

QDK™/C++
Philips LPC2000

Document Version 1.04

December 2005

Preliminary Version

quantum Leaps™, LLC
www.quantum-leaps.com

Copyright © 2002-2005 quantum Leaps, LLC. All Rights Reserved. www.DataSheet4U.com

www.DataSheet4U.com

Quantum Leaps Application Note

1 Introduction.. 1
2 Getting Started ... 2

2.1 Directories and Files.. 2
2.2 Building the QP Libraries .. 4
2.3 Building the Examples ... 5
2.4 Running the Examples ... 5

3 About the Mixed ARM/THUMB Port ... 7
3.1 Compiler and Linker Options Used ... 7
3.2 The QK Port Header File... 7

3.2.1 The QK Critical Section .. 7
3.2.2 VIC Auto-vectoring.. 8
3.2.3 The QK Interrupt Entry and Exit .. 9

3.3 Startup Code and Stack Initialization ... 10
4 About the Pure ARM Port .. 12

4.1 Compiler and Linker Options Used ... 12
4.2 The QK Port Header File... 12

4.2.1 The QK Critical Section .. 12
5 About the Pure THUMB Port .. 14

5.1 Compiler and Linker Options Used ... 14
5.2 The QK Port Header File... 14

5.2.1 The QK Critical Section .. 15
5.3 The QK Interrupt Handling ... 17

5.3.1 No Autovectoring .. 17
5.3.2 The IRQ Handler in Assembly ... 17
5.3.3 The IRQ Handlers in C ... 19

6 References .. 20

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved.

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

1 Introduction
This Quantum Development Kit describes how to use Quantum Platform™ (QP) on the Philips
LPC2000 family of MCUs using the IAR Embedded Workbench® for ARM (www.iar.com). This docu-
ment describes QK port to the mixed ARM/THUMB mode, pure ARM mode as well as pure THUMB
mode. The actual hardware/software used is as follows (see also Figure 1):

1. IAR-P213x evaluation board from IAR (the board is based around LPC2138 MCU)

2. The J-link J-TAG pod from Segger (www.segger.com).

3. IAR Embedded Workbench® for ARM version 4.30A, the free KickStart edition

4. QP/C 3.1.xx (QEP, QF, QK)

Figure 1 IAR KickStart Kit including the LPC-P213x Evaluation Board and the J-Link J-
TAG pod from Segger, GmbH.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 1 of 20

http://www.iar.com/
http://www.segger.com/

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

2 Getting Started

2.1 Directories and Files
The code of the port is organized according to the “Application Note: QP Directory Structure”
(http://www.quantum-leaps.com/doc/AN_QP_Directory_Structure.pdf). Specifically, for this port
the files are placed in the following directories:

<qpcpp_3>/ - QP/C++-root directory for Quantum Platform (QP/C++) v3.1.xx
 |
 +-include/ - QP/C++ public include files
 | +-qassert.h – Quantum Assertions platform-independent public include
 | +-qep.h – QEP/C++ platform-independent public include
 | +-qf.h – QF/C++ platform-independent public include
 | +-qk.h – QK/C++ platform-independent public include
 | +-qequeue.h – Quantum Event Queue platform-independent public include
 | +-qmpool.h – Quantum Memory Pool platform-independent public include
 |
 +-ports/ - QP/C++ ports
 | +-arm7-lpc2000/ - ARM7 CPU, Philips LPC2000 family
 | | +-qk/ - QK (Quantum Kernel) ports
 | | | +-iar/ - IAR ARM compiler
 | | | | +-arm/ - ARM mode
 | | | | | +-dbg/ – Debug build
 | | | | | | +-libqep.r79 – QEP library
 | | | | | | +-libqf.r79 – QF library
 | | | | | | +-libqk.r79 - QK library
 | | | | | +-rel/ – Release build
 | | | | | +-spy/ – Spy build (Quantum Spy instrumented)
 | | | | | +-qep_port.h – QEP/C++ platform-dependent public include
 | | | | | +-qf_port.h – QF/C++ platform-dependent public include
 | | | | | +-qk_port.h – QK/C++ platform-dependent public include
 | | | | +-mixed/ - Mixed ARM/Thumb mode
 | | | | | +-dbg/ – Debug build
 | | | | | | +-libqep.r79 – QEP library
 | | | | | | +-libqf.r79 – QF library
 | | | | | | +-libqk.r79 - QK library
 | | | | | +-rel/ – Release build
 | | | | | +-spy/ – Spy build (Quantum Spy instrumented)
 | | | | | +-qep_port.h – QEP/C++ platform-dependent public include
 | | | | | +-qf_port.h – QF/C++ platform-dependent public include
 | | | | | +-qk_port.h – QK/C++ platform-dependent public include
 | | | | +-thumb/ - THUMB mode
 | | | | | +-dbg/ – Debug build
 | | | | | | +-libqep.r79 – QEP library
 | | | | | | +-libqf.r79 – QF library
 | | | | | | +-libqk.r79 - QK library
 | | | | | +-rel/ – Release build
 | | | | | +-spy/ – Spy build (Quantum Spy instrumented)
 | | | | | +-qep_port.h – QEP/C++ platform-dependent public include
 | | | | | +-qf_port.h – QF/C++ platform-dependent public include
 | | | | | +-qk_port.h – QK/C++ platform-dependent public include
 |
 +-qep/
 | +-arm7-lpc2000/ - ARM7 CPU, Philips LPC2000 family
 | | +-qk/ - QK (Quantum Kernel) ports
 | | | +-iar/ - IAR ARM compiler
 | | | | +-arm/ - ARM mode
 | | | | | +-Makefile – Makefile to build this version of the QEP/C++ library
 | | | | +-mixed/ - Mixed ARM/Thumb mode
 | | | | | +-Makefile – Makefile to build this version of the QEP/C++ library

