filter to remove harmonic energy (distortion) from the transmit signal and then amplified by the SSC P111 Power Line Media Interface IC. The SSC P111 is a high-efficiency amplifier and tri-state switch specifically designed for use in power line network systems. The amplifier is powered down and its output set to a high impedance condition when the SSC P200 TS signal is logic low, isolating the amplifier from the receive circuitry and reducing node power consumption during receive operation. When the SSC P200 TS signal is logic high, the communication signal is routed to the 60 Hz power line through the Power Line Coupling circuit. In receive mode, the communication signal passes through the Power Line Coupling Circuit and is filtered by the bandpass Input Filter. The resulting signal is then applied to the SSC P200 SI pin for processing.

P200 Host Interface Specification

Introduction

This section describes the functionality of the SSC P200 from the host's perspective. The services provided allow a host processor to optimally implement a network application, relying on the P200 for real-time network processing.

All SSC P200 system information is loaded by the host processor per the following description. All downloaded information is volatile and must be reloaded in the event of a power failure. Following verification of SSC P200 initialization (see Initialization Flow) system information (*Layer_Config_Info*) is written to the SSC P200 through a "write transaction" and the *Layer_Mgmt_Write* command (see Write Transaction Flow). The host may now transmit packets (*Packet*) using a "write transaction" and the *Packet_Transmit* command. Completion of the packet transmission and notification of the receipt of a packet are through an "attention sequence" (see Attention Sequence Flow) after which the host must determine the reason for the attention through a "read transaction" and the *Interface_Read* command (see Read Transaction Flow). Packets are retrieved through a "read transaction" and the *Packet_Receive* command. Details of the various data structures, commands and command protocol are indicated below.

Data Structures

Table 1. presents a map of the data structures accessible by the host. Subsequent sections describe the content of the structures.

Structure Name (full)	Structure Name (abbr.)	Bytes
Layer Configuration Information	Layer_Config_Info	7
Interface Flags	Interface_Flags	1
Node Control Flags	Node_Control	2
Status Information	Status_Info	6
DLL Link Access Control	DLL_Access_Control	1
Data Link Receive Link Status	DLL_Rc_Link_Status	1
Packet Format	Packet	41

Table1. Data Structures Map

Layer Configuration Information (Layer_Config_Info)

Table 2. presents a map of the read-write *Layer_Config_Info* structure which determines:

- The mode of operation.
- The maximum number of unsuccessful channel accesses due to backoffs per transmit attempt (*Max_Restarts*).

Table 2. Layer_Config_Info					
Byte	Name Use Res				
0	Mode_Control	Defines operating mode and Max_Restarts	0x00		
1-6	Reserved	Reserved	0x0000		

Layer_Config_Info.Mode_Control

	Bit 7	6	5	4	3	2	1	0
		MR3	MR2	MR1	MR0		SL1	SL0
RESET:	0	0	0	0	0	0	0	0

MC7 Reserved for future use and must be set to 0.

<u>MC6-MC3</u> *Max_Restarts* (MR3-MR0) specifies the maximum restarts allowable due to backoffs before a transmit attempt failure is determined (a value of 120 is recommended for moderately to heavily active networks).

MR3	MR2	MR1	MR0	Max_Restarts
0	0	0	0	0
0	0	0	1	8
0	0	1	0	16
0	0	1	1	24
0	1	0	0	32
0	1	0	1	40
0	1	1	0	48
0	1	1	1	56
1	0	0	0	64
1	0	0	1	72
1	0	1	0	80
1	0	1	1	88
1	1	0	0	96
1	1	0	1	104
1	1	1	0	112
1	1	1	1	120

MC2

Reserved for future use and must be set to 0.

MC1-MC0

Service Level (SL1-SL0) determines mode of operation and must be set to 0x11.

SL0 SL1

Service_Level

- 0 0 Reserved
- 0 1 Reserved
- 1 0 Reserved
- 1 1 P200 mode

The P200 acts as a Medium Access device utilizing the EIA CEBus channel access protocol, transmit service, and packet format. The host is responsible for address recognition and may redefine the contents of the address fields within the header and the NPDU (see Packet Format (Packet)).

