- **Member of the Texas Instruments** Widebus™ Family
- **EPIC™** (Enhanced-Performance Implanted **CMOS) Submicron Process**
- **DOC**[™] (Dynamic Output Control) Circuit **Dynamically Changes Output Impedance, Resulting in Noise Reduction Without Speed Degradation**
- **Dynamic Drive Capability Is Equivalent to** Standard Outputs With IOH and IOL of \pm 24 mA at 2.5-V V_{CC}
- Overvoltage-Tolerant Inputs/Outputs Allow **Mixed-Voltage-Mode Data Communications**

- I_{off} Supports Partial-Power-Down Mode Operation
- Ideal for Use in PC133 Registered DIMM **Applications**
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- **Package Options Include Plastic Thin** Shrink Small-Outline (DGG) and Thin Very Small-Outline (DGV) Packages

description

A Dynamic Output Control (DOC) circuit is implemented, which, during the transition, initially lowers the output impedance to effectively drive the load and, subsequently, raises the impedance to reduce noise. Figure 1 shows typical V_{OI} vs I_{OI} and V_{OH} vs I_{OH} curves to illustrate the output impedance and drive capability of the circuit. At the beginning of the signal transition, the DOC circuit provides a maximum dynamic drive that is equivalent to a high-drive standard-output device. For more information, refer to the TI application reports, AVC Logic Family Technology and Applications, literature number SCEA006, and Dynamic Output Control (DOC™) Circuitry Technology and Applications, literature number SCEA009.

Figure 1. Output Voltage vs Output Current

This 18-bit universal bus driver is operational at 1.2-V to 3.6-V V_{CC}, but is designed specifically for 1.65-V to 3.6-V V_{CC} operation.

Data flow from A to Y is controlled by the output-enable (\overline{OE}) input. The device operates in the transparent mode when the latch-enable (\overline{LE}) input is low. The A data is latched if the clock (CLK) input is held at a high or low logic level. If $\overline{\text{LE}}$ is high, the A data is stored in the latch/flip-flop on the low-to-high transition of CLK. When $\overline{\text{OE}}$ is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\sf OE}$ should be tied to ${\sf V}_{\sf CC}$ through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DOC, EPIC, and Widebus are trademarks of Texas Instruments.

description (continued)

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The SN74AVC16834 is characterized for operation from -40°C to 85°C.

terminal assignments

DGG OR DGV PACKAGE (TOP VIEW) 56 | GND NC [NC 2 55 NC Y1 🛮 3 54 🛮 A1 GND 4 53 GND Y2 🛮 5 52 A2 Y3 **∏** 6 51 A3 50 V_{CC} V_{CC} 🛮 7 Y4 🛮 8 49 🛮 A4 Y5 🛮 9 48 🛮 A5 47 A6 Y6 10 GND [] 11 46 GND Y7 🛮 12 45 A7 44 🛮 A8 Y8 **1**3 Y9 🛮 14 43 A9 Y10 ∏ 15 42 **∏** A10 Y11 🛮 16 41 A11 Y12 🛮 17 40 A12 GND **1**8 39 | GND 38 A13 Y13 19 Y14 20 37 🛮 A14 Y15 21 36 A15 V_{CC} [] 22 35 V_{CC} Y16 23 34 🛮 A16 Y17 **1**24 33 **A**17 GND 25 32 GND Y18 26 31 A18 **OE □** 27 30 TCLK

NC - No internal connection

LE 1 28

29 GND

FUNCTION TABLE (each universal bus driver)

	INP		OUTPUT	
OE	LE	CLK	Α	Y
Н	Χ	Χ	Χ	Z
L	L	Χ	L	L
L	L	X	Н	Н
L	Н	\uparrow	L	L
L	Н	\uparrow	Н	Н
L	Н	Н	Χ	Y ₀ †
L	Н	L	Χ	Y ₀ ‡

[†] Output level before the indicated steady-state input conditions were established, provided that CLK is high before LE goes high

logic symbol§

[§] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[‡] Output level before the indicated steady-state input conditions were established