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 2 of 20

http://www.quantum-leaps.com/�doc/�AN_QP_Directory_Structure.pdf

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

 | | | | +-thumb/ - THUMB mode
 | | | | | +-Makefile – Makefile to build this version of the QEP/C++ library
 | +-source/ - QEP/C++ platform-independent source files
 |
 +-qf/
 | +-arm7-lpc2000/ - ARM7 CPU, Philips LPC2000 family
 | | +-qk/ - QK (Quantum Kernel) ports
 | | | +-iar/ - IAR ARM compiler
 | | | | +-arm/ - ARM mode
 | | | | | +-Makefile – Makefile to build this version of the QF/C++ library
 | | | | +-mixed/ - Mixed ARM/Thumb mode
 | | | | | +-Makefile – Makefile to build this version of the QF/C++ library
 | | | | +-thumb/ - THUMB mode
 | | | | | +-Makefile – Makefile to build this version of the QF/C++ library
 | +-source/ - QF/C++ platform-independent source files
 |
 +-qk/
 | +-arm7-lpc2000/ - ARM7 CPU, Philips LPC2000 family
 | | +-qk/ - QK (Quantum Kernel) ports
 | | | +-iar/ - IAR ARM compiler
 | | | | +-arm/ - ARM mode
 | | | | | +-Makefile – Makefile to build this version of the QK/C++ library
 | | | | | +-qk_port.cpp – platform-dependent code for this version of QF/C++
 | | | | +-mixed/ - Mixed ARM/Thumb mode
 | | | | | +-Makefile – Makefile to build this version of the QK/C++ library
 | | | | | +-qk_port.cpp – platform-dependent code for this version of QK/C++
 | | | | +-thumb/ - THUMB mode
 | | | | | +-Makefile – Makefile to build this version of the QK/C++ library
 | | | | | +-qk_vect.s79 – assembly module for QK interrupt vectors
 | | | | | +-qk_port.cpp – platform-dependent code for this version of QK/C++
 | +-source/ - QK/C++ platform-independent source files
 |
 +-examples/ - QP/C++ examples
 | +-arm7-lpc2000/ - ARM7 CPU, Philips LPC2000 family
 | | +-qk/ - QK (Quantum Kernel) ports
 | | | +-iar/ - IAR ARM compiler
 | | | | +-arm/ - ARM mode
 | | | | | +-qdpp-p213x – QDPP example for the LPC-P213x evaluation board
 | | | | | | +-dbg/ – Debug build (runs from RAM)
 | | | | | | | +-qdpp.d79 – executable image
 | | | | | | +-rel/ – Release build (runs form ROM)
 | | | | | | +-drivers/ – Device drivers for the LPC2138
 | | | | | | +-lpc2138_ram.xcl – IAR ARM linker command file for the LPC2138-RAM buld
 | | | | | | +-lpc2138_flash.xcl– IAR ARM linker command file for the LPC2138-Flash buld
 | | | | | | +-lpc2138_ram.mac – IAR C-Spy debugger macro to remap vectors to RAM mode
 | | | | | | +-Makefile – make file to build the QDPP example
 | | | | | | +-bsp.h - Board Support Package include file
 | | | | | | +-bsp.cpp - Board Support Package implementation
 | | | | | | +-cstartup.s79 – Startup code in assembly
 | | | | | | +-qdpp.h
 | | | | | | +-main.cpp
 | | | | | | +-philo.cpp
 | | | | | | +-table.cpp
 | | | | | | +-qdpp_dbg.ewp – IAR project file to debug the QDPP example
 | | | | | | +-qdpp_dbg.eww – IAR workspace file to debug the QDPP example
 | | | | | |
 | | | | +-mixed/ - Mixed ARM/Thumb mode
 | | | | | +-qdpp-p213x – QDPP example for the LPC-P213x evaluation board
 | | | | | | +-dbg/ – Debug build (runs from RAM)
 | | | | | | | +-qdpp.d79 – executable image
 | | | | | | +-rel/ – Release build (runs form ROM)
 | | | | | | +-drivers/ – Device drivers for the LPC2138
 | | | | | | +-lpc2138_ram.xcl – IAR ARM linker command file for the LPC2138-RAM buld
 | | | | | | +-lpc2138_flash.xcl– IAR ARM linker command file for the LPC2138-Flash buld

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 3 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

 | | | | | | +-lpc2138_ram.mac – IAR C-Spy debugger macro to remap vectors to RAM mode
 | | | | | | +-Makefile – make file to build the QDPP example
 | | | | | | +-bsp.h - Board Support Package include file
 | | | | | | +-bsp.cpp - Board Support Package implementation
 | | | | | | +-cstartup.s79 – Startup code in assembly
 | | | | | | +-qdpp.h
 | | | | | | +-main.cpp
 | | | | | | +-philo.cpp
 | | | | | | +-table.cpp
 | | | | | | +-qdpp_dbg.ewp – IAR project file to debug the QDPP example
 | | | | | | +-qdpp_dbg.eww – IAR workspace file to debug the QDPP example
 | | | | | |
 | | | | +-thumb/ - Mixed ARM/Thumb mode
 | | | | | +-qdpp-p213x – QDPP example for the LPC-P213x evaluation board
 | | | | | | +-dbg/ – Debug build (runs from RAM)
 | | | | | | | +-qdpp.d79 – executable image
 | | | | | | +-rel/ – Release build (runs form ROM)
 | | | | | | +-drivers/ – Device drivers for the LPC2138
 | | | | | | +-lpc2138_ram.xcl – IAR ARM linker command file for the LPC2138-RAM buld
 | | | | | | +-lpc2138_flash.xcl– IAR ARM linker command file for the LPC2138-Flash buld
 | | | | | | +-lpc2138_ram.mac – IAR C-Spy debugger macro to remap vectors to RAM mode
 | | | | | | +-Makefile – make file to build the QDPP example
 | | | | | | +-bsp.h - Board Support Package include file
 | | | | | | +-bsp.cpp - Board Support Package implementation
 | | | | | | +-cstartup.s79 – Startup code in assembly
 | | | | | | +-qdpp.h
 | | | | | | +-main.cpp
 | | | | | | +-philo.cpp
 | | | | | | +-table.cpp
 | | | | | | +-qdpp_dbg.ewp – IAR project file to debug the QDPP example
 | | | | | | +-qdpp_dbg.eww – IAR workspace file to debug the QDPP example
 | | | | | |
 | | . . .
 | . . .