Packet Receive Received packets are transferred to the host without address detection, which requires the host to determine the address status of the packet. The receipt of a new Receive Header is posted via Interface Flags.Rc Except. After retrieving the header via the Read Receive Header command the host must verify that the receive service is UNACK before determining if the packet is to be accepted or ignored based on the destination addresses. The host must issue Node_Control.Rcv_Disposition prior to the receipt of the packet's CRC such that appropriate action at the end of the packet can be performed. If Node_Control.Rcv_Disposition is not issued in time, the packet will be ignored. If the packet has been accepted, Interface Flags. Rc Attn will be posted. The Receive NPDU can be retrieved via the Read Receive Information (preferred) or Packet_Receive command.

Packet Transmit The host establishes the addresses and NPDU for transmitted packets.

Only UNACK service is allowed. Transmission with other services will be ignored with an *Misc_Xmit* transmit error posted.

Interface Flags (Interface_Flags)

The read-only Interface_Flags register contains information relative to the state of the P200 including:

- The fact that a packet has been received and whether a receive exception exists.
- Whether a transmit has completed and whether a transmit exception exists.
- The presence of a physical layer failure or host interface error.
- The reset state of the device.

NOTE: All flags are cleared upon executing the *Interface_Read* command (see Table); therefore, it is the responsibility of the host to service all flags in *Interface_Flags* when read.

Interface_Flags

IF7 *Rc_Attn* (RA) indicates that a valid packet has been received.

- 0 No packet received.
- 1 Packet received (Attention sequence generated).

IF6 *Tr_Attn* (TA) indicates that a pending packet transmission is complete.

- 0 No packet transmitted.
- 1 Packet transmit completed (Attention sequence generated).

IF5 *Tr_Except* (TEX) indicates that the Preamble EOF of a transmission attempt has been successfully transmitted to the medium.

- 0 Preamble EOF not yet transmitted.
- 1 Preamble EOF transmitted (Attention sequence generated).
- **IF4** *Rc_Except* (REX) indicates that a complete header has been received.
 - 0 No header received.
 - 1 Header received (Attention sequence generated).

IF3 *Physical_Layer_Failure* (PLF) indicates an error was detected in the physical layer. *DLL_Rc_Link_Status.Phy_Layer_Fail_Status* may be read to determine cause for failure.

- 0 No physical layer exists.
- 1 Physical failure occurred (Attention sequence generated).

IF2 *Interface_Error* (IE) indicates an SPI protocol error occurred on the last attempted host command sequence.

- 0 No SPI protocol error occurred.
- 1 SPI protocol error detected.
- **IF1** Reserved for future use and will be read as 0.

IFO IC_Reset (RES) indicates the P200 is in a reset condition. A Layer_Mgmt_Write command is required to initialize and activate.

- 0 P200 not reset (running).
- 1 P200 reset (waiting for *Layer_Mgmt_Write* command).

Node Control Flags (Node_Control)

The write-only *Node_Control* structure contains flags which control node operation including:

- Specifying general and specific host busy situations.
- Aborting the transmission of a packet.
- Controlling the receipt of packets.

Node_Control.Flag_0

	Bit 7	6	5	4	3	2	1	0
	RD2	RD1	RD0		HB	AT	ULB	
RESET:	0	0	0	0	0	0	0	0

<u>F0-7 - F0-5</u> *Rcv_Disposition* (RD2-RD0) determines the response to a received header and therefore the subsequent disposition of the received packet.

RD2	RD1	RD0	Rcv_Disposition
0	0	0	Ignore the packet.
0	0	1	Receive packet and generate
			Interface_Flags.Rc_Attn at packet end.
0	1	0	Reserved
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

F0-4 Reserved for future use and must be set to 0.

F0-3 *Host_Busy* (HB) indicates host cannot process any attention requests at this time.

- 0 All attention requests generated.
- 1 No attention requests generated.

<u>F0-2</u> *Abort_Transmission* **(AT)** aborts current packet transmission (if not already completed). Abort occurs prior to channel access or after transmission completes (i.e. fragments will not be produced).

- 0 No abort
- 1 Abort the current transmission.

F0-1 Upper_Layer_Busy (ULB) indicates host cannot process received packets at this time. No attention requests for received packets are generated (the first received packet is stored—subsequent received packets are refused/ignored). Other attention requests (including transmit complete) are generated normally. If an attention request is generated due to a non-"received packet" reason, but a packet has been received, it is the responsibility of the host to either process the received packet immediately or store the fact and process the received packet later. See description of Interface_Flags pertaining to processing all set flags.

- 0 All attention requests generated.
- 1 No attention requests generated for received packets.

<u>F0-1-F0-0</u> Reserved for future use and must be set to 0.

Status Information (Status_Info)

The read-only *Status_Info* structure as shown in Table 3 contains flags including:

- The status of the last packet's transmission. •
- The P200 device type and version. •

Table 3. Status_info						
Byte	Name	Use	Reset State			
0	Status_Flags	Contains various flags regarding transmit completion and statistics counter overflow conditions.	0x00			
1	Reserved	Reserved	0x00			
2	Reserved	Reserved	0x00			
3	Reserved	Reserved	0x00			
4	Reserved	Reserved	0x00			
5	Device_ID	Contains device identifier and version control information.	Device Based			

. . -**•**••• . .

Status_Info.Status_Flags

	Bit 7	6	5	4	3	2	1	0
					TS3	TS2	TS1	TS0
RESET:	0	0	0	0	0	0	0	0

SF7-SF4 Reserved for future use and will be read as 0.

<u>SF3-SF0</u>

Tx_Status_Code (TS3-TS0) indicates the last packet's transmit completion status.

TS3	TS2	TS1	TS0	Tx_Status_Code
0	0	0	0	Success: packet transmit succeeded
0	0	0	1	Reserved
0	0	1	0	Reserved
0	0	1	1	Reserved
0	1	0	0	Excessive_Collisions: exceeded
				Max_Restarts attempts
0	1	0	1	Reserved
0	1	1	0	Reserved
0	1	1	1	Reserved
1	0	0	0	Misc_Xmit: detected unexpected packet
				termination or attempted to transmit ACK,
				ADRACK or ADRUNACK packet.
1	0	0	1	Physical_Failure: transceiver or medium
				failure detected.
1	0	1	0	Transmit_Aborted: host aborted transmission
				via Node_Control.Flag_0.Abort_Transmission.
1	0	1	1	Max_Retrans_Exceeded: could not complete
				transmission within Max_Retrans time.
1	1	0	0	Reserved
1	1	0	1	Reserved
1	1	1	0	Reserved
1	1	1	1	Reserved

Status_Info. Device_ID									
	Bit 7	6	5		4	3	2	1	0
	DT3	DT2	DT1	D	ОТ 0	DV3	DV2	DV1	DV0
RESET:	0	0	1		1	х	х	х	х
DID7-DID4	Device	e_Type(DT3-DT	'0) indica	ates the	e network i	nterface co	ntroller type) .
	DT3	DT2	DT1	DT0	Dev	vice_Type			
	0	0	0	0	CETh	linx			
	0	0	0	1	P400				
	0	0	1	0	R400				
	0	0	1	1	P200				
	0	1	0	0	P300				
	0	1	0	1	Rese	rved			
	0	1	1	0	Rese	rved			
	0	1	1	1	Rese	rved			
	1	0	0	0	Rese	rved			
	1	0	0	1	Rese	rved			
	1	0	1	0	Rese	rved			
	1	0	1	1	Rese	rved			
	1	1	0	0	Rese	rved			
	1	1	0	1	Rese	rved			
	1	1	1	0	Rese	rved			
	1	1	1	1	Rese	rved			
DID3-DID0	Device	e_Versic	on (DV3-	DV0) in	dicates	the device	e firmware v	version type	
	DV3	DV2	DV1	DV0	Devi	ce_Versio	n		
	0	0	0	0		0			
	0	0	0	1		1			
	0	0	1	0		2			
	0	0	1	1		3			
	0	1	0	0		4			
	0	1	0	1		5			
	0	1	1	0		6			
	0	1	1	1		1			
	1	0	0	0		8			
	1	0	0	1		9			
	1	0	1	0		10			
	1	0	1	1		10			
	1	1	0	0		1∠ 12			
	1	1	1	0		10			
	1	1	1	1		14			
	I	I	I	I		15			

Data Link Access Control (DLL_Access_Control)

The write-only *DLL_Access_Control* register specifies the time between channel accesses:

DLL_Ac	cess_Cont	rol						
	Bit 7	6	5	4	3	2	1	0
		-	CAP1	CAP0				-
RESET:	0	0	0	0	0	0	0	0

DAC7-DAC6 Reserved for future use and must be set to 0.

<u>DAC5-DAC4</u> *Ch_Access_Period* (CAP1-CAP0) specifies the minimum required time in milliseconds between attempted transmit channel accesses and is used to limit the duty cycle of packet transmissions based on the device's power supply design.

CAP1	CAP0	Ch_Access_Period
0	0	0 ms
0	1	100 ms
1	0	200 ms
1	1	300 ms

DAC3-DAC0 Reserved for future use and must be set to 0.

Data Link Receive Link Status (DLL_Rc_Link_Status)

The read-only *DLL_Rc_Link_Status* register indicates the type of physical layer failure detected:

DLL_Rc_Link_Status

	Bit 7	6	5	4	3	2	1	0
			PLS2	PLS1	PLS0			
RESET:	0	0	0	0	0	0	0	0

DLS7-DLS6 Reserved for future use and will be set to 0.

<u>DLS7 - DLS5</u> *Phy_Layer_Fail_Status* (PLS2-PLS0) If *Interface_Flags.Physical_Layer_Failure* is TRUE, indicates cause of physical layer failure.

PLS2	PLS1	PLS0	Phy_Layer_Fail_Status
0	0	0	Unexpected end-of-packet was detected.
0	0	1	Transceiver interface error.
0	1	0	Reserved
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

DLS2-DLS0 Reserved for future use and will be read as 0.

Packet Format (Packet)

The format of the Packet data structure conforms to EIA-600 and is included as a convenience and to aid in understanding the host command protocol (see Command Protocol). A Packet (Table 4) is comprised of a header (Tables 5 and 6) containing the data link control field and addressing fields, and the information to be transmitted, called a Network Layer Protocol Data Unit (NPDU).

Table 4. Packet				
Bytes	Field			
0-8	Transmit_Header OR Receive_Header			
9-40	Transmit_NPDU OR Receive_NPDU			

Bytes	Field Name	Comments				
0	Tr_Control_Field	Transmit DLL_Control_Field				
1-2	Tr_Address_Field_0	Transmit address fields—see DLL_Control_Field for use.				
3-4	Tr_Address_Field_1					
5-6	Tr_Address_Field_2					
7-8	Tr_Address_Field_3					

Table 5. Transmit Header

Table 6. Receive Header

Bytes	Field Name	Comments
0	Rc_Control_Field	Receive DLL_Control_Field
1-2	Rc_Address_Field_0	Receive address fields—see DLL_Control_Field for use.
3-4	Rc_Address_Field_1	
5-6	Rc_Address_Field_2	
7-8	Rc Address Field 3	

DLL_Control_Field

CF7 Reserved

CF6 Service_Class (CL) indicates the service class bit value of the current packet.

- 0 Basic service (normal CEBus addressing)
- Extended service 1

NOTE: Service Class determines the network usage of the Tr Address Field n and *Rc_Address_Field_n* in *Transmit_Header* and *Receive_Header*, respectively.

Transmit/Receive	Service_Class = Basic	Service_Class =
Address Tield	Dasic	LAtended
Address_Field_0	CEBus destination address	Host determined
Address_Field_1	CEBus destination house	
	code	
Address_Field_2	CEBus source address	
Address_Field_3	CEBus source house code	

CF5 Reserved

<u>CF4-CF3</u> *Packet_Priority* (PR1-PR0) indicates the transmit priority field value of the current packet.

PR1	PR0	Priority
0	0	High
0	1	Standard
1	0	Deferred
1	1	Reserved

<u>CF2-CF0</u> *Packet_Type* (PT2-PT0) indicates the packet type or transmit level field value of the current packet.¹

PT2	PT1	PT0	Packet_Type
0	0	0	Reserved
0	0	1	Reserved
0	1	0	UNACK
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	Reserved
1	1	1	Reserved

Table 7. Transmit_NPDU

Field Name	Bytes	Comments	
Tr_NPDU	0-31	NPDU (Data Link Information Field) is stored for transmission in	
		the order received from the host.	

Table 8. Receive_NPDU

Field Name	Bytes	Comments
Rc_NPDU	0-31	NPDU (Data Link Information Field) is stored in the order received from the medium.

¹ EIA-600 allows other transmit levels (ACK, ADRACK and ADRUNACK) which are supported by Intellon's P300 and P400 products.

Host Commands

Command Descriptions

The host interface supports the commands given in Table 9 below.

Table 9. Commands					
Cmd	Cmd	Command Name	Use		
Value	Code				
0x00	FIE	Force_Interface_Error	Forces interface error condition.		
0x01	RST	Reset	Disables all functions and I/O except host		
			interface. (Reset signal line is more reliable as it		
			does not require that host interface be operational.)		
			A Layer_Mgmt_Write command is necessary to		
			initiate any activity subsequent to a reset.		
0x02	LR	Layer_Mgmt_Read	Read Layer_Config_Info		
0x03	LW	Layer_Mgmt_Write	Write Layer_Config_Info		
0x04	IR	Interface_Read	Read Interface_Flags. All flags are cleared		
			following the execution of this command.		
0x05	CW	Control_Write	Write Node_Control		
0x06	SR	Status_Read	Read Status_Info		
0x07		Reserved	Reserved		
0x08	PR	Packet_Receive	Read received Packet. Accesses buffered data		
			link header (Control field, Destination Address and		
			Source Address) and NPDU field.		
			Packet_Read can always be used in response to		
			troffic con he reduced if offer reading a EALSE		
			DLL Po Link Status Po Addr. Diff		
			Read Receive Information is used to retrieve the		
			Receive NPDI (it is assumed that the		
			Receive Header has been retrieved previously via		
			Packet Receive or Read Receive Header)		
0x09	PT	Packet Transmit	Write Packet		
0,100	• •				
			Packet Transmit can always be used to transmit		
			Packet. If multiple Packets are being sent to the		
			same remote device, <i>Transmit_Header</i> can be set		
			using Packet_Transmit or Write_Transmit_Header,		
			and the Transmit_NPDU can be sent using		
			Write_Transmit_Invoke.		
			Issuing the Packet_Transmit command when a		
			previous transmit is still in progress		
			(Interface_Flags.Tr_Attn is FALSE and		
			Interface_Flags.Tr_Except is TRUE) will result in		
			the command being ignored and posting an		
			Interface_Flags.Interface_Error.		
0x0A	RRI	Read_Receive_Information	Read buffered Receive_NPDU. (See		
			Packet_Receive command)		

Cmd Value	Cmd Code	Command Name	Use		
0x0B	WTI	Write_Transmit_Invoke	Write <i>Transmit_NPDU</i> . (See <i>Packet_Transmit</i> command)		
			Issuing the Write_Transmit_Invoke command when a previous transmit is still in progress (Interface_Flags.Tr_Attn is FALSE and Interface_Flags.Tr_Except is TRUE) will result in the command being ignored and posting an Interface_Flags.Interface_Error.		
0x0C	RRH	Read_Receive_Header	Read <i>Receive_Header</i> . This command accesses the unbuffered header. (See <i>Packet_Receive</i> command)		
0x0D	WTH	Write_Transmit_Header	 Write Transmit_Header for subsequent transmit packets. (See Packet_Transmit command) Issuing the Write_Transmit_Header command when a previous transmit is still in progress (Interface_Flags.Tr_Attn is FALSE and Interface_Flags.Tr_Except is TRUE) will result in the command being ignored and posting an Interface_Flags.Interface_Error. Completion of the Write_Transmit_Header command is posted via Interface_Flags.Tr_Attn and Interface_Flags.Tr_Except. 		
0x0E- 0x45		Reserved	Reserved		
0x46	WRS-46	Write_Register_46	Write DLL_Access_Control		
0x47- 0x83		Reserved	Reserved		
0x84	RRS-4	Read_Register_4	Read DLL_Rc_Link_Status		
0x85- 0xFF		Reserved	Reserved		

Command Protocol

Commands and data structures are conveyed between the host and the P200 via the Serial Peripheral Interface and a protocol sequence described in Table 10 below.

Cmd Code	Sequence From Host	Sequence From P200	Comments
FIF	(FIF)	[length]	Length – 0
RST	[RST][Length]		Length = 0
		[length]	All bytes in Laver Config Info are
		[Laver Config Info]	transferred (Length $= 7$)
1.W/	[I W][I ength]	[20/01_00/110]	Bytes 0 (Length-1) in
	[Laver Config Info]		Laver Config Info are transferred
			starting at
			Laver Config Info Mode Control
IR	[IR]	[l enath]	Interface, Flags is transferred (Length
	[[Interface Flags]	= 1).
CW	[CW][l ength]		Bytes 0 (Length-1) in Node Control
0	[Node Control]		are transferred.
SR	ISR1	[Length][Status Info]	All bytes in Status Info are transferred
	[]	[]	(Length = 6).
PR	[PR]	[Length]	All received bytes in <i>Packet</i> are
		[Packet]	transferred preceded by Length which
			is the number of bytes following.
			(Length is determined by received
			packet)
PT	[PT][Length]		All bytes in Packet are transferred
	[Packet]		preceded by Length which is the
			number of bytes following.
			NOTE: If Length=0, the previously
	1000		transmitted packet is retransmitted.
RRI	[RRI]	[Length]	All received bytes in <i>Receive_NPDU</i>
		[Receive_NPDU]	are transferred preceded by Length
			which is the number of bytes
			received peaket)
\\/TI			All received bytes in Transmit NDDU
VVII	[Transmit NPD/]		All received bytes in <i>Hanshill_NPDU</i>
	[TTansniii_NFD0]		which is the number of bytes
			following
			Tonowing.
			NOTE: If Length=0, the previously
			transmitted packet is retransmitted.
RRH	[RRH]	[Length]	All bytes in Receive Header are
		[Receive_Header]	transferred (Length $=$ 9).
WTH	[WTH][Length]		All bytes in <i>Transmit_Header</i> are
	[Transmit_Header]		transferred (Length = 9)
WRS-	[WRS-46][Length]		DLL_Access_Control is transferred
46	[DLL_Access_Control]		(Length = 1).
RRS-4	[RRS-4]	[Length]	DLL_Rc_Link_Status is transferred
		[DLL Rc Link Status]	(Length = 1).

Table 10.	Command	Protocol

Serial Peripheral Interface

Signal Description

The Serial Peripheral Interface (SPI) between the Host and P200 uses 5 unidirectional I/O lines. An additional interface line is Reset. See Table 11.

Mnemonic	Name	Direction	Use	
INT*	Interrupt	Output	Active low. Used to indicate an attention request (packet received or transmit packet completed) or "ready for SPI byte transfer."	
CS*	Chip Select	Input	Active low. Must be asserted during a read or write command operation ("transaction").	
SCLK	Shift Clock	Input	Used to synchronize data transfer.	
SDI	Serial Data In	Input	Serial data input (normally connected to host's SDO signal). Data is shifted MSB first.	
SDO	Serial Data Out	Output	Serial data output (normally connected to host's SDI signal). Data is shifted MSB first.	
RST*	Reset	Input	Reset signal line. The host may assert this signal low (open collector drive) to provide a hardware reset.	

Table 11. SPI Mode Pin Descriptions

Host Interactions Description

Host interactions are of the following four basic types:

- Initialization
- Write Transaction
- Read Transaction
- Attention Sequence

Initialization Flow

Upon power-up, or following a *Reset* command, the P200 performs an internal diagnostic and setup sequence. Commands cannot be sent to the device until this sequence is complete. The following sequence of commands in Figure 2 may be used to check for the ready condition:

Figure 2. Initialization Flow Diagram

At this point, the host should set up the *Layer_Config_Info*, using the Write Transaction sequence described in the next section.

Write Transaction Flow

The following steps in Figure 3 should be taken to issue write commands and data and control to the P200:

Figure 3. Write Transaction Flow Diagram

Read Transaction Flow

The following steps in Figure 4 should be taken to issue read commands and read data and status from the P200:

Figure 4. Read Transaction Flow Diagram

Attention Sequence Flow

An Attention request, as shown in Figure 5, is an unsolicited assertion of INT* and is used to inform the host that data or status is available:

Figure 5. Attention Sequence Flow Diagram

Transaction Timing Write Transaction Figures:

Figure 8. Write Byte #n Timing Diagram

Read Transaction Figures:

Figure 10. Read Byte #1 Timing Diagram

Figure 11. Read Byte #n Timing Diagram

Figure 12. Attention/Read Byte #1 Timing Diagram

SPI Timing Parameters and Characteristics

Table 12. Timing Characteristics

$(-40^{\circ}C \text{ to } 85^{\circ}C; V_{CC}=5V)$							
Symbol	Parameter	Min	Max	Units	Notes		
t _{RESET}	RESET to READY delay		10	msec			
t _{XFER}	Control Transfer Delay (1 msec typ.)		10	msec			
t _{SCH}	CS* Inactive Time	0		μsec	2		
t _{CC}	CS* to SCLK Setup	50		nsec	2		
t _{CL}	SCLK Low Time	250		nsec	2		
t _{CH}	SCLK High Time	250		nsec	2		
t _R , t _F	SCLK Rise and Fall		200	nsec			
t _{CSon}	SCLK to INT* Setup		500	μsec	1,2		
t _{CSoff}	INT* to SCLK Delay		250	nsec	1,2		
t _{DC}	SDI to SCLK Setup	50		nsec	1, 2		
t _{CDH}	SCLK to SDI Hold	70		nsec	1, 2		
t _{SAtt}	INT* Attention Delay	2		μsec			
t _{CSS}	CS* to INT* Delay		100	nsec	1, 2		
t _{CDNZ}	SCLK to SDO Delay		500	μsec	1, 2, 3		
t _{CDD}	SCLK to SDO Delay		100	nsec	1, 2, 3		
t _{CDHO}	SCLK to SDO Hold	200		nsec	1, 2		
t _{DSZ}	INT* to SDO High Z Setup		500	μsec	1, 2		

NOTES:

- 1. Measured at V_{IH}=2.0V or V_{IL}=0.8V and 10msec rise maximum rise and fall time. 2. Measured with 50 pF load.
- 3. Measured at $V_{OH}=2.4V$ or $V_{OL}=0.4V$.Modes

SSC P200 Mechanical Specifications

Figure 13. 20-Pin SOIC Package Outline

Ordering Information SSC P200

PL Network Interface Controller

CONNECTING THE FUTURE™

5100 West Silver Springs Boulevard Ocala, Florida 34482

> Phone: (352) 237-7416 Fax: (352) 237-7616

Internet http://www.intellon.com ftp://ftp.intellon.com