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1)	0.5 V to 4.6 V
Voltage range applied to any output in the high or low state, VO	
(see Notes 1 and 2)	. -0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	64°C/W
DGV package	48°C/W
Storage temperature range, T _{stq}	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
 - 2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT		
V/00	Supply voltage	Operating	1.4	3.6	V		
VCC	Su pp iy voltage	Data retention only	1.2		\ \ \		
		V _{CC} = 1.2 V	Vcc				
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	0.65 × V _{CC}]		
V_{IH}	Data retention only 1.2 V _{CC} = 1.2 V V _{CC} V _{CC} V _{CC} = 1.4 V to 1.6 V 0.65 × V _{CC} V _{CC} = 1.4 V to 1.6 V 0.65 × V _{CC} V _{CC} = 1.65 V to 1.95 V 0.65 × V _{CC} V _{CC} = 2.3 V to 3.6 V 2 V _{CC} = 3 V to 3.6 V 2 V _{CC} = 1.4 V to 1.6 V 0.35 × V _{CC} V _{CC} = 1.4 V to 1.6 V 0.35 × V _{CC} V _{CC} = 1.4 V to 1.6 V 0.35 × V _{CC} V _{CC} = 1.4 V to 1.6 V 0.35 × V _{CC} V _{CC} = 2.3 V to 2.7 V 0.7 V _{CC} = 3 V to 3.6 V 0.8 Input voltage Active state 0 V _{CC} V _{CC} = 3 V to 3.6 V 0.8 V _{CC} = 1.4 V to 1.6 V 0.36 × V _{CC} V _{CC} = 1.4 V to 1.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 2.3 V to 2.7 V 0.7 V _{CC} = 3 V to 3.6 V 0.8 V _{CC} = 1.4 V to 1.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 3 V to 3.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 3 V to 3.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 3 V to 3.6 V V _{CC} = 1.4 V to 1.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 1.65 V to 1.95 V V _{CC} = 1.65 V to 1.95 V V _{CC} = 1.65 V to 1.95 V V _{CC} = 2.3 V to 2.7 V V _{CC} = 3 V to 3.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 3 V to 3.6 V V _{CC} = 3 V to 3.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 2.3 V to 3.6 V V _{CC} = 3 V		V				
VCC = 1.4 V to 1.6 V 0.65 × VCC VIH High-level input voltage VCC = 1.65 V to 1.95 V 0.65 × VCC VCC = 2.3 V to 2.7 V 1.7 VCC = 3 V to 3.6 V 2 VCC = 1.4 V to 1.6 V 0. VCC = 1.4 V to 1.95 V 0. VCC = 1.65 V to 1.95 V 0. VCC = 1.65 V to 1.95 V 0. VCC = 3 V to 3.6 V 0. VO 2 3 V to 3.6 V VO 3-state 0 Active state 0 3-state 0 VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 1.65 V to 1.95 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 3.6 V VCC = 2.3 V to 3.6 V							
		Data retention only					
		V _{CC} = 1.2 V		GND			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		0.35 × V _{CC}]		
V_{IL}	Low-level input voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		$0.35 \times V_{CC}$	V		
		V _{CC} = 2.3 V to 2.7 V		0.7			
		V _{CC} = 3 V to 3.6 V		0.8	1		
٧ _I	Input voltage		0	3.6	V		
\/a	Output voltage	Active state	0	Vcc	V		
۷O	$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ Input voltage Active state 3-state $V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	0	3.6	\ \ \			
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$		-2			
1	Output voltage	$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		-4	mA		
IOHS	Static high-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-8	IIIA		
		V _{CC} = 3 V to 3.6 V		-12	1		
		V _{CC} = 1.4 V to 1.6 V		2			
1	Static law level output ourrent	V _{CC} = 1.65 V to 1.95 V		4]^		
lols	Static low-level output current	V _{CC} = 2.3 V to 2.7 V		8	mA		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V}$	-				
Δt/Δν	Input transition rise or fall rate	V _{CC} = 1.4 V to 3.6 V		5	ns/V		
TA	Operating free-air temperature		-40	85	°C		

[†] Dynamic drive capability is equivalent to standard outputs with I_{OH} and I_{OL} of ±24 mA at 2.5-V V_{CC}. See Figure 1 for V_{OL} vs I_{OL} and V_{OH} vs I_{OH} characteristics. Refer to the TI application reports, *AVC Logic Family Technology and Applications*, literature number **SCEA006**, and *Dynamic Output Control (DOC™) Circuitry Technology and Applications*, literature number **SCEA009**.