Listing 1 Directories and files of the QP port to LPC2000

2.2 Building the QP Libraries
All QP/C++ components are deployed as static class libraries that you link to your application. The
pre-built libraries for QEP, QF, and QK are provided inside the <qpcpp_3>/ports/ directory (see
Listing 1). This section describes steps you need to take to rebuild the libraries yourself.

All QP components and ports use the standard Quantum Leaps build procedure based on the GNU-
compatible make utility. The code distribution contains all the Makefiles to automate the build.

NOTE: To achieve commonality among different platforms, Quantum Leaps software does not
use the vendor-specific IDEs, such as the IAR Workbench, for building the QP libraries and ap-
plications. Instead, QP supports command-line build process conforming to the GNU make
standard, which in turn conforms to Section 6.2 of IEEE Standard 1003.2-1992 (POSIX.2).

The GNU-compatible make utility mingw32-make.exe for Windows can be freely downloaded from
http://www.mingw.org/download.shtml. After installing the utility, you should add the GNU-
make directory to your PATH.

For example, to build the QF/C++ library for the ARM7-LPC2000, with the IAR ARM compiler, QK
kernel, mixed ARM/THUMB mode, you open a console window on a Windows PC, change directory

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 4 of 20

http://www.mingw.org/download.shtml

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

to <qpcpp_3>/qf/arm7-lpc2000/qk/iar/mixed/, and invoke the GNU-make utility by typing at the
command prompt the following command:

mingw32-make

The make utility processes the make file Makefile in the current directory to build the QF/C++ li-
brary. This Makefile assumes that the ARM toolset has been installed in the directory
C:/tools/IAR/ARM_KS_4.30A. You need to adjust the symbol IAR_ARM at the top of the Makefile if
you’ve installed the IAR ARM compiler into a different directory. The make process should produce
the QEP library in the location: <qpcpp_3>/ports/arm7-lpc2000/qk/iar/mixed/dbg/libqf.r79.

Identical procedure should be applied to build the QEP and QK components as well as other modes
of the ARM processor (ARM and THUMB).

2.3 Building the Examples
This QP port comes with an example application, which is the standard Dining Philosopher Problem
implemented with active objects (see “Practical Statecharts in C/C++”, Chapter 7).

The Figure 1 shows the example running on the LPC-P213x board. The second line of the LCD
shows a state of the application where Philosopher[0] is thinking (‘t’), Philosopher[1] is eating (‘e’),
Philosopher[2] is hungry (‘h’), Philosopher[3] is thinking (‘t’), and Philosopher[4] is eating (‘e’).

Building the various versions of the example follows the standard Quantum Leaps build procedure
based on the GNU-compatible make utility. The code distribution contains all the Makefiles to
automate the build.

For example, to build the QDPP example for the ARM7-LPC2000, with the IAR ARM compiler, QK
kernel, mixed ARM/THUMB mode, P213x board, you open a console window on a Windows PC,
change directory to <qpcpp_3>/examples/arm7-lpc2000/qk/iar/mixed/qdpp-p213x/, and invoke the
GNU-make utility by typing at the command prompt the following command:

mingw32-make

The make utility processes the make file Makefile in the current directory to build the QDPP image.
This Makefile assumes that the ARM toolset has been installed in the directory
C:/tools/IAR/ARM_KS_4.30A. You need to adjust the symbol IAR_ARM at the top of the Makefile if
you’ve installed the IAR ARM compiler into a different directory. The make process should produce
the QDPP image in the location: <qpcpp_3>/examples/arm7-lpc2000/qk/iar/mixed/qdpp-p213x/dbg/-
qdpp.d79.

Identical procedure should be applied to build the QDPP example for the ARM mode or the THUMB
mode.

2.4 Running the Examples
The build process described in the previous section creates QDPP application image linked to RAM
to be downloaded and executed in the target by the IAR C-Spy debugger. The code distribution
provides the IAR workspace qepp-dbg.eww to run the application (see Listing 1). For example, to run
the mixed ARM/THUMB version of the application, use your Windows Explorer to go to the directory
<qpcpp_3>/examples/arm7-lpc2000/qk/iar/mixed/qdpp-p213x, and double-click on the workspace
qepp-dbg.eww. If you installed the IAR Embedded Workbench for ARM (EWARM), this should launch
the tool and open the project.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 5 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

At this point, you should make sure that your J-Link pod is installed according to the “Getting
Started” note in the IAR KickStart Kit distribution. The LPC-P213x board should be powered up and
connected to the J-Link with the 20-pin ribbon cable (see Figure 1). The status LED on the J-Link
pod should not flash.

To download the code click on Project/Debug menu (or the toolbar shortcut). This should load the
code and break at main(). To continue running, click Debug/Go, or F5, or select the toolbar short-
cut. You should see display similar to the Figure 1.

Identical procedure should be applied to run the QDPP example for the ARM mode or the THUMB
mode.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 6 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

3 About the Mixed ARM/THUMB Port
The mixed ARM/THUM port is perhaps closest to the “beaten path” ARM implementations. In par-
ticular, it is based on the following Philips Application Notes, which are available online:

1. AN10391 “Nesting of Interrupts in the LPC2000” [Philips 03]

2. AN10254 “Handling Interrupts Using IRQ and FIQ” [Philips 05a]

3. Application Note “Interrupt Management: Auto-vectoring and Prioritization”, [Atmel 98a]

Generally, the port runs the task-level code in the ARM System Mode (mode bits 0x1F), which is
the default mode in which the IAR startup code calls main().

3.1 Compiler and Linker Options Used
The most important IAR compiler options used are as follows:

--cpu_mode thumb
--interwork
-D_DLIB_CONFIG_FILE=$(IAR_ARM)\arm\LIB\dl4tptinl8n.h

In particular, the option --internetwork specifies ARM/THUMB interworking code generation, and
the option G -D_DLIB_CONFIG_FILE=$(IAR_ARM)\arm\LIB\dl4tptinl8n.h specifies the C-runtime library
to be THUMB, interwork, normal library mode (see the IAR Compiler Reference).

The most important linker option is as follows:

-rt $(IAR_ARM)\arm\lib\dl4tptinl8n.r79

This linker option once again specifies the runtime to be the THUMB, interwork, normal library
mode

3.2 The QK Port Header File
The QK header file for the LPC200, Mixed ARM/THUMB can be found in <qpcpp_3>/ports/arm7-
lpc2000/qk/iar/mixed/qk_port.h. This file specifies the interrupt enabling/disabling policy (QK criti-
cal section) as well as the interrupt entry and exit code.

3.2.1 The QK Critical Section
This QK port uses the standard IAR intrinsic functions for disabling and enabling interrupts. These
functions can be called from both ARM and THUMB mode. The IAR functions disable both IRQ and
FIQ at the ARM core level (refer to the “ARM® IAR C/C++ Compiler Reference Guide” [IAR 05a]
for more information).

// QK_INT_KEY_TYPE not defined
#define QK_INT_LOCK(key_) __disable_interrupt()
#define QK_INT_UNLOCK(key_) __enable_interrupt()

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 7 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

The QK_INT_KEY_TYPE is not defined, which means that the simplest interrupt locking scheme is ap-
plied, in which exit from a critical section always enables interrupts, regardless if the interrupts
were enabled or disabled upon entry to the critical section.

This interrupt disabling policy means that the QK critical sections cannot nest. However the policy
still allows to prioritize nested interrupts (IRQs), because the interrupt prioritization is handled
in hardware by the Vectored Interrupt Controller (VIC) that operates independently to the ARM
core. The operation of the VIC is explained in the “LPC213x User Manual” [Philips 05b]. The inter-
rupt prioritization occurs between reading from the VICVectAddr register and writing to the
VICVectAddr register at 0xFFFFF030. If a higher-priority interrupt occurs during this time window,
the VIC will assert the IRQ line of the ARM core. The higher-priority interrupt will be recognized if
the core has interrupts (IRQ) enabled.

As discussed in Section “The QK Interrupt Entry and Exit”, the ARM core interrupts are typically re-
enabled during the interrupt processing, so the described interrupt prioritization will occur.

NOTE: It is perhaps interesting to observe that the VIC priority encoder implements in hard-
ware exactly the same algorithm as the QK scheduler implements in software. In other words,
the prioritization works the same way for tasks (implemented in software) and for ISRs (imple-
mented in hardware).

3.2.2 VIC Auto-vectoring
This port can be easily made to work with or without the auto-vectoring feature of the Vectored
Interrupt Controller (VIC) of the LPC2000 MCUs (see the “LPC213x User Manual”, [Philips 05b]).

Auto-vectoring occurs when the following LDR instruction is located at the address 0x18 for the
IRQ:

 ORG 0x18
 LDR pc,[pc,#-0xFF0]

When an IRQ occurs, the ARM core forces the PC to 0x18 and executes the LDR pc,[pc,#-0xFF0]
instruction. When the instruction at address 0x18 is executed, the effective address is:

 0x00000020 – 0x00000FF0 = 0xFFFFF030

(0x00000020 is the value of the PC when the instruction at address 0x18 is executed due to pipe-
lining of the ARM core).

This causes the ARM core to load the PC with the value read from the VICVectAddr register located
at 0xFFFFF030. The read cycle causes the VICVectAddr register to return the address corresponding
to the currently active interrupt. Thus, the single LDR pc,[pc,#-0xFF0] instruction has the effect of
directly jumping to the correct interrupt service routine—auto-vectoring.

On the other hand, you can avoid auto-vectoring by placing a different LDR instruction at the ad-
dress 0x18, for example LDR pc,[px,#24], will always load the same address located at 0x20+24 =
0x38.

The following discussion assumes that the auto-vectoring feature is used, that is the LDR pc,[pc,#-
0xFF0] is located at the address 0x18 in the startup code. Please refer to the cstartup.s79 code
located in the examples directory.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 8 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

3.2.3 The QK Interrupt Entry and Exit
This QK, as any preemptive, deterministic, real-time kernel, requires specific entry and exit from
the interrupts. The general interrupt handling sequence of QK is summarized by the following
pseudo-code:

void interrupt qkISR(void) { // an ISR is entered with interrupts disabled
 save processor registers clobbered by C-function calls
 clear the level-sensitive interrupt source
 uint8_t pin = QK_currPrio_; // save the current QK priority in a stack variable
 QK_currPrio_ = 0xFF; // set the current QK priority above any task
 Enable interrupts

 Perform the work of the ISR

 Disable interrupts
 Signal End-Of-Interrupt to the interrupt controller
 QK_currPrio_ = pin; // restore the initial QK priority
 QK_schedule_(); // invoke the QK scheduler
 Restore the processor registers
 Execute a return from interrupt instruction
}

Listing 2 QK interrupt handling sequence pseudo-code

Please note that QK inherently requires a capability of nesting interrupts, because interrupts are
explicitly enabled in the ISR, and also implicitly in the QK scheduler QK_schedule_().

This port uses the technique of handling nested interrupts in ARM described in the Philips Applica-
tion Note “Nesting of Interrupts in the LPC2000”.

The technique relies on the C compiler’s ability to generate code for the ARM interrupts in C. In the
IAR compiler, you define an IRQ handler in the following way:

__irq __arm void tickIRQ(void) {
 . . .
}

The use of the extended keyword __irq informs the IAR compiler to generate an IRQ-mode prolog
and epilog of the interrupt function. However, the interrupt does not allow nesting, because the
register LR_IRQ is not saved and the processor mode is not changed away from IRQ.

NOTE: The IAR compiler provides an extended keyword __nested to allow nesting of interrupts.
However, the __nested interrupt code has some known problems in version 4.30A, and also for
other reasons the __nested keyword is not used in this QK port.

Instead, as described in the Application Note “Nesting of Interrupts in the LPC2000”, the interrupt
entry and exit is coded as macros that use inline assembly. The macros are defined in the
<qpcpp_3>/ports/arm7-lpc2000/qk/iar/mixed/qk_port.h header file as follows:

 1: QK interrupt entry and exit
 2: #define QK_IRQ_ENTRY(pin_) do { \
 3: (pin_) = QK_currPrio_; \
 4: QK_currPrio_ = 0xFF; \
 5: asm("MRS lr,spsr"); \
 6: asm("STMFD sp!,{lr}"); \

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 9 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

 7: asm("MSR cpsr_c,#0x1F"); \
 8: asm("STMFD sp!,{lr}"); \
 9: } while (0)
10:
11: #define QK_IRQ_EXIT(pin_) do { \
12: asm("MSR cpsr_c,#0xDF"); \
13: asm("MOV lr,#0"); \
14: asm("STR lr,[lr,#-0xFD0]"); \
15: QK_currPrio_ = (pin_); \
16: QK_schedule_(); \
17: asm("LDMFD sp!,{lr}"); \
18: asm("MSR cpsr_c,#0xD2"); \
19: asm("LDMFD sp!,{lr}"); \
20: asm("MSR spsr_cxsf,lr"); \
21: } while (0)

Listing 3 QK interrupt entry and exit macros defined in the qk_port.h header file.

As you can see, the macros quite faithfully implement the general sequence outlined in the QK
interrupt handling pseudo-code from Listing 2.

Some details of the macros from Listing 3 are as follows. First, note that the do {…} while (0)
loops around the macros are the standard way of syntactically-correct grouping of instructions. In
line 7, you see the quick way of changing the ARM core mode to SYSTEM and enabling interrupts at
the same time through an immediate-load to the CPSR_c. This technique is directly copied from the
aforementioned Philips Application Note. (In fact, the whole entry sequence in lines 5-8 is identical
to that described in the Application Note.)

Similarly, lines 17-20 of Listing 3 are identical as the exit sequence described in the Philips Applica-
tion Note. In the preceding lines 12, you see quick mode change back to the IRQ with disabling in-
terrupts at the same time (both I and F bits). In lines 13-14, you see writing the End-Of-Interrupt
(EOI) sequence into the Vectored Interrupt Controller (VIC) VICVectAddr register at 0xFFFFF030,
which is 0x0 – 0xFD0.

The intended use of these interrupt entry and exit macros is illustrated in the QF tick ISR, as fol-
lows:

 1: __irq __arm void tickIRQ(void) {
 2: T1IR = 0x1; // clear the timer interrupt
 3: uint8_t pin; // initial priority upon entry to the ISR
 4: QK_IRQ_ENTRY(pin, TICK_IRQ_PRIO); // enter the nested portion of the IRQ
 5:
 6: QF::tick();
 7:
 8: QK_IRQ_EXIT(pin); // exit the nested portion of the IRQ
 9: }

Listing 4 The QF tick ISR demonstrating the use of the QK_IRQ_ENTRY() and
QK_IRQ_EXIT() macros.

3.3 Startup Code and Stack Initialization
The startup code must initialize at least the User/System stack, the IRQ stack, and optionally the
FIQ stack, if the FIQ is used.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 10 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

The User/System stack is the regular C stack used by the main() function and all functions called
from main. Also, the User/System stack is used to nest preemptions as usual in the QK (see [QL
05c]).

However, the IRQ stack is also used for nesting interrupts. This is a departure for the QK, which
typically uses just a single stack for nesting all tasks and interrupts. (Using a single stack in the
ARM architecture is possible, but requires some assembly programming and will not be discussed in
this port.)

The IRQ stack is used as well, because of the code generated by the IAR compiler when the __irq
keyword is used (see Section 3.2.3). The following is a disassembled code emitted by the compiler
for the tickIRQ() shown in Listing 4:

__irq __arm void tickIRQ(void) {
 400001D0 E24EE004 SUB LR, LR, #0x4
 400001D4 E92D501F STMDB SP!, {R0,R1,R2,R3,R4,R12,LR}
 T1IR = 0x1; // clear the timer interrupt
 400001D8 E3A004E0 MOV R0, #0xE0000000
 400001DC E3800C80 ORR R0, R0, #0x8000
 400001E0 E3A01001 MOV R1, #0x1
 400001E4 E5801000 STR R1, [R0, #+0]
 QK_IRQ_ENTRY(pin); // enter the nested portion of the IRQ
 400001E8 E59F03B0 LDR R0, [PC, #+944] ; [0x400005A0] =QK_currPrio_
 400001EC E5D00000 LDRB R0, [R0, #+0]
 400001F0 E1A04000 MOV R4, R0
 400001F4 E59F03A4 LDR R0, [PC, #+932] ; [0x400005A0] =QK_currPrio_
 400001F8 E3A010FF MOV R1, #0xFF
 400001FC E5C01000 STRB R1, [R0, #+0]
 40000200 E14FE000 MRS LR, SPSR
 40000204 E92D4000 STMDB SP!, {LR}
 40000208 E321F01F MSR CPSR_c, #31
 4000020C E92D4000 STMDB SP!, {LR}
 QF::tick();
 40000210 EB0009AE BL tick ; 0x400028D0
 QK_IRQ_EXIT(pin); // exit the nested portion of the IRQ
 40000214 E321F0DF MSR CPSR_c, #223
 40000218 E3A0E000 MOV LR, #0x0
 4000021C E50EEFD0 STR LR, [LR, #-4048]
 40000220 E59F0378 LDR R0, [PC, #+888] ; [0x400005A0] =QK_currPrio_
 40000224 E5C04000 STRB R4, [R0, #+0]
 40000228 EB000725 BL QK_schedule_ ; 0x40001EC4
 4000022C E8BD4000 LDMIA SP!, {LR}
 40000230 E321F0D2 MSR CPSR_c, #210
 40000234 E8BD4000 LDMIA SP!, {LR}
 40000238 E16FF00E MSR SPSR_cxsf, LR
}
 4000023C E8FD901F LDMIA SP!, {R0,R1,R2,R3,R4,R12,PC}^

Listing 5 Disassembled code of tickIRQ() from Listing 4. The highlighted code is exe-
cuted in the IRQ mode.

As shown in Listing 5, the processor mode is not changed until the instruction MSR CPSR_c,#31 at
address 40000208. Before that instruction, the following 8 registers are pushed onto the IRQ
stack: R0, R1, R2, R3, R4, R12, LR, and SPSR. Consequently, the IRQ stack must be sized for 8
registers (32-bytes) for each anticipated level of preemption. In QK, theoretically the worst-case
nesting could be QF_MAX_ACTIVE plus the nesting of interrupts on top of interrupts (63*32bytes +
interrupt_nesting*32 = 2KB + …).

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 11 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

4 About the Pure ARM Port
The pure ARM port is allows for some optimizations with respect to the mixed ARM/THUMB port.
These optimizations include:

1. faster inlined interrupt enabling/disabling

2. no ARM/THUMB interworking

The port is provided in the arm-lpc2000/qk/iar/arm/ branch of the ports and examples directories
(see Section 2.1). Also, just as the mixed ARM/THUMB port, the pure ARM port runs the task-level
code in the ARM System Mode (mode bits 0x1F), which is the default mode in which the IAR
startup code calls main().

The pure ARM port offers some performance advantage over the mixed ARM/THUMB port when the
code is executed from a fast 32-bit wide memory, such as the on-chip RAM of the LPC2000. How-
ever, when executed from slower memories, or memories only 16-bit wide, the pure ARM port
would actually perform slower than the mixed ARM/THUMB port, where most of the code is com-
piled to THUMB. Also, the code density is lower (and thus the code size is larger) in the ARM port
than it is in the mixed ARM/THUMB port.

4.1 Compiler and Linker Options Used
The most important IAR compiler options used are as follows:

--cpu_mode arm
-D_DLIB_CONFIG_FILE=$(IAR_ARM)\arm\LIB\dl4tpannl8n.h

In particular, the option --interwork is not specified, option -D_DLIB_CONFIG_FILE= $(IAR_ARM)\-
arm\LIB\dl4tpannl8n.h specifies the C-runtime library to be ARM, no-interwork, normal library
mode (see the IAR Compiler Reference).

The most important linker option is as follows:

-rt $(IAR_ARM)\arm\lib\dl4tpannl8n.r79

This linker option once again specifies the runtime to be the ARM, no-interwork, normal library
mode

4.2 The QK Port Header File
The QK header file for the LPC200, ARM mode can be found in <qpcpp_3>/ports/arm7-lpc2000/qk/-
iar/arm/qk_port.h. This file specifies the interrupt enabling/disabling policy (QK critical section) as
well as the interrupt entry and exit code.

4.2.1 The QK Critical Section
This QK port uses the most optimal, single instruction to disable and enable interrupts (the load-
immediate MSR to the CPSR_c). This instruction is only available in the pure ARM mode.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 12 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

// QK_INT_KEY_TYPE not defined
#define QK_INT_LOCK(key_) asm("MSR cpsr_c,#0xDF")
#define QK_INT_UNLOCK(key_) asm("MSR cpsr_c,#0x1F")

The QK_INT_KEY_TYPE is not defined, which means that the simplest interrupt locking scheme is ap-
plied, in which exit from a critical section always enables interrupts, regardless if the interrupts
were enabled or disabled upon entry to the critical section. This policy is adequate in the presence
of the Vectored Interrupt Controller (VIC) hardware, as described in Section 3.2.1.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 13 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

5 About the Pure THUMB Port
The pure THUMB port requires the most advanced techniques and represents perhaps the most
radical departure from the “standard” preemptive multitasking implementations for the ARM archi-
tecture. Unlike the other two ports included in this QDK, the pure THUMB port uses only one stack
(the System stack) for nesting both the tasks and interrupts and does not use the IRQ stack at all.

The pure THUMB port offers the following advantages with respect to the other ports:

1. only one stack with minimal context-switch stack frame

2. the best possible code density

3. no ARM/THUMB interworking overhead

4. more customizable interrupt disabling policy

The port is provided in the arm-lpc2000/qk/iar/thumb/ branch of the ports and examples directories
(see Section 2.1). Also, just as the mixed ports, the pure THUMB port runs the task-level code in
the ARM System Mode (mode bits 0x1F), which is the default mode in which the IAR startup code
calls main().

The pure THUMB port should offer the best performance for executing code from slower Flash
memory due to the best code density. On Flash-based MCUs, such as the LPC2000 family, the
Memory Acceleration Module (MAM) should be used to further improve the code execution speed.

5.1 Compiler and Linker Options Used
The most important IAR compiler options used are as follows:

--cpu_mode thumb
-D_DLIB_CONFIG_FILE=$(IAR_ARM)\arm\LIB\dl4tptnnl8n.h

In particular, the option --interwork is not specified, option -D_DLIB_CONFIG_FILE= $(IAR_ARM)\-
arm\LIB\dl4tptnnl8n.h specifies the C-runtime library to be THUMB, no-interwork, normal library
mode (see the “IAR Compiler Reference” [IAR 05a]).

The most important linker option is as follows:

-rt $(IAR_ARM)\arm\lib\dl4tptnnl8n.r79

This linker option once again specifies the runtime to be the THUMB, no-interwork, normal library
mode

5.2 The QK Port Header File
The QK header file for the LPC200, THUMB mode can be found in <qpcpp_3>/ports/arm7-lpc2000/-
qk/iar/thumb/qk_port.h. This file specifies the interrupt enabling/disabling policy (QK critical sec-
tion) as well as the interrupt entry and exit code.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 14 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

5.2.1 The QK Critical Section
This QK port uses the customized (defined in assembly) functions for disabling and enabling inter-
rupts. These functions have been designed to be called from the THUMB mode. The IAR functions
disable both IRQ and FIQ at the ARM core level (refer to the “ARM® IAR C/C++ Compiler Refer-
ence Guide” [IAR 05a] for more information).

 // QK critical section must be the same as the QF critical section
// QK_INT_KEY_TYPE not defined
#define QK_INT_LOCK(key_) QK_int_lock()
#define QK_INT_UNLOCK(key_) QK_int_unlock()

extern "C" {
void QK_int_lock(void);
void QK_int_unlock(void);
}

The QK_INT_KEY_TYPE is not defined, which means that the simplest interrupt locking scheme is ap-
plied, in which exit from a critical section always enables interrupts, regardless if the interrupts
were enabled or disabled upon entry to the critical section. This policy is adequate in the presence
of the Vectored Interrupt Controller (VIC) hardware, as described in Section 3.2.1.

 1: MODULE ?INT
 2:
 3: RSEG CODE:CODE:NOROOT(2)
 4: PUBLIC QK_int_lock,QK_int_unlock
 5:
 6: ALIGNROM 2 ; align at 2^2 boundary
 7: CODE16 ; the function is called from THUMB
 8: QK_int_lock:
 9: ADR r0,QK_int_lock_ARM
10: BX r0 ; change mode to ARM
11: CODE32 ; now we are in ARM
12: QK_int_lock_ARM:
13: MSR cpsr_c,#ARM_SYS_MODE | ARM_INT_BITS ; SYS mode, lock int.
14: BX lr ; return changing mode back to THUMB
15:
16: ALIGNROM 2 ; align at 2^2 boundary
17: CODE16 ; the function is called from THUMB
18: QK_int_unlock:
19: ADR r0,QK_int_unlock_ARM
20: BX r0 ; change mode to ARM
21: CODE32 ; now we are in ARM
22: QK_int_unlock_ARM:
23: MSR cpsr_c,#ARM_SYS_MODE ; SYS mode, unlock int.
24: BX lr ; return changing mode back to THUMB
25:
26: LTORG
27:
28: ENDMOD

Listing 6 Interrupt locking/unlocking for the pure THUMB port (defined in the module
<qpcpp_3>/qk/arm7-lpc2000/iar/thumb/qk_vect.s79)

Listing 6 shows the assembly implementation of the C-callable functions QK_int_lock() and
QK_int_unlock(). Both functions are entered in the THUMB mode (see the CODE16 directive) but
must switch to the ARM mode to perform the MSR operations on the ARM status register.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 15 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

The functions are slightly more efficient than the intrinsic IAR compiler functions
__disable_interrupt() and __enable_interrupt(), because they assume that the mode of operation
is always System, and can use the load-immediate addressing mode.

The ARM_INT_BITS constant is currently defined as:

#define ARM_INT_BITS (ARM_I_BIT | ARM_F_BIT)

which means that both FIQ and IRQ are disabled.

5.2.1.1 Option for using the FIQ as a Nonmaskable Interrupt (NMI)
However, since you now have full control over the interrupt disabling policy, you could choose to
disable only the IRQ bit, and thus leave the FIQ always enabled.

#define ARM_INT_BITS ARM_I_BIT

This would allow achieving extremely short interrupt latency for servicing the FIQ, but would pre-
clude the FIQ from using any kernel (or framework) services because the FIQ will not be disabled
to access critical sections of code. Effectively, this policy would mean that the FIQ would become a
Nonmaskable Interrupt (NMI). You can still pass parameters to and from the NMI, but the pa-
rameters must be read and written atomically. For the ARM architecture you could use 8-bit, 16-
bit, and 32-bit variables. Conceivably you could even use larger structures, but then you must en-
sure that they are always accessed atomically via the LDM/STM instructions.

The FIQ used as an NMI would be completely separate from the QK and you need to arrange for
the FIQ stack if you use one. To achieve the fastest possible performance, you should probably
code the FIQ in assembly and make the maximum use of the 8 banked registers available in this
mode.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 16 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

5.3 The QK Interrupt Handling

5.3.1 No Autovectoring
The THUMB mode handles interrupts differently than the other ports. The auto-vectoring is not
used (see Section 3.2.2). Instead, the instruction ldr pc,[pc,#24] is placed at the address 0x18
and the address of the IRQ handler is placed at 0x38:

 org 0x18
 ldr pc,[pc,#24] ; load effective address 0x20+24 = 0x38
 . . .
 org 0x38
 dc32 irq_handler

5.3.2 The IRQ Handler in Assembly
To avoid using the IRQ stack the ISR must be coded in assembly.

 1: MODULE ?IRQ
 2:
 3: RSEG CODE:CODE:NOROOT(2)
 4: PUBLIC irq_handler
 5: EXTERN QK_currPrio_, QK_schedule_
 6: CODE32
 7:
 8: irq_handler:
 9: ; IRQ entry {{{
10: MOV r13,r0 ; save r0 in r13_IRQ
11: SUB r0,lr,#4 ; put return address in r0
12:
13: MSR cpsr_c,#ARM_SYS_MODE | ARM_INT_BITS
14: STMFD sp,{r0} ; save return address (PC) on user stack
15: SUB r0,sp,#4 ; put adjusted sp_SYS in r0
16: STMFD r0!,{r1-r4,r12,lr} ; save APCS-clobbered regs
17: ; on SYS stack plus r4 for the priority.
18:
19: MSR cpsr_c,#ARM_IRQ_MODE | ARM_INT_BITS
20: MOV r14,r13 ; put original r0_SYS in r14_IRQ
21: MRS r13,SPSR ; put interrupted PSR in r13_IRQ
22: STMFD r0!,{r13,r14} ; finish saving the context
23:
24: MSR cpsr_c,#ARM_SYS_MODE | ARM_INT_BITS
25: MOV sp,r0 ; adjust sp_SYS
26:
27: LDR r0,=QK_currPrio_ ; load address in already saved r0
28: LDRB r4,[r0] ; load QK_currPrio into APCS-preserved r4
29:
30: MOV r0,#0x0
31: LDR r12,[r0,#-0xFD0] ; load the vector from the VICVectAddr
32: ; IRQ entry }}}
33:
34: ; NOTE: the C-portion of the ISR is called with interrupts
35: ; *disabled* because it still needs to raise the QK priority
36: ; QK_currPrio_to the ISR level and also might need to clear
37: ; a level-sensitive interrupt soruce. The C-ISR might then
38: ; re-enable interrupts, if appropriate.
39: ; NOTE: the C-portion of the ISR runs in THUMB mode and returns
40: ; without mode change, so the following code is in THUMB

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 17 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

41: ;
42: MOV lr,pc ; store the return address
43: BX r12 ; call the IRQ vector (THUMB)
44:
45: CODE16 ; we're now in THUMB
46: ADR r0,irq_sched
47: BX r0
48:
49: CODE32 ; we're now back in ARM
50: irq_sched:
51: ; IRQ exit {{{
52: MSR cpsr_c,#ARM_SYS_MODE | ARM_INT_BITS ; SYS mode, lock int.
53:
54: ; handle the end-of-interrupt in the interrupt controller
55: MOV r0,#0x0
56: STR r0,[r0,#-0xFD0] ; write VICVectAddr to clear interrupt
57:
58: LDR r0,=QK_currPrio_ ; load address
59: STRB r4,[r0] ; restore intitial prio in QK_currPrio_
60:
61: LDR r12,=QK_schedule_
62: MOV lr,pc ; store the return address
63: BX r12 ; call QK_schedule_ (THUMB)
64: ; NOTE: QK_schedule_ must be called
65: ; with interrupts DISABLED
66:
67: CODE16 ; we're now in THUMB
68: ADR r0,irq_exit
69: BX r0
70:
71: CODE32 ; we're now back in ARM
72: irq_exit:
73: MOV r0,sp ; make sp_SYS visible to IRQ mode
74: ADD sp,sp,#36 ; adjust the sp_SYS
75:
76: MSR cpsr_c,#ARM_IRQ_MODE | ARM_INT_BITS
77: MOV sp,r0 ; stick sp_SYS to sp_IRQ
78: LDMFD sp!,{r0} ; grab saved PSR
79: MSR spsr_cxsf,r0 ; stick it into spsr_IRQ
80:
81: LDMFD sp,{r0-r4,r12,lr}^ ; unstack all saved SYS registers
82: MOV r0,r0 ; NOP: can't access banked reg immediately
83: LDR lr,[sp,#28] ; grab the return address from the stack
84: MOVS pc,lr ; return restoring cpsr from spsr
85:
86: ; IRQ exit }}}
87:
88: LTORG
89:
90: ENDMOD

Listing 7 The assembly IRQ handler for the THUMB port (defined in the module
<qpcpp_3>/qk/arm7-lpc2000/iar/thumb/qk_vect.s79)

The highlights of the IRQ shown in Listing 7 are as follows: The IRQ stack is not used, so the
banked register r13_IRQ is used as a scratchpad register (see Listing 7 line 10). Also this code
avoids accessing memory and maximizes register use for passing data. The ARM core is switched
several times between the IRQ and the System modes, but the interrupts are always disabled when

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 18 of 20

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

the ARM core is in the IRQ mode. This makes the IRQ mode completely transparent, or in other
words, it is impossible to “catch” (interrupt) the ARM processor in the IRQ mode1.

The purpose of the lines 10-22 of Listing 7 is to build the following stack frame:

high memory

 PC (return address)
 LR
 R12
 R4 (pin)
 R3
 R2
 R1
 R0
 SPSR

low memory

This stack frame demonstrates the “QK-friendliness” to the C-code. Only the registers clobbered by
the ARM Procedure Call Standard (APCS) are saved, plus the APCS-preserved R4 register that holds
the initial QK_currPrio_ value (pin). This is only about a half of all ARM registers that traditional
kernels need to save and restore by every interrupt and context switch.

In lines 30-32 of Listing 7 you see the use of the vectoring feature of the VIC. The LDR instruction
in line 34 reads the VICVectAddr register at 0xFFFFF030 (== 0 – 0xFD0). Subsequently, the BX r12
instruction (line 43) jumps to the vector received from the VIC. This means that the IRQ handler in
Listing 7 is a universal “shell” that services all IRQ requests in the system. Of course, as in the
auto-vectoring case, the VIC must be correctly initialized with the addressed of all the IRQ service
routines used in the system. The following line shows the VICVectAddr0 initialization for the tick-
ISR():

 VICVectAddr0 = (uint32_t)&tickISR;

5.3.3 The IRQ Handlers in C
The C-level IRQ handlers in the THUMB port, such as the tickISR() are normal C functions, and not
__irq-type functions as in the other ports. (That’s why in the THUMB port they have postfix “ISR”
rather than “IRQ”, as in the other ports.)

The following listing shows the implementation of the tickISR() function:

void tickISR(void) {
 T1IR = 0x1; // clear the timer interrupt
 QK_ISR_ENTRY(TICK_ISR_PRIO);

 QF::tick();

 QK_ISR_EXIT();
}

The ISR is entered with interrupts disabled, because some of the interrupts might require clearing
the level-sensitive interrupt source prior to enabling interrupts to the core. Indeed, the tickISR()
performs such clearing of the Timer1 interrupt. After this, the interrupts can be enabled and some
ISR-specific work can be performed.

1 Strictly speaking, the FIQ can interrupt the IRQ, but this discussion assumes that the FIQ is han-
dled completely separately, as described in Section 5.2.1.1.

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved. 19 of 20

Copyright © 2002-2005, Quantum Leaps, LLC. All Rights Reserved.

QDK™/C++
Philips LPC2000

www.quantum-leaps.com

20 of 20

6 References

[Atmel 98a] Atmel, Application Note “Interrupt Management: Auto-vectoring and Prioritization”,

1998

[IAR 05a] IAR Systems, “ARM® IAR C/C++ Compiler Reference Guide”, June 2005

[Philips 03] Philips Semiconductors: AN-10254 “Simple Interrupt Handling Using IRQ and FIQ”,
available online from www.philips.com

[Philips 05a] Philips Semiconductors: AN-10381 “Nesting of Interrupts in the LPC2000”, avail-
able online from www.philips.com

[Philips 05b] Philips Semiconductors: UM10120 “LPC213x User Manual”, available online from
www.philips.com

[QL 05a] Quantum Leaps, LLC, “Quantum Platform Overview” (http://www.quantum-
leaps.com/doc/QP_Overview.pdf

[QL 05b] Quantum Leaps, LLC, Application Note: QP Directory Structure”
(http://www.quantum-leaps.com/doc/AN_QP_Directory_Structure.pdf

[Samek 02] Miro Samek, “Practical Statecharts in C/C++”, CMP Books 2002.

http://www.quantum-leaps.com/�doc/�AN_QP_Directory_Structure.pdf
http://www.quantum-leaps.com/�doc/�AN_QP_Directory_Structure.pdf
http://www.quantum-leaps.com/�doc/�AN_QP_Directory_Structure.pdf