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	Vcc	MIN TYPT	MAX	UNIT	
		I _{OHS} = -100 μA	1.4 V to 3.6 V	V _{CC} -0.2			
		$I_{OHS} = -2 \text{ mA}, \qquad V_{IH} = 0.91 \text{ V}$	1.4 V	1.05			
Vон		$I_{OHS} = -4 \text{ mA}, \qquad V_{IH} = 1.07 \text{ V}$	1.65 V	1.2		V	
		$I_{OHS} = -8 \text{ mA}, \qquad V_{IH} = 1.7 \text{ V}$	2.3 V	1.75			
		$I_{OHS} = -12 \text{ mA}, \qquad V_{IH} = 2 \text{ V}$	3 V	2.3			
		I _{OLS} = 100 μA	1.4 V to 3.6 V		0.2		
		$I_{OLS} = 2 \text{ mA},$ $V_{IL} = 0.49 \text{ V}$	1.4 V		0.4		
VOL		$I_{OLS} = 4 \text{ mA}, \qquad V_{IL} = 0.57 \text{ V}$	1.65 V		0.45	V	
		$I_{OLS} = 8 \text{ mA}, \qquad V_{IL} = 0.7 \text{ V}$	2.3 V		0.55		
		$I_{OLS} = 12 \text{ mA}, \qquad V_{IL} = 0.8 \text{ V}$	3 V		0.7		
Ц		$V_I = V_{CC}$ or GND	3.6 V		±2.5	μΑ	
I _{off}		V_I or $V_O = 3.6 V$	0		±10	μΑ	
loz		$V_O = V_{CC}$ or GND	3.6 V		±10	μΑ	
Icc		$V_I = V_{CC}$ or GND, $I_O = 0$	3.6 V		40	μΑ	
	CLK input	Vi – Vo a or CND	2.5 V	4			
	CLK input	$V_I = V_{CC}$ or GND	3.3 V	4			
<u> </u>	Control inputs	V. V or CND	2.5 V	4		~F	
Ci	Control inputs	$V_I = V_{CC}$ or GND	3.3 V	4		pF	
	Data innuta	Vi. Via a or CND	2.5 V	2.5			
	Data inputs	$V_I = V_{CC}$ or GND	3.3 V	2.5			
	Outouto	Va Vas er CND	2.5 V	6.5			
Со	Outputs	$V_O = V_{CC}$ or GND	3.3 V	6.5		pF	

[†] Typical values are measured at $T_A = 25$ °C.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

			V _{CC} = 1.2 V		V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT			
				MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
fclock	Clock free	quency							150		150		150	MHz		
	Pulse	Pulse LE low						3.3		3.3		3.3				
t _W	duration	CLK high or lo	DW .					3.3		3.3		3.3		ns		
		Data before C	CLK [↑]	1		0.9		0.7		0.7		0.7				
t _{su}	Setup time	time Dat		Data	CLK high	1.6		1.5		1		1		1		ns
			before LE↑	CLK low	3.1		1.7		1.3		1		1			
		Data after CL	K↑	1.5		1.3		1		0.9		0.9				
^t h	Hold time	Data after LE↑	CLK high	2.5		2		1.8		1.5		1.4		ns		
		Data after LE↑	CLK low	2		1.7		1.5		1.3		1.3	·			

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 2 through 5)

PARAMETER	FROM TO (OUTPUT)		V _{CC} = 1.2 V	= 1.2 V V _{CC} = 1.5 V ± 0.1 V		V _{CC} = 1.8 V ± 0.15 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
	(INFO1)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
f _{max}						150		150		150		MHz
	Α		5.3	1.2	6.2	1.5	4.9	1	3.2	0.9	2.5	
t _{pd}	LE	Υ	7	2.2	9.7	1.8	7.5	1.5	4.9	0.8	4	ns
	CLK		6	1.9	7.8	1.6	6	1.1	3.7	1	3.1	
t _{en}	ŌĒ	Υ	7.9	2.4	10.2	1.6	8.8	1.5	6.7	1	6.2	ns
t _{dis}	OE	Y	7.7	2.1	10.3	1.5	8.4	1.2	5.3	1	5.3	ns

switching characteristics, T_A = 0°C to 85°C, C_L = 0 pF[†]

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = ± 0.1	UNIT	
	(1141 01)	(0011 01)	MIN	MAX	
.	А	V	0.6	1.3	no
^t pd	CLK	Ť	0.7	1.5	ns

[†] Texas Instruments SPICE simulation data

operating characteristics, T_A = 25°C

PARAMETER			TEST C	ONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V V _{CC} = 3.3 V		UNIT
PARAMETER		TEST CONDITIONS		TYP	TYP	TYP	UNIT	
	Power dissipation	Outputs enabled	C. 0	f = 10 MHz	45	48	52	pF
1	pd capacitance	Outputs disabled	$C_L = 0,$	I = 10 MHZ	23	25	28	рг

PARAMETER MEASUREMENT INFORMATION V_{CC} = 1.2 V AND 1.5 V \pm 0.1 V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50 \Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 2. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8 \text{ V} \pm 0.15 \text{ V}$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns, $t_f \leq 2$ ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLZ and tpHZ are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_Q = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.

Figure 4. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. tpLH and tpHL are the same as tpd.

Figure 5. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated