
TMS370 Family
C Source Debugger

User’s Guide

2547295-9721 revision *

SPNU028
October 1992

Printed on Recycled Paper

Copyright  1992, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice, and advises its customers to
obtain the latest version of relevant information to verify, before placing orders, that the
information being relied on is current.

TI warrants performance of its semiconductor products and related software to current
specifications in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Please be aware that TI products are not intended for use in life-support appliances, devices,
or systems. Use of TI product in such applications requires the written approval of the
appropriate TI officer. Certain applications using semiconductor devices may involve potential
risks of personal injury, property damage, or loss of life. In order to minimize these risks,
adequate design and operating safeguards should be provided by the customer to minimize
inherent or procedural hazards. Inclusion of TI products in such applications is understood to be
fully at the risk of the customer using TI devices or systems.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Preface

Read This First

What Is This Book About?
This book tells you how to use the TMS370 C source debugger with these
debugging tools:

� TMS370 XDS/22 emulation system
� TMS370 application board

Each tool has its own version of the debugger. These versions operate almost
identically; however, the executable files that invoke them are very different.
A separate installation book included in your package provides installation
information for each tool and operating system. Be sure to install the correct
version of the debugger.

How to Use This Manual

The goal of this book is to help you learn how to use the ’370 C source
debugger. This book is divided into three distinct parts:

� Part I: Hands-On Information is presented first so that you can start
using your debugger the same day you receive it.

� Chapter 1 lists the key features of the debugger, describes additional
’370 software tools, tells you how to prepare a ’370 program for
debugging, and provides instructions and options for invoking the
debugger.

� Chapter 2 is a basic tutorial that introduces you to many of the
debugger features.

� Chapter 3 is a more advanced tutorial for use only with the XDS/22
emulation system. It introduces you to the BTT (breakpoint/trace/
timing) and its features.

� Part II: Debugger Description contains detailed information about using
the debugger.

� The chapters in Part II detail the individual topics that are introduced in
the tutorials. For example, Chapter 4 describes all of the debugger’s
windows and tells you how to move them and size them; Chapter 5
describes everything you need to know about entering commands.

How to Use This Manual

iv

� Part III: Reference Material provides supplementary information.

� Chapter 13 provides a complete reference to all the tasks introduced
in Parts I and II. This includes a functional and an alphabetical
reference of the debugger commands and a topical reference of
function key actions.

� Chapter 14 provides information about C expressions. The debugger
commands are powerful because they accept C expressions as
parameters; however, the debugger can also be used to debug
assembly language programs. The information about C expressions
will aid assembly language programmers who are unfamiliar with C.

� Part III also includes a glossary and an index.

The way you use this book should depend on your experience with similar
products. As with any book, it would be best for you to begin on page 1 and
read to the end. Because most people don’t read technical manuals from cover
to cover, here are some suggestions about what you should read.

� If you have used TI development tools or other debuggers before, then you
may want to:
� Use the appropriate installation chapter in your accompanying

installation guide.
� Complete the tutorials in Chapter 2 and Chapter 3. Note that the BTT

tutorial is for use only with the XDS/22.
� Browse through the alphabetical command reference in Chapter 13.

� If this is the first time that you have used a debugger or similar tool, then
you may want to:
� Use the appropriate installation chapter in your accompanying

installation guide.
� Complete the tutorial in Chapter 2 and Chapter 3. Note that the BTT

tutorial is for use only with the XDS/22.
� Read all of the chapters in Part II.

 Notational Conventions

v Read This First

Notational Conventions

This document uses the following conventions.

� The TMS370 processor is referred to as the ’370.

� The C source debugger has a very flexible command-entry system; there
are usually a variety of ways to perform any specific action. For example,
you may be able to perform the same action by typing in a command, using
the mouse, or using function keys. This document uses three symbols to
identify the methods that you can use to perform an action:

Symbol Description

Identifies an action that you perform by using the mouse.

Identifies an action that you perform by using function keys.

Identifies an action that you perform by typing in a
command.

� The following symbols identify mouse actions. For simplicity, these
symbols represent a mouse with two buttons. However, you can use a
mouse with only one button or a mouse with more than two buttons.

Symbol Action

Point. Without pressing a mouse button, move the mouse to
point the cursor at a window or field on the display. (Note that
the mouse cursor displayed on the screen is not shaped like an
arrow unless you are in an MS Windows environment; it’s
shaped like a block.)

Press and hold. Press a mouse button. If your mouse has only
one button, press it. If your mouse has more than one button,
press the left button.

Release. Release the mouse button you pressed.

Click. Press a mouse button and, without moving the mouse,
release the button.

Drag. While pressing the left mouse button, move the mouse.

Notational Conventions

vi

� Debugger commands are not case sensitive; you can enter them in
lowercase, uppercase, or a combination. To emphasize this fact,
commands are shown throughout this user’s guide in both uppercase and
lowercase.

� Program listings and examples, interactive displays, and window contents
are shown in a special font . Some examples use a bold version
to identify code, commands, or portions of an example that you enter. Here
is an example:

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

In this example, the left column identifies debugger commands that you
type in. The right column identifies the result that the debugger displays in
the COMMAND window display area.

� In syntax descriptions, the instruction or command is in a bold face font,
and parameters are in italics. Portions of a syntax that are in bold face
should be entered as shown; portions of a syntax that are in italics
describe the kind of information that should be entered. Here is an
example of a command syntax:

mem expression [, display format]

mem is the command. This command has two parameters, indicated by
expression and display format. The first parameter must be an actual C
expression; the second parameter, which identifies a specific display
format, is optional.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

run [expression]

The RUN command has one parameter, expression, which is optional.

 Information About Cautions / Related Documentation From Texas Instruments

vii Read This First

Information About Cautions

This is an example of a caution statement.

A caution statement describes a situation that could potentially dam-
age your software or equipment.

Please read each caution statement carefully.

Related Documentation From Texas Instruments

The following books describe the TMS370 and related support tools. To obtain
a copy of any of these TI documents, call the Texas Instruments Customer
Support Center (CRC) at (214) 995–6611. When ordering, please identify the
book by its title and literature number.

TMS370 Family XDS/22 Emulation System Installation Guide tells you
how to install the C source debugger interface along with the XDS/22
emulation system (using the DOS operating system). It also covers
specifications for your emulator, btt, and memory boards.

TMS370 Family Application Board Installation Guide tells you how to
install the C source debugger interface along with the application board
(using the DOS operating system).

TMS370 8-Bit Microcontroller Family Assembly Language Tools User’s
Guide (literature number SPNU010) describes the assembly language
tools (assembler, linker, and other tools used to develop assembly code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’370 family of devices.

TMS370 8-Bit Microcontroller Family Optimizing C Compiler User’s
Guide (literature number SPNU022) describes the ’370 8-bit C compiler.
This C compiler accepts ANSI standard C source code and produces
assembly language source code for the ’370 8-bit family of devices.

If you are an assembly language programmer and would like more information
about C or C expressions, you may find this book useful:

The C Programming Language (second edition, 1988), by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice–Hall, Englewood
Cliffs, New Jersey.

If You Need Assistance / Trademarks

viii

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about Texas
Instruments microcontroller products

Call the CRC† :
(214) 995–6611

Or write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments documenta-
tion

Call the CRC†:
(214) 995–6611

Ask questions about product operation
or report suspected problems

Call the microcontroller hotline:
(713) 274–2370

Report mistakes in this document or
any other TI documentation

Fill out and return the reader response card at:
the end of this book, or send your comments to
Technical Publications Manager, MS 702
Texas Instruments Incorporated
P.O. Box 1443
Houston, Texas 77251–1443

† Texas Instruments Customer Response Center

Trademarks

PC-DOS is a trademark of International Business Machines.

MS-DOS and Windows are trademarks of Microsoft Corporation.

ix Contents

Contents

Part I: Hands-On Information

1 Overview of a Code Development and Debugging System 1-1.

Discusses features of the debugger and additional tools.

1.1 Description of the ’370 C Source Debugger 1-2.
Key features of the debugger 1-3.
Breakpoint, trace, and timing features 1-5.

1.2 Description of the Profiling Environment 1-6.
Key features of the profiling environment 1-6.

1.3 Developing Code for the ’370 1-8.
1.4 Preparing Your Program for Debugging 1-11.
1.5 Invoking the Debugger 1-13.

Selecting the screen size (–b option) 1-14.
Identifying additional directories (–i option) 1-14.
Identifying the serial port (–p option) 1-14.
Entering the profiling environment (–profile option) 1-15.
Loading the symbol only (–s option) 1-15.
Identifying a new initialization file (–t option) 1-15.
Loading without the symbol (–v option) 1-15.
Ignoring D_OPTIONS (–x option) 1-15.

1.6 Exiting the Debugger 1-16.
1.7 Debugging ’370 Programs 1-17.

2 An Introductory Tutorial 2-1.

This chapter provides a step-by-step introduction to the debugger and its features.

How to use this tutorial 2-2.
A note about entering commands 2-2.
An escape route (just in case) 2-3.
Invoke the debugger and load the sample program’s object code 2-3.
Take a look at the display. . 2-4.
What’s in the DISASSEMBLY window? 2-5.

Contents

x

Select the active window 2-5.
Resize the active window 2-7.
Zoom the active window 2-8.
Move the active window 2-9.
Scroll through a window’s contents 2-10.
Display the C source version of the sample file 2-11.
Execute some code 2-11.
Become familiar with the three debugging modes 2-12.
Open another text file, then redisplay a C source file 2-14.
Use the basic RUN command 2-15.
Set some software breakpoints 2-15.
Watch some values and single-step through code 2-17.
Run code conditionally 2-18.
WHATIS that? 2-20.
Clear the COMMAND window display area 2-20.
Display the contents of an aggregate data type 2-21.
Display data in another format 2-24.
Change some values 2-26.
Define a memory map 2-27.
Define your own command string 2-28.
Close the debugger 2-28.

3 Tutorial: Using BTT Features 3-1.
This chapter provides a step-by-step, hands-on demonstration of basic BTT (breakpoint, trace, and timing)
features.

Understanding the example program 3-2.
Invoke the debugger and load the example program 3-4.
Open the BTT setup dialog box 3-5.
Collect traces on a specific address 3-5.
Trace on a specific address; breakpoint on address and data 3-7.
View the contents of the trace buffer 3-9.
Display a specific trace sample 3-10.
Change the timing format of trace samples 3-12.
Trace on one of two address values; halt on program time out 3-14.
Trace on a range of data 3-16.
Collect trace samples after breakpointing 3-18.
Collect reads and writes associated with IAQ cycles 3-20.
Use a masked data value 3-23.
Collect timing statistics 3-25.
Jump to another state 3-28.
Close the INSPECT window 3-31.

Part II: Debugger Description

4 The Debugger Display 4-1.
Describes the default displays, tells you how to switch between assembly language and C debugging, describes
the various types of windows on the display, and tells you how to move and size the windows.

 Contents

xi Contents

4.1 Debugging Modes and Default Displays 4-2.
Auto mode 4-2.
Assembly mode 4-3.
Mixed mode 4-4.
Restrictions associated with debugging modes 4-4.

4.2 Descriptions of the Different Kinds of Windows and Their Contents 4-5.
COMMAND window 4-6.
DISASSEMBLY window 4-7.
FILE window 4-8.
CALLS window 4-9.
INSPECT window 4-11.
PROFILE window 4-13.
MEMORY windows 4-14.
CPU window 4-17.
DISP windows 4-18.
WATCH window 4-19.

4.3 Cursors 4-20.
4.4 The Active Window 4-21.

Identifying the active window 4-21.
Selecting the active window 4-22.

4.5 Manipulating Windows 4-24.
Resizing a window 4-24.
Zooming a window 4-26.
Moving a window 4-27.

4.6 Manipulating a Window’s Contents 4-29.
Scrolling through a window’s contents 4-29.
Editing the data displayed in windows 4-31.

4.7 Closing a Window 4-32.

5 Entering and Using Commands 5-1.

Describes the rules for entering commands from the command line, tells you how to use the pulldown menus and
dialog boxes, describes general information about entering commands from batch files, and describes the use of
DOS-like system commands.

5.1 Entering Commands From the Command Line 5-2.
How to type in and enter commands 5-3.
Sometimes, you can’t type a command 5-4.
Using the command history 5-5.
Clearing the display area 5-5.
Recording information from the display area 5-6.

5.2 Using the Menu Bar and the Pulldown Menus 5-7.
Pulldown menus in the profiling environment 5-8.
Using the pulldown menus 5-8.
Escaping from the pulldown menus 5-9.

Contents

xii

Using menu bar selections that don’t have pulldown menus 5-10.
5.3 Using Dialog Boxes 5-11.

Entering text in a dialog box 5-11.
Selecting parameters in a dialog box 5-12.
Closing a dialog box 5-15.

5.4 Entering Commands From a Batch File 5-16.
Echoing strings in a batch file 5-17.
Controlling command execution in a batch file 5-18.

5.5 Defining Your Own Command Strings 5-20.
5.6 Entering Operating-System Commands 5-23.

Entering a single command from the debugger command line 5-23.
Entering several commands from a system shell 5-24.
Additional system commands 5-24.

6 Defining a Memory Map 6-1.

Contains instructions for setting up a memory map that will enable the debugger to correctly access target memory.
Also includes hints about using batch files.

6.1 The Memory Map: What It Is and Why You Must Define It 6-2.
Defining the memory map in a batch file 6-2.
Potential memory map problems 6-3.

6.2 A Sample Memory Map 6-4.
6.3 Identifying Usable Memory Ranges 6-5.

Restrictions on usable memory ranges 6-6.
6.4 Enabling Memory Mapping 6-7.
6.5 Checking the Memory Map 6-7.
6.6 Modifying the Memory Map During a Debugging Session 6-8.

Returning to the original memory map 6-9.
6.7 Using Multiple Memory Maps for Multiple Target Systems 6-10.

7 Loading, Displaying, and Running Code 7-1.

Tells you how to use the three debugger modes to view the type of source files that you’d like to see, how to load
source files and object files, how to run your programs, and how to halt program execution.

7.1 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both 7-2.
Selecting a debugging mode 7-3.

7.2 Displaying Your Source Programs (or Other Text Files) 7-4.
Displaying assembly language code 7-4.
Modifying assembly language code 7-5.
Additional information about modifying assembly language code 7-7.
Displaying C code 7-8.
Displaying other text files 7-9.

7.3 Loading Object Code 7-10.
Loading code while invoking the debugger 7-10.

 Contents

xiii Contents

Loading code after invoking the debugger 7-10.
7.4 Where the Debugger Looks for Source Files 7-11.
7.5 Running Your Programs 7-12.

Defining the starting point for program execution 7-12.
Running code 7-13.
Single-stepping through code 7-14.
Running code while connected to a target 7-16.
Running code conditionally 7-17.
Running code continuously 7-18.

7.6 Halting Program Execution 7-19.
7.7 Benchmarking 7-20.

8 Managing Data 8-1.

Describes the data-display windows and tells you how to edit data (memory contents, register contents, and
individual variables).

8.1 Where Data Is Displayed 8-2.
8.2 Basic Commands for Managing Data 8-2.
8.3 Basic Methods for Changing Data Values 8-4.

Editing data displayed in a window 8-4.
Advanced “editing”— using expressions with side effects 8-5.

8.4 Managing Data in Memory 8-6.
Displaying memory contents 8-6.
Displaying memory contents while you’re debugging C 8-8.
Saving memory values to a file 8-9.
Filling a block of memory 8-9.

8.5 Managing Register Data 8-10.
Displaying register contents 8-10.

8.6 Managing Data in a DISP (Display) Window 8-11.
Displaying data in a DISP window 8-11.
Closing a DISP window 8-13.

8.7 Managing Data in a WATCH Window 8-14.
Displaying data in the WATCH window 8-14.
Deleting watched values and closing the WATCH window 8-15.

8.8 Displaying Data in Alternative Formats 8-16.
Changing the default format for specific data types 8-16.
Changing the default format with ?, MEM, DISP, and WA 8-18.

9 Using Software Breakpoints 9-1.

Describes the use of software breakpoints to halt code execution.

9.1 Setting a Software Breakpoint 9-2.
9.2 Clearing a Software Breakpoint 9-4.
9.3 Finding the Software Breakpoints That Are Set 9-5.

10 Customizing the Debugger Display 10-1.

Contains information about the commands that you use for customizing the display, and identifies the display areas
that you can modify.

Contents

xiv

10.1 Changing the Colors of the Debugger Display 10-2.
Area names: common display areas 10-3.
Area names: window borders 10-4.
Area names: COMMAND window 10-4.
Area names: DISASSEMBLY and FILE windows 10-5.
Area names: data-display windows 10-6.
Area names: menu bar and pulldown menus 10-7.

10.2 Changing the Border Styles of the Windows 10-8.
10.3 Saving and Using Custom Displays 10-9.

Changing the default display for monochrome monitors 10-9.
Saving a custom display 10-9.
Loading a custom display 10-10.
Invoking the debugger with a custom display 10-10.
Returning to the default display 10-10.

10.4 Changing the Prompt 10-11.

11 Using Hardware Breakpoint, Trace, and Timing Features 11-1.

Tells you how to use the features of the BTT board to accomplish tasks such as setting hardware breakpoints and
collecting trace samples.

11.1 Running a BTT Session 11-2.
11.2 Accessing Essential BTT Features 11-4.
11.3 Defining Conditions for an Action 11-6.

Defining a jump 11-7.
Defining address qualifiers 11-8.
Defining data qualifiers 11-9.
Defining external-signal qualifiers 11-9.
Masking qualifiers 11-10.
Defining cycle qualifiers 11-10.

11.4 Limits on the Number of Actions per State 11-11.
11.5 Jumping to Another State 11-13.
11.6 Using Hardware Breakpoints and Events 11-14.

Basic breakpointing 11-15.
Sequencing before a breakpoint 11-16.
Collecting traces, then breakpointing 11-16.

11.7 Collecting Trace Samples 11-17.
Trace modes 11-17.

11.8 Using the BTT Timers 11-18.
Collecting timing statistics 11-18.
Limiting program run time 11-19.

11.9 Viewing Trace Buffer and Timing Information 11-20.
Interpreting trace buffer information 11-20.
Viewing selected trace samples 11-22.
Storing trace buffer contents to a file 11-23.
Interpreting point and range timer statistics 11-24.

11.10 Reusing a BTT Setup 11-24.

 Contents

xv Contents

12 Profiling Code Execution 12-1.

Describes the profiling environment and tells you how to collect statistics about code execution.

12.1 An Overview of the Profiling Process 12-2.
A profiling strategy 12-3.

12.2 Entering the Profiling Environment 12-4.
Restrictions of the profiling environment 12-4.
Using pulldown menus in the profiling environment 12-5.

12.3 Defining Areas for Profiling 12-6.
Marking an area 12-6.
Disabling an area 12-8.
Re-enabling a disabled area 12-11.
Unmarking an area 12-12.

12.4 Defining a Stopping Point 12-14.
12.5 Running a Profiling Session 12-16.
12.6 Viewing Profile Data 12-18.

Viewing different profile data 12-18.
Data accuracy 12-20.
Sorting profile data 12-20.
Viewing different profile areas 12-20.
Interpreting session data 12-21.
Viewing code associated with a profile area 12-22.

12.7 Saving Profile Data to a File 12-23.

Part III: Reference Material

13 Summary of Commands and Special Keys 13-1.

Provides a functional summary of the debugger commands and function keys; also provides a complete
alphabetical summary of all debugger commands.

13.1 Functional Summary of Debugger Commands 13-2.
Changing modes 13-3.
Managing windows 13-3.
Performing system tasks 13-3.
Displaying and changing data 13-4.
Displaying files and loading programs 13-5.
Memory mapping 13-5.
Customizing the screen 13-5.
Running programs 13-6.
Managing breakpoints 13-6.
Profiling commands 13-7.

Contents

xvi

13.2 How Menu Selections Correspond to Commands 13-8.
Program execution commands 13-8.
File/Load commands 13-8.
Breakpoint commands 13-8.
Watch commands 13-8.
Memory commands 13-9.
Screen-configuration commands 13-9.
Mode commands 13-9.
BTT menu and commands 13-9.

13.3 Alphabetical Summary of Debugger Commands 13-10.
13.4 Summary of Profiling Commands 13-52.
13.5 Summary of Special Keys 13-55.

Editing text on the command line 13-55.
Using the command history 13-55.
Switching modes 13-56.
Halting or escaping from an action 13-56.
Displaying pulldown menus 13-56.
Running code 13-57.
Selecting or closing a window 13-57.
Moving or sizing a window 13-57.
Scrolling a window’s contents 13-58.
Editing data or selecting the active field 13-58.

14 Basic Information About C Expressions 14-1.
Many of the debugger commands accept C expressions as parameters. This chapter provides general information
about the rules governing C expressions and describes specific implementation features related to using C
expressions as command parameters.

14.1 C Expressions for Assembly Language Programmers 14-2.
14.2 Restrictions and Features Associated With Expression Analysis in the Debugger 14-4. .

Restrictions 14-4.
Additional features 14-4.

A What the Debugger Does During Invocation A-1.
Describes the process the debugger follows during invocation.

B Setting Up the Clock B-1.
You may want to use a different clock source at some point during the debugging process. This appendix describes
the process of selecting a new clock source.

C Debugger Messages C-1.
Describes installation, progress, and error messages that the debugger may display.

C.1 Associating Sound With Error Messages C-2.
C.2 Alphabetical Summary of Debugger Messages C-2.
C.3 Additional Instructions for Expression Errors C-22.
C.4 Additional Instructions for Hardware Errors C-22.

D Glossary D-1.
Defines acronyms and key terms used in this book.

 Contents

xvii Contents

Figures

1–1 The Basic Debugger Display 1-2.
1–2 The Profiling-Environment Display 1-6.
1–3 ’370 Software Development Flow 1-8.
1–4 Steps You Go Through to Prepare a Program 1-11.
3–1 Example Program for the Tutorial 3-2.
4–1 Typical Assembly Display (for Auto Mode and Assembly Mode) 4-2.
4–2 Typical C Display (for Auto Mode Only) 4-3.
4–3 Typical Mixed Display (for Mixed Mode Only) 4-4.
4–4 The Default and Additional MEMORY Windows 4-15.
4–5 Default Appearance of an Active and an Inactive Window 4-21.
5–1 The COMMAND Window 5-2.
5–2 The Menu Bar in the Basic Debugger Display 5-7.
5–3 All of the Pulldown Menus (Basic Debugger Display) 5-7.
5–4 The Components of a Dialog Box 5-13.
6–1 Sample Memory Map for Use With an Emulator 6-4.
11–1 The BTT Setup Dialog Box 11-4.
11–2 The Select Action Menu 11-6.
11–3 The Dialog Box for Defining Conditions 11-6.
11–4 How the Select Action Menu Changes After Actions Are Defined 11-11.
11–5 The Global Settings Dialog Box 11-15.
11–6 Sequence of Events That Determine When a Breakpoint Can Occur 11-15.
11–7 An Example of the INSPECT Window 11-20.
11–8 Selecting the Trace Sample Timing Format 11-21.
11–9 Locating a Trace Sample by Its Index Number 11-22.
11–10 Locating a Trace Sample by Its Conditions 11-22.
11–11 Saving the Trace Buffer 11-23.
11–12 Saving the Current BTT Setup 11-24.
11–13 Loading a Saved BTT Setup 11-24.
12–1 An Example of the PROFILE Window 12-18.

Contents

xviii

Tables

1–1 Summary of Debugger Options 1-13.
1–2 Screen Size Options (for Use With the –b Option) 1-14.
3–1 First 48 Numbers Generated by the Example Program 3-3.
4–1 Description of Trace Sample Information 4-12.
5–1 Predefined Constants for Use With Conditional Commands 5-18.
8–1 Data Types for Displaying Debugger Data 8-17.
10–1 Colors and Other Attributes for the COLOR and SCOLOR Commands 10-2.
10–2 Summary of Area Names for the COLOR and SCOLOR Commands 10-3.
11–1 Number of Actions Allowed per State 11-12.
12–1 Debugger Commands That Can/Can’t be Used in the Profiling Environment 12-4.
12–2 Menu Selections for Marking Areas 12-8.
12–3 Menu Selections for Disabling Areas 12-10.
12–4 Menu Selections for Enabling Areas 12-11.
12–5 Menu Selections for Unmarking Areas 12-13.
12–6 Types of Data Shown in the PROFILE Window 12-19.
12–7 Menu Selections for Displaying Areas in the PROFILE Window 12-21.
13–1 Marking Areas 13-52.
13–2 Disabling Marked Areas 13-52.
13–3 Enabling Disabled Areas 13-53.
13–4 Unmarking Areas 13-53.
13–5 Changing the PROFILE Window Display 13-54.

1-1 Chapter Title—Attribute Reference

Overview of a Code
 Development and Debugging System

The ’370 C source debugger is an advanced software interface that helps you
to develop, test, and refine ’370 C programs (compiled with the ’370 optimizing
ANSI C compiler) and assembly language programs. The debugger is the
interface to the ’370 in-circuit XDS/22 emulator and the application board.

The chapter provides an overview of the debugger and the debugging process
and describes how the debugging process fits in with the overall code develop-
ment process.

Topic Page

1.1 Description of the ’370 C Source Debugger 1-2
Key features of the debugger 1-3
Breakpoint, trace, and timing features (XDS/22 only) 1-5

1.2 Description of the Profiling Environment 1-6
Key features of the profiling environment 1-6

1.3 Developing Code for the ’370 1-8

1.4 Preparing Your Program for Debugging 1-11

1.5 Invoking the Debugger 1-13
Selecting the screen size (–b option) 1-14
Identifying additional directories (–i option) 1-14
Identifying the serial port (–p option) 1-14
Entering the profiling environment (–profile option) 1-15
Loading the symbol table only (–s option) 1-15
Identifying a new initialization file (–t option) 1-15
Loading without the symbol table (–v option) 1-15
Ignoring D_OPTIONS (–x option) 1-15

1.6 Exiting the Debugger 1-16

1.7 Debugging ’370 Programs 1-17

Chapter 1

Description of the ’370 C Source Debugger

 1-2

1.1 Description of the ’370 C Source Debugger

The ’370 C source debugger improves productivity by allowing you to debug
a program in the language it was written in. You can choose to debug your pro-
grams in C, assembly language, or both. And, unlike many other debuggers,
the ’370 debugger’s higher level features are available even when you’re
debugging assembly language code.

The debugger is easy to learn and use. Its friendly window-, mouse-, and
menu-oriented interface reduces learning time and eliminates the need to
memorize complex commands. The debugger’s customizable displays and
flexible command entry let you develop a debugging environment that suits
your needs—you won’t be locked into a rigid environment. A shortened learn-
ing curve and increased productivity reduce the software development cycle,
so you’ll get to market faster.

Figure 1–1 identifies several features of the debugger display.

Figure 1–1. The Basic Debugger Display

pulldown
menus DISASSEMBLY

7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh
719f f4 MOV 3(R0F),A
71a3 d0 MOV A,R0D
71a5 f4 MOV 2(R0F),A
71a9 d0 MOV A,R0C
71ab 70 INCW #4,R0F
71ae 00 JMP 71BAh
71b0 9a MOV @R0F,A

CALLS
2: call()
1: main()

WATCH
1:str.a 0
2:F0 1.000000e
3:color GREEN

0007 }
0008
0009 call(newvalue)
0010 int newvalue;
0011 {
0012 static int value = 0;
0013
0014 switch (newvalue & 3)
0015 {
0016 case 0 : str.a = newvalue ; break;
0017 case 1 : str.b = newvalue + 1; return
0018 case 2 : str.c = newvalue * 2;
0019 case 3 : xcall(newvalue); break;
0020 }
0021

COMMAND

>>>

step

DISP: astr[7]
a 123
b 555
c 75
f1 3
f2 6
f3 0x0f
f4 [...]

DISP: astr[7].f4
[0] 0
[1] 9
[2] 7
[3] 54
[4] 3
[5] 3
[6] 4
[7] 123
[8] 4
[9] 789

disassembly
display

C source
display

interactive
command entry
and history
window

scrolling data
displays with

on-screen,
interactive

editing

function call
traceback

natural-format
data displays

FILE: sample1.c

MEMORY

0000 87 00 cb 01 00 00 28 e5 00 00 00 00
000c 28 81 72 44 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 28 87 28 8f 00 70
0024 40 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

CPU
PC 7185
A 87
B 00
ST 40
SP 22

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

 Description of the ’370 C Source Debugger

1-3 Overview of a Code Development and Debugging System

Key features of the debugger

� Multilevel debugging . The debugger allows you to debug both C and
assembly language code. If you’re debugging a C program, you can
choose to view just the C source, the disassembly of the object code
created from the C source, or both. You can also use the debugger as an
assembly language debugger.

� Fully configurable, state-of-the-art, window-oriented interface. The
C source debugger separates code, data, and commands into manage-
able portions. Use any of the default displays. Or select the windows you
want to display, size them, and move them where you want them.

� Comprehensive data displays. You can easily create windows for dis-
playing and editing the values of variables, arrays, structures, point-
ers—any kind of data—in their natural format (float, int, char, enum, or
pointer). You can even display entire linked lists.

WATCH
1: str.a 0
2: F0 1.000000e
3: color GREEN

DISP: str
a 123
b 0
c 75435
f1 3
f2 6
f3 0x0fa
f4 [...]

DISP: *str.f3
a 8327
b 666
c 87
f1 45
f2 27
f3 0x0f
f4 [...]

DISP: *str.f3–>f3
a 75
b 3212
c 782
f1 7
f2 9
f3 0x0f
f4 [...]

� On-screen editing. Change any data value displayed in any
window—just point the mouse, click, and type.

� Continuous update. The debugger continuously updates information on
the screen, highlighting changed values.

� Powerful command set. Unlike many other debugging systems, this
debugger doesn’t force you to learn a large, intricate command set. The
’370 C source debugger supports a small but powerful command set that
makes full use of C expressions. One debugger command performs
actions that would require several commands in another system.

Description of the ’370 C Source Debugger

 1-4

� Flexible command entry. There are a variety of ways to enter com-
mands. You can type commands or use a mouse, function keys, or the
pulldown menus; choose the method that you like best. Want to re-enter
a command? No need to retype it—simply use the command history.

� Create your own debugger. The debugger display is completely confi-
gurable, allowing you to create the interface that is best suited for your use.

� If you’re using a color display, you can change the colors of any area
on the screen.

� You can change the physical appearance of display features such as
window borders.

� You can interactively set the size and position of windows in the dis-
play.

Create and save as many custom configurations as you like, or use the
defaults. Use the debugger with a color display or a black-and-white
display. A color display is preferable; the various types of information on
the display are easier to distinguish when they are highlighted with color.

� Variety of screen sizes. The debugger’s default configuration is set up
for a typical PC display, with 25 lines by 80 characters. If you use a sophis-
ticated graphics card, you can take advantage of the debugger’s addition-
al screen sizes. A larger screen size allows you to display more informa-
tion and provides you with more screen space for organizing the
display—bringing the benefits of workstation displays to your PC.

� All the standard features you expect in a world-class debugger. The
debugger provides you with complete control over program execution with
features like conditional execution and single-stepping (including
single-stepping into or over function calls). You can set or clear a break-
point with a click of the mouse or by typing commands. You can define a
memory map that identifies the portions of target memory that the
debugger can access. You can choose to load only the symbol table
portion of an object file to work with systems that have code in ROM. The
debugger can execute commands from a batch file, providing you with an
easy method for entering often-used command sequences.

 Description of the ’370 C Source Debugger

1-5 Chapter Title—Attribute Reference

Breakpoint, trace, and timing features

Included with the XDS/22 emulation system is a separate board called the BTT
board, which provides breakpoint, trace, and timing features. The BTT moni-
tors the ’370 CPU; when a preselected pattern of bus activity is detected, the
BTT performs an action such as executing a hardware breakpoint or storing
information in the trace buffer.

The BTT supports a rich set of features:

� Full range of actions. The BTT allows you to set hardware breakpoints,
to count event occurrences, to collect trace samples, to jump to a BTT
state, or to start/stop timers. These actions occur when they are quali-
fied—that is, when bus activity matches conditions that you have defined.

� Four separate states. The BTT supports four separate states, called
state 0–state 3. Each state can be associated with up to four actions. You
can define actions for as many states as you need. By default, the BTT will
cycle through the states, beginning with state 0 and ending with the last
state that you defined actions for. You can control this sequencing by jump-
ing to another state or by using counters to loop through a sequence of
states.

� Flexible qualification for actions. You can qualify actions according to
address or data values (either singly or in relation to ranges) and to the
memory-cycle type. You can combine these conditions; for example, you
could qualify an action whenever a certain data value is accessed during
an instruction acquisition cycle.

� Informative trace reporting. The BTT can store up to 2047 trace sam-
ples in the trace buffer. You can display the trace samples and associated
information by opening the INSPECT window.

� External signal access. The BTT has eight external probes that can be
connected to eight signals. You can qualify actions by looking for a particu-
lar pattern of activity on these probes. Additionally, the trace buffer reports
the values that were on the signals when each trace sample was collected.

� Complete timing analysis. The BTT supports two timers that you can
start and stop on a variety of conditions. The BTT reports the total time for
each of these timers; it also reports the average for one of the timers. Addi-
tionally, the BTT collects timing information that relates specifically to the
samples in the trace buffer.

� External filing. Once you have defined a complex BTT setup, you may
want to reuse the setup. The BTT allows you to save the setup to a file and
then load it again for a later session. You can also save the contents of the
trace buffer to a file for later use or to compare to another trace collection.

XDS/22
emulator

only

Description of the Profiling Environment

 1-6

1.2 Description of the Profiling Environment

In addition to the basic debugging environment, a second environment—the
profiling environment—is available. The profiling environment provides a
method for collecting execution statistics about specific areas in your code.
This gives you immediate feedback on your application’s performance.

Figure 1–2 identifies several features of the debugger display within the profil-
ing environment.

Figure 1–2. The Profiling-Environment Display

Load mAp Mark Enable Disable Unmark View Stop–points Profile
DISASSEMBLY

7000 8e main: CALL i0i0it
7003 42 Re> MOV R018,R017
7006 42 MOV R019,R018
7009 88 << MOVW #00019h,R01B
700d 8e CALL random
7010 00 JMP main+44(702Ch)
7012 8e CALL write_number
7015 00 JMP main+3(7003h)
7017 8e CALL write_number

FILE: sample.c
0034 }
0035 Fe> write_number()
0036 <
0037 Fe> results[previous[0]]=rnum;
0038 >
0039
0040 Fe> random(r)
0041 int *r;
0042 Fe> <
0043 Fe> *r=rand()&0xFF;

COMMAND

>>>

 65 symbols loaded

Done

file sample.c

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

CF main() 1 17450 0 2193 0

AR 7003–7009 19 589 31 589 31

CF write_number() 19 1045 55 1045 55

CF random() 19 14022 738 703 37

PROFILE
window displays
execution
statistics

profiling areas
are clearly

marked

pulldown menu
provides access

to often-used
basic debugger
commands plus
special profiling

commands

profiling areas
are clearly
marked

Key features of the profiling environment

The profiling environment builds on the same easy-to-use interface available
in the basic debugging environment and provides these additional features:

� More efficient code. Within the profiling environment, you can quickly
identify busy sections in your programs. This helps you to direct valuable
development time at streamlining the sections of code that most dramati-
cally affect program performance.

 Description of the Profiling Environment

1-7 Overview of a Code Development and Debugging System

� Statistics on multiple areas. You can collect statistics about individual
statements in disassembly or C, about ranges in disassembly or C, and
about C functions. When you are collecting statistics on many areas, you
can choose to view the statistics for all the areas or a subset of the areas.

� Comprehensive display of statistics. The profiler provides all the infor-
mation you need for identifying bottlenecks in your code:

� The number of times each area was entered during the profiling
session.

� The total execution time of an area, including or excluding the execu-
tion time of any subroutines called from within the area.

� The maximum time for one iteration of an area, including or excluding
the execution time of any subroutines called from within the area.

Statistics may be updated continuously during the profiling session, or at
selected intervals.

� Configurable display of statistics. Display the entire set of data, or
display one type of data at a time. Display all the areas you’re profiling, or
display a selected subset of the areas.

� Visual representation of statistics. When you choose to display one
type of data at a time, the statistics will be accompanied by histograms for
each area, showing the relationship of each area’s statistics to those of the
other profiled areas.

� Disabled areas. In addition to identifying areas that you can collect
statistics on, you can also identify areas that you don’t want to affect the
statistics. This removes the timing impact from code such as a standard
library function or a fully optimized portion of code.

� Special profiling commands. The profiling environment supports a rich
set of commands to help you select areas and display information. Some
of the basic debugger commands—such as the memory map
commands—may be necessary during profiling and are available within
the profiling environment. Other commands—such as breakpoint
commands and run commands—are not necessary and are therefore not
available within the profiling environment.

Developing Code for the ’370

 1-8

1.3 Developing Code for the ’370

The ’370 is well supported by a complete set of hardware and software
development tools, including a C compiler, assembler, and linker. Figure 1–3
illustrates the ’370 code development flow. The figure highlights the most com-
mon paths of software development; the other portions are optional.

Figure 1–3. ’370 Software Development Flow

assembler
source

macro
library

library of
object files

COFF
object
files

debugging
tools

C
source

files

’370
target

system

runtime
support
library

C compiler

assembler

linker

executable
COFF

file
hex conver-
sion utility

hexadecimal
object file

EPROM
programmer

 Developing Code for the ’370

1-9 Overview of a Code Development and Debugging System

These tools use common object file format (COFF), which encourages
modular programming. COFF allows you to divide your code into logical
blocks, define your system’s memory map, and then link code into specific
memory areas. COFF also provides rich support for source-level debugging.

The following list describes the tools shown in Figure 1–3.

The ’370 optimizing ANSI C compiler is a full-featured optimizing compiler
that translates standard ANSI C programs into ’370 assembly language
source. Key characteristics include:

� Standard ANSI C. The ANSI standard is a precise definition of the C lan-
guage, agreed upon by the C community. The standard encompasses
most of the recent extensions to C.

� Optimization. The compiler uses several advanced techniques for gener-
ating efficient, compact code from C source.

� Assembly language output. The compiler generates assembly language
source that you can inspect (and modify, if desired).

� ANSI standard runtime support. The compiler package comes with a
complete runtime library that conforms to the ANSI C library standard. The
library includes functions for string manipulation, dynamic memory alloca-
tion, data conversion, trigonometry, exponential, and hyperbolic functions.
Functions for I/O and signal handling are not included because they are
application specific.

� Flexible assembly language interface. The compiler has straightforward
calling conventions, allowing you to easily write assembly and C functions
that call each other.

� Shell program. The compiler package includes a shell program that
enables you to compile, assemble, and link programs in a single step.

� Source interlist utility. The compiler package includes a utility that interlists
your original C source statements into the assembly language output of
the compiler. This utility provides you with an easy method for inspecting
the assembly code generated for each C statement.

C compiler

Developing Code for the ’370

 1-10

The assembler translates ’370 assembly language source files into machine
language object files.

The linker combines object files into a single, executable object module. As
the linker creates the executable module, it performs relocation and resolves
external references. The linker is a tool that allows you to define your system’s
memory map and to associate blocks of code with defined memory areas.

The main purpose of the development process is to produce a module that can
be executed in a ’370 target system. You can use one of several debugging
tools to refine and correct your code. Available products include:

� A realtime in-circuit emulator , and

� An application board.

A hex conversion utility is also available; it converts a COFF object file into
an ASCII-Hex, Intel, Motorola-S, Tektronix, or TI-tagged object-format file that
can be downloaded to an EPROM programmer.

assembler

linker

debugging
tools

hex
conversion

utility

 Preparing Your Program for Debugging

1-11 Overview of a Code Development and Debugging System

1.4 Preparing Your Program for Debugging
Figure 1–4 illustrates the steps you must go through to prepare a program for
debugging.

Figure 1–4. Steps You Go Through to Prepare a Program

C Compiler

assembly
language

C
source

object
code

executable
object code

If you’re working with a C
program, start here

If you’re working with an
assembly language
program, start here

This is the file that you load
when you invoke the
debugger

Assembler

Linker

code

If you’re preparing to
debug a C program. . .

1) Compile the program; use the –g option. If you
plan to use the Profiler, compile the program with
the –as option.

2) Assemble the resulting assembly language pro-
gram.

3) Link the resulting object file.

This produces an object file that you can load into the
debugger.

If you’re preparing to
debug an assembly
language program. . .

1) Assemble the assembly language source file. If
you want to include a local symbol table,
assemble the program with the –s option.

2) Link the resulting object file.

This produces an object file that you can load into the
debugger.

You can compile, assemble, and link a program by invoking the compiler,
assembler, and linker in separate steps, or you can perform all three actions
in a single step by using the cl370 shell program. The TMS370 Assembly Lan-
guage Tools User’s Guide and TMS370 C Compiler User’s Guide contain
complete instructions for invoking the tools individually and for using the shell
program.

Preparing Your Program for Debugging

 1-12

For your convenience, here’s the command for invoking the shell program
when preparing a program for debugging:

cl370 [–options] –g [filenames] [–z [link options]]

cl370 is the command that invokes the compiler and assembler.

options affect the way the compiler processes input files. If you plan to
use the debugger in a profiling environment, include the –as op-
tion.

–g is an option that tells the C compiler to produce symbolic debug-
ging information. When preparing a C program for debugging,
you must use the –g option.

filenames are one or more C source files, assembly language source files,
or object files. Filenames are not case sensitive.

–z is an option that invokes the linker. After compiling/assembling
your programs, you can invoke the linker in a separate step. If
you want the shell to automatically invoke the linker, however,
use –z.

link options affect the way the linker processes input files; use these options
only when you use –z.

Options and filenames can be specified in any order on the command line, but
if you use –z, it must follow all C/assembly language source filenames and
compiler options.

The shell identifies a file’s type by the filename’s extension.

Extension File Type Description

.c C source compiled, assembled,
and linked

.asm assembly language
source

assembled and linked

.s* (any extension that
begins with s)

assembly language
source

assembled and linked

.o* (extension begins
with o)

object file linked

none (.c assumed) C source compiled, assembled,
and linked

 Invoking the Debugger

1-13 Overview of a Code Development and Debugging System

1.5 Invoking the Debugger

Here’s the basic format for the commands that invoke the debugger:

emulator: xds370 [filename] [–options]
application board: abd370 [filename] [–options]

xds370
and abd370 are the commands that invoke the debugger for each tool. If

you are using Microsoft Windows, use xds370w to invoke the
debugger.

filename is an optional parameter that names an object file that the
debugger will load into memory during invocation. The
debugger looks for the file in the current directory; if the file
isn’t in the current directory, you must supply the entire path-
name. If you don’t supply an extension for the filename, the
debugger assumes that the extension is .out.

–options supply the debugger with additional information (Table 1–1
summarizes the available options).

You can also specify filename and option information with the D_OPTIONS
environment variable (see Setting up the environment variables in the
appropriate installation guide). Table 1–1 lists the debugger options and speci-
fies which debugger tools use the options; the subsections following describe
the options.

Table 1–1.Summary of Debugger Options

Option Brief description Debugger Tools

–b[b] Select the screen size All

–i pathname Identify additional directories All

–p serial port Identify the serial port Emulator

–profile Enter the profiling environment Emulator

–s Load the symbol table only All

–t filename Identify a new initialization file All

–v Load without the symbol table All

–x Ignore D_OPTIONS All

Invoking the Debugger

 1-14

Selecting the screen size (–b option)

By default, the debugger uses an 80-character-by-25-line screen. You can use
one of the options in Table 1–2 to specify a different screen size.

Table 1–2.Screen Size Options (for Use With the –b Option)

Option Description Notes

none 80 characters by
25 lines

Default display

–b 80 characters by
43 lines

Any EGA or VGA display

–bb 80 characters by
50 lines

VGA only

Note:

Using the –b options override the init.clr file.

Identifying additional directories (–i option)

The –i option identifies additional directories that contain your source files. Re-
place pathname with an appropriate directory name. You can specify several
pathnames; use the –i option as many times as necessary. For example:

xds370 –i path1 –i path2 –i path3 . . .

Using –i is similar to using the D_SRC environment variable (see Setting up
the environment variables in the appropriate chapter of your installation book).
If you name directories with both –i and D_SRC, the debugger first searches
through directories named with –i. The debugger can track a cumulative total
of 20 paths (including paths specified with –i, D_SRC, and the debugger USE
command).

Identifying the serial port (–p option)

The –p option is valid only when using the emulator. The –p option identifies
the serial port that the debugger uses for communicating with the emulator or
the application board. The default setting, –p1, is used when your serial port
is connected to COM1. Depending on your serial port connection, replace port
address with one of these values:

� If you are using serial communication port 1, enter:

xds370 –p1

� If you are using serial communication port 2, enter:

xds370 –p2

 Invoking the Debugger

1-15 Overview of a Code Development and Debugging System

If you use the wrong setting, you’ll see this error message when you try to in-
voke the debugger:

CANNOT INITIALIZE TARGET SYSTEM ! !
– Check communications port selection

– Check cabling and target power

Entering the profiling environment (–profile option)

This option is valid only when you are using the emulator. The –profile option
allows you to bring up the debugger in a profiling environment so you can col-
lect statistics about code execution. Note that only a subset of the base debug-
ger features is available in the profiling environment.

Loading the symbol table only (–s option)

If you supply a filename when you invoke the debugger, you can use the –s
option to tell the debugger to load only the file’s symbol table (without the file’s
object code). This is similar to the debugger’s SLOAD command.

Identifying a new initialization file (–t option)

The –t option allows you to specify an initialization command file that will be
used instead of init.cmd. If –t is present on the command line, the file specified
by filename will be invoked as the command file instead of init.cmd.

Loading without the symbol table (–v option)

The –v option prevents the debugger from loading the entire symbol table
when you load an object file. The debugger loads only the global symbols and
later loads local symbols as it needs them. This speeds up the loading time and
consumes less memory space.

The –v option affects all loads, including those performed when you invoke the
debugger and those performed with the LOAD command within the debugger
environment.

Ignoring D_OPTIONS (–x option)

The –x option tells the debugger to ignore any information supplied with
D_OPTIONS. For more information about D_OPTIONS, refer to the TMS370
Family XDS/11 Installation Guide, the TMS370 Family XDS/22 Installation
Guide, or the TMS370 Family Application Board Installation Guide.

Exiting the Debugger

 1-16

1.6 Exiting the Debugger

To exit any version of the debugger and return to the operating system, enter
this command:

quit

You don’t need to worry about where the cursor is or which window is
active—just type. If a program is running, press ESC to halt program execution
before you quit the debugger.

If you are running the debugger under Microsoft Windows, you can also exit
the debugger by selecting the exit option from the Microsoft Windows menu
bar.

 Debugging ’370 Programs

1-17 Overview of a Code Development and Debugging System

1.7 Debugging ’370 Programs

Debugging a program is a multiple-step process. These steps are described
below, with references to parts of this book that will help you accomplish each
step.

Once you have decided what changes must be made to your
program, exit the debugger, edit your source file, and return to
step 1.

If you find minor problems in
your code, you can temporari-
ly solve them with patch
assembly.

See Modifying assembly lan-
guage code on page 7-5.

Step 6

Step 7

Prepare a C program or as-
sembly language program for
debugging.

See Section 1.4, Preparing a
Program for Debugging,
page 1-11.

Step 1

Ensure that the debugger has
a valid memory map.

See Chapter 6, Defining a
Memory Map.

Load the program’s object file. See Section 7.3, Loading
Object Code, page 7-10.

Run the loaded file. You can run
the entire program, run parts of
the program, or single-step
through the program.

See Running Your Programs
on page 7-12.

Stop the program at critical
points and examine important
information.

See Chapter 9, Using Break-
points, and Chapter 8, Man-
aging Data.

Step 2

Step 3

Step 4

Step 5

 1-18

2-1 Chapter Title—Attribute Reference

An Introductory Tutorial

This chapter provides a step-by-step demonstration of the ’370 C source de-
bugger’s basic features. This is not the kind of tutorial that you can take home
to read—this tutorial is effective only if you’re sitting at your PC, performing the
lessons in the order that they’re presented. This tutorial contains two sets of
lessons (11 in the first, 13 in the second) and takes about one hour to complete.

Topic Page

How to use this tutorial 2-2
A note about entering commands 2-2
An escape route (just in case) 2-3
Invoke the debugger 2-3

and load the sample program’s object code
Take a look at the display... 2-4
What’s in the DISASSEMBLY window? 2-5
Select the active window 2-5
Resize the active window 2-7
Zoom the active window 2-8
Move the active window 2-9
Scroll through a window’s contents 2-10
Display the C source version of the sample file 2-11
Execute some code 2-11
Become familiar with the three debugging modes 2-12
Open another text file, then redisplay a C source file 2-14
Use the basic RUN command 2-15
Set some software breakpoints 2-15
Watch some values and single-step through code 2-17
Run code conditionally 2-18
WHATIS that? 2-20
Clear the COMMAND window display area 2-20
Display the contents of an aggregate data type 2-21
Display data in another format 2-24
Change some values 2-26
Define a memory map 2-27
Define your own command string 2-28
Close the debugger 2-28

Chapter 2

How to Use This Tutorial / A Note About Entering Commands

 2-2

How to use this tutorial

This tutorial contains three basic types of information:

Primary actions Primary actions identify the main lessons in the
tutorial; they’re boxed so you can find them eas-
ily. A primary action looks like this:

Make the CPU window the active window:

win CPU

Important information In addition to primary actions, important infor-
mation ensures that the tutorial works correctly.
Important information is marked like this:

Important! The CPU window should still be ac-
tive from the previous step.

Alternative actions Alternative actions show additional methods for
performing the primary actions. Alternative ac-
tions are marked like this:

Try This: Another way to display the current code
in MEMORY is to show memory beginning from the
current PC. . .

Important! This tutorial assumes that you have correctly and completely in-
stalled your debugger (including invoking any files or DOS commands as in-
structed in the installation guide).

A note about entering commands

Whenever this tutorial tells you to type a debugger command, just type—the
debugger automatically places the text on the command line. You don’t have
to worry about moving the cursor to the command line; the debugger takes
care of this for you. (There are a few instances when this isn’t true—for exam-
ple, when you’re editing data in the CPU or MEMORY window—but this is ex-
plained later in the tutorial.)

Also, you don’t have to worry about typing commands in uppercase or lower-
case—either is fine. There are a few instances when a command’s parameters
must be entered in uppercase, and the tutorial points this out.

 An Escape Route / Invoke the Debugger

2-3 An Introductory Tutorial

An escape route (just in case)

The steps in this tutorial create a path for you to follow. The tutorial won’t
purposely lead you off the path. But sometimes when people use new
products, they accidently press the wrong key, push the wrong mouse button,
or mistype a command. Suddenly, they’re off the path without any idea of
where they are or how they got there.

This probably won’t happen to you. But, if it does, you can almost always get
back to familiar ground by pressing ESC . If you were running a program when
you pressed ESC , you should also type RESTART . Then go back to the be-
ginning of whatever lesson you were in and try again.

Invoke the debugger and load the sample program’s object code

Included with the debugger is a demonstration program named sample. This
lesson shows you how to invoke the debugger and load the sample program.

Important! This step assumes that you are using the default serial port or that
you have identified the serial port with the D_OPTIONS environment variable,
as described in the Identifying the serial port (–p option), on page 1-14.

Invoke the debugger and load the sample program:

For the emulator , enter:

xds370 c:\370tools\sample

For the application board , enter:

abd370 c:\370tools\sample

Take a Look at the Display

 2-4

Take a look at the display. . .

Now you should see a display similar to this (it may not be exactly the same
display, but it should be close).

Load Break Watch Memory

DISASSEMBLY

MEMORY

COMMAND

>>>

(c)Copyright 1992, Texas Instruments
Silicon Revision 2
Emulator Revision 1
Loading sample.out
Done

MoDe Run=F5 Step=F8 Next=F10Color
menu bar with
pulldown menus

reverse assembly
of memory contents

register contents

memory contents

COMMAND window
display area

command line

current PC
(highlighted)

BTT

CPU

PC 7185
A 87
B 00
ST 40
SP 22

7185 88 c_into0: MOVW #04883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh
719f f4 MOV 3(R0F),A
71a3 d0 MOV A,R0D
71a5 f4 MOV 2(R0F),A
71a9 d0 MOV A,R0C
71ab 70 INCW #4,R0F
71ae 00 JMP 71BAh

0000 87 00 cb 01 00 00 28 e5 00 00 00 00
000c 28 81 72 44 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 28 87 28 8f 00 70
0024 40 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

� If you don’t see a display, then your debugger or system may not be in-
stalled properly. Go back through the installation instructions and be sure
that you followed each step correctly; then reinvoke the debugger.

� If you do see a display, check the first few lines of the DISASSEMBLY win-
dow. If these lines aren’t the same—if, for example, they show JMP in-
structions or say Invalid address —then enter the following commands
on the debugger command line. (Just type; you don’t have to worry about
where the cursor is.)

1) Reset the ’370 processor:

reset

2) Load the sample program again:

load c:\370tools\sample

� If you see a display and the first few lines of the DISASSEMBLY window
still show JMP instructions or they say invalid address after resetting the
’370 processor, your cord (RS232) may not be inserted snugly. Check your
cord and see if it is installed correctly, then reenter the above commands.

 What’s in the DISASSEMBLY Window? / Select the Active Window

2-5 An Introductory Tutorial

What’s in the DISASSEMBLY window?

The DISASSEMBLY window always shows the reverse assembly of memory
contents; in this case, it shows an assembly language version of sample.out.
The MEMORY window displays the current contents of memory. Because you
loaded the object file sample.out when you invoked the debugger, memory
contains the object code version of the sample file.

This tutorial step demonstrates that the code shown in the DISASSEMBLY
window corresponds to memory contents. Initially, memory is displayed start-
ing at address 0; if you look at the first line of the DISASSEMBLY window, you’ll
see that its display starts at address 0x7189.

Modify the MEMORY display to show the same object code that is dis-
played in the DISASSEMBLY window:

mem 0x7189

Notice that the first column in the DISASSEMBLY window corresponds to the
addresses in the MEMORY window.

Try This: The highlighted statement in the DISASSEMBLY window shows
that the PC is currently pointing to address 0x7189. You can modify the
MEMORY display to show memory beginning from the current PC:

mem PC

Select the active window

This lesson shows you how to make a window into the active window. You can
move and resize any window; you can close some windows. Whenever you
type a command or press a function key to move, resize, or close a window,
the debugger must have some method of understanding which window you
want to affect. The debugger does this by designating one window at a time
to be the active window. Any window can be the active window, but only one
window at a time can be active.

Make the CPU window the active window:

win CPU

Select the Active Window

 2-6

Important! Notice the appearance of the CPU window (especially its bor-
ders) in contrast to the other, inactive windows. This is how you can tell which
window is active.

Important! If you don’t see a change in the appearance of the CPU window,
look at the way you entered the command. Did you enter CPU in uppercase
letters? For this command, it’s important that you enter the parameters in up-
percase as shown.

Try This: Press the F6 key to “cycle” through the windows in the display,
making each one active in turn. Press F6 as many times as necessary until
the CPU window becomes the active window.

Try This: You can also use the mouse to make a window active:

1) Point to any location on the window’s border.

2) Click the left mouse button.

Be careful! If you point inside the window, the window becomes active when
you press the mouse button, but something else may happen as well:

� If you’re pointing inside the CPU window, then the register you’re pointing
at becomes active. The debugger then treats the text you type as a new
value for that register. Similarly, if you’re pointing inside the MEMORY
window, the address you’re pointing at becomes active.

Press ESC to get out of this.

� If you’re pointing inside the DISASSEMBLY or FILE window, you’ll set a
breakpoint on the statement that you were pointing to.

Point to the same statement; press the button again to delete the
breakpoint.

 Resize the Active Window

2-7 An Introductory Tutorial

Resize the active window

This lesson shows you how to resize the active window.

Important! The CPU window should still be active from the previous step.

Make the CPU window as small as possible:

size 4,3

This tells the debugger to make the window 4 characters by 3 lines, which is
the smallest a window can be. (If it were any smaller, the debugger wouldn’t
be able to display all four corners of the window.) If you try to enter smaller val-
ues, the debugger will warn you that you’ve entered an Invalid window size.
The maximum width and length depend on which –b option you used when you
invoked the debugger.

Make the CPU window larger:

size Enter the SIZE command without parameters

Make the window 3 lines longer

Make the window 4 characters wider

Press this key when you finish sizing the window

You can also use ↑ to make the window shorter and ← to make the window
narrower.

Try This: You can also use the mouse to resize the window (note that this
process forces the selected window to become the active window).

1) If you examine any window, you’ll see a highlighted, backwards “L” in the
lower right corner. Point to the lower right corner of the CPU window.

2) Press the left mouse button, but don’t release it; move the mouse while
you’re holding in the button. This resizes the window.

3) Release the mouse button when the window reaches the desired size.

Zoom the Active Window

 2-8

Zoom the active window

Another way to resize the active window is to zoom it. Zooming the window
makes it as large as possible.

Important! The CPU window should still be active from the previous steps.

Make the active window as large as possible:

zoom

The window should now be as large as possible, taking up the entire display
(except for the menu bar) and hiding all the other windows.

“Unzoom” or return the window to its previous size by entering the ZOOM
command again:

zoom

The ZOOM command will be recognized even though the COMMAND
window is hidden by the CPU window.

The window should now be back to the size it was before zooming.

Try This: You can also use the mouse to zoom the window.

Zoom the active window:

1) Point to the upper left corner of the active window.

2) Click the left mouse button.

Return the window to its previous size by repeating these steps.

 Move the Active Window

2-9 An Introductory Tutorial

Move the active window

This lesson shows you how to move the active window.

Important! The CPU window should still be active from the previous steps.

Move the CPU window to the upper left portion of the screen:

move 0,1 The debugger doesn’t let you move the window
to the very top—that would hide the menu bar

The MOVE command’s first parameter identifies the window’s new X position
on the screen. The second parameter identifies the window’s new Y position
on the screen. The maximum X and Y positions depend on which –b option
you used when you invoked the debugger and on the position of the window
before you tried to move it.

Try This: You can use the MOVE command with no parameters and then use
arrow keys to move the window:

move
→ → → → Press → until the CPU window is back where it was

(it may seem like only the border is moving—this is normal)
ESC Press ESC when you finish moving the window

You can also use ↑ to move the window up, ↓ to move the window down,
and ← to move the window left.

Try This: You can also use the mouse to move the window (note that this
process forces the selected window to become the active window).

1) Point to the top edge or left edge of the window border.

2) Press the left mouse button, but don’t release the button; move the mouse
while you’re holding in the button.

3) Release the mouse button when the window reaches the desired position.

Scroll Through a Window’s Contents

 2-10

Scroll through a window’s contents

Many of the windows contain more information than can possibly be displayed
at one time. You can view hidden information by moving through a window’s
contents. The easiest way to do this is to use the mouse to scroll the display
up or down.

If you examine most windows, you’ll see an up arrow near the top of the right
border and a down arrow near the bottom of the right border. These are scroll
arrows.

Scroll through the contents of the DISASSEMBLY window:

1) Point to the up or down scroll arrow.

2) Press the left mouse button; continue pressing it until the dis-
play has scrolled several lines.

3) Release the button.

Try This: You can also use several of the keys to modify the display in the
active window.

Make the MEMORY window the active window:

win MEMORY

Now try pressing these keys; observe their effects on the window’s contents.

↓ ↑ PAGE DOWN PAGE UP

These keys don’t work the same for all windows; Section 13.5 (page 13-58)
summarizes the functions of all the special keys, key sequences, and how their
effects vary for the different windows.

 Display the C Source Version of the Sample File / Execute Some Code

2-11 An Introductory Tutorial

Display the C source version of the sample file

Now that you can find your way around the debugger interface, you can be-
come familiar with some of the debugger’s more significant features. It’s time
to load some C code.

Display the contents of a C source file:

file sample.c

This opens a FILE window that displays the contents of the file sample.c (sam-
ple.c was one of the files that contributed to making the sample object file). You
can always tell which file you’re displaying by the label in the FILE window.
Right now, the label should say FILE: sample.c .

Execute some code

Let’s run some code—not the whole program, just a portion of it.

Execute a portion of the sample program:

go main

You’ve just executed your program up to the point where main() is declared.
Notice how the display has changed:

� The current PC is highlighted in both the DISASSEMBLY and FILE win-
dows.

� The addresses and object codes of the first eleven statements in the DIS-
ASSEMBLY window are highlighted; this is because these statements are
associated with the current C statement (line 55 in the FILE window).

� The CALLS window, which tracks functions as they’re called, now points
to main().

� The values of the PC and SP (and possibly some additional registers) are
highlighted in the CPU window because they were changed by program
execution.

Become Familiar With the Three Debugging Modes

 2-12

Become familiar with the three debugging modes

The debugger has three basic debugging modes:

� Mixed mode shows both disassembly and C at the same time.

� Auto mode shows disassembly or C, depending on what part of your pro-
gram happens to be running.

� Assembly mode shows only the disassembly, no C, even if you’re
executing C code.

When you opened the FILE window in a previous step, the debugger switched
to mixed mode; you should be in mixed mode now. (You can tell that you’re in
mixed mode if both the FILE and DISASSEMBLY windows are displayed.)

The following steps show you how to switch debugging modes.

Use the MoDe menu to select assembly mode:

1) Look at the top of the display: the first line shows a row of pull-
down menu selections.

2) Point to the word MoDe on the menu bar.

3) Press the left mouse button, but don’t release it; drag the
mouse downward until Asm (the second entry) is highlighted.

4) Release the button.

This switches to assembly mode. You should see the DISASSEMBLY window,
but not the FILE window.

Switch to auto mode:

1) Press . This displays and freezes the MoDe menu.

2) Now select C(auto). Choose one of these methods for doing this:

Press the arrow keys to move up/down through the menu; when
C(auto) is highlighted, press .

Type C.

Point the mouse cursor at C(auto), then click the left mouse but-
ton.

 Become Familiar With the Three Debugging Modes

2-13 Chapter Title—Attribute Reference

You should be in auto mode now, and you should see the FILE window but not
the DISASSEMBLY window (because you’re program is in C code). Auto
mode automatically switches between an assembly or a C display, depending
on where you are in your program. Here’s a demonstration of that:

Run to a point in your program that executes assembly language code:

go meminit

You’re still in auto mode, but you should now see the DISASSEMBLY window.
The current PC should be at the statement that defines the meminit label.

Try This: You can also switch modes by typing one of these commands:

asm switches to assembly-only mode

c switches to auto mode
mix switches to mixed mode

Switch back to mixed mode.

You’ve finished the first half of the tutorial and the
first set of lessons.

To close the debugger, just type QUIT . When you return to the debugger,
you must reinvoke it and load the sample program (refer to page 2-3). Turn
to page 2-14 and continue with the second set of lessons.

Open Another Text File, Then Redisplay a C Source File

 2-14

Open another text file, then redisplay a C source file

In addition to what you already know about the FILE window and the FILE com-
mand, you should also know that:

� You can display any text file in the FILE window.

� If you enter any command that requires the debugger to display a C source
file, it automatically displays that code in the FILE window (regardless of
whether the window is open or not and regardless of what is already dis-
played in the FILE window).

Display a file that isn’t a C source file, enter:

file init.cmd

This replaces sample.c in the FILE window with the initialization batch file
(init.cmd) that comes with the debugger.

Remember, you can tell which file you’re displaying by the label in the FILE
window. Right now, the label should say:

FILE: init.cmd

Redisplay another C source file (sample1.c):

func call

Now the FILE window label should say FILE: sample1.c because the call()
function is in sample1.c.

 Use the Basic RUN Command / Set Some Software Breakpoints

2-15 An Introductory Tutorial

Use the basic RUN command

The debugger provides you with several ways of running code, but it has one
basic run command.

Run your entire program:

run

Entered this way, the command basically means “run forever”. You may not
have that much time!

This isn’t very exciting: halt program execution:

Set some software breakpoints

When you halted execution in the previous step, you should have seen
changes in the display similar to the changes you saw when you entered go
main earlier in the tutorial. When you pressed ESC , you had little control over
where the program stopped. Knowing that information changed was nice, but
what part of the program affected the information?

This information would be much more useful if you picked an explicit stopping
point before running the program. Then, when the information changed, you’d
have a better understanding of what caused the changes. You can stop pro-
gram execution in this way by setting software breakpoints.

Here’s an example of the debugger’s informative capabilities (more are com-
ing). You’re going to benchmark some code; this means that you’ll ask the de-
bugger to count the number of CPU clock cycles that are consumed by a cer-
tain portion of code.

Important! This lesson assumes that you’re displaying the contents of sam-
ple.c in the FILE window. If you aren’t, enter:

file sample.c

Set Some Software Breakpoints

 2-16

Set some software breakpoints:

1) Scroll to line 60 in the FILE window (the meminit() statement) and set
a software breakpoint at that line:

a) Point the mouse cursor at the statement on line 60.

b) Click the left mouse button. Notice how the line is highlighted;
this identifies a breakpointed statement.

2) Set another software breakpoint at line 68 (the for (;;); statement).

3) Reset the program entry point:

restart

4) Enter the run command:

run This runs to the breakpoint

Benchmark some code:

1) Enter the runb command:

runb This runs to the second breakpoint

2) Now use the ? command to examine the contents of the CLK pseudo-
register:

? clk

The debugger now shows a number in the display area; this is the number of
CPU clock cycles consumed by the portion of code between the two break-
pointed C statements.

Important! The value in the CLK pseudoregister is valid only when you ex-
ecute the RUNB command and when that execution is halted on breakpointed
statements.

Delete breakpoints:

br The BR (breakpoint reset) command deletes
all breakpoints that were set

XDS/22
emulator

only

 Watch Some Values and Single-Step Through Code

2-17 An Introductory Tutorial

Watch some values and single-step through code

Now you know how to update the display without running your entire program;
you can set breakpoints to obtain information at specific points in your pro-
gram. But what if you want to update the display after each statement? No, you
don’t have to set a breakpoint at every statement—you can use single-step ex-
ecution.

For this lesson, you have to be at a specific point in the program—let’s go there
before we do anything else.

Set up for the single-step example:

restart
go main

The debugger has another type of window called a WATCH window that’s very
useful in combination with single-step execution. What’s a WATCH window
for? Suppose you are interested in only a few specific register values, not all
of the registers shown in the CPU window. Or suppose you are interested in
a particular memory location or in the value of some variable. You can observe
these data items in a WATCH window.

Set up the WATCH window before you start the single-step execution.

Open a WATCH window:

wa sp
wa pc, Program Counter
wa *0x4000, call:
wa i

You may have noticed that the WA (watch add) command can have one or two
parameters. The first parameter is the item that you’re watching. The second
parameter is an optional label.

Watch Some Values and Single-Step Through Code / Run Code Conditionally

 2-18

Resize the WATCH window if it isn’t wide enough to display the PC value. You
need to single-step through the loop that you benchmarked in the previous
step.

Now try out the single-step commands. Hint: Watch the PC in the FILE and
DISASSEMBLY windows; watch the value of i in the WATCH window.

Single-step through the sample program:

step 50

Observe the FILE, DISASSEMBLY, and WATCH windows.

Try This: Notice that the step command single-stepped each assembly lan-
guage statement (in fact, you single-stepped through 50 assembly language
statements). Did you also notice that the FILE window displayed the source
for the call() function when it was called? The debugger supports more
single-step commands that have a slightly different flavor.

� For example, if you enter:

cstep 50

you’ll single-step 50 C statements, not assembly language statements
(notice how the PC “jumps” in the DISASSEMBLY window).

� Reset the program entry point and run to main().

restart
go main

Now enter the NEXT command, as shown below. You’ll be single-stepping
50 assembly language statements, but the FILE window doesn’t display
the source for the call () function when call () is executed.

next 50

(There’s also a CNEXT command that “nexts” in terms of C statements.)

Run code conditionally

Try executing this loop one more time. Take a look at this code; it’s doing a lot
of work with a variable named i. You may want to check the value of i at specific
points instead of after each statement. To do this, you set software breakpoints
at the statements you’re interested in and then initiate a conditional run.

First, clear out the WATCH window so that you won’t be distracted by any su-
perfluous data items.

 Run Code Conditionally

2-19 An Introductory Tutorial

Delete the first three data items from the WATCH window (don’t watch
them anymore).

wd 3
wd 2
wd 1

Set up for the conditional run examples:

1) Set software breakpoints at lines 57 and 66.

2) Set up for conditional run example:

restart

run

3) Initiate the conditional run:

run i<100

This causes the debugger to run through the loop as long as the value of i is
less than 100. Each time the debugger encounters the breakpoints in the loop,
it updates the value of i in the WATCH window.

When the conditional run completes, close the WATCH window.

Close the WATCH window:

wr

WHATIS That? / Clear the COMMAND Window Display Area

 2-20

WHATIS that?

At some point, you might like to obtain some information about the types of
data in your C program. Maybe things won’t be working quite the way you’d
planned, and you’ll find yourself saying something like “... but isn’t that sup-
posed to point to an integer?” Here’s how you can check on this kind of infor-
mation: be sure to watch the COMMAND window display area as you enter
these commands.

Use the WHATIS command to find the types of some of the variables de-
clared in the sample program:

whatis genum
enum yyy genum; genum is an enumerated type

whatis tiny6
struct { tiny6 is a structure

int u;

int v;

int x;

int y;

int z;

} tiny6;

whatis call
int call(); call is a function that returns an integer

whatis s
short s; s is a short unsigned integer

whatis zzz
struct zzz { zzz is a very long structure

int b1;

int b2;

Press to halt long listings

Clear the COMMAND window display area

After displaying all of these types, you may want to clear them away. This is
easy to do.

Clear the COMMAND window display area:

cls

 Clear the COMMAND Window Display Area / Display the Contents of an Aggregate Data Type

2-21 An Introductory Tutorial

Try This: CLS isn’t the only system-type command that the debugger
supports.

cd .. Change back to the main directory
dir Show a listing of the current directory
cd directory name Change back to the debugger directory

Display the contents of an aggregate data type

The WATCH window is convenient for watching single, or scalar, values. When
you’re debugging a C program, though, you may need to observe values that
aren’t scalar; for example, you might need to observe the effects of program
execution on an array. The debugger provides another type of window called
a DISP window where you can display the individual members of an array or
structure.

Show a structure in a DISP window:

disp tiny6

Close the DISP window:

Show another structure in a DISP window:

disp big1

Now you should see a display like the one below. The newly opened DISP win-
dow becomes the active window. Like the FILE window, you can always tell
what’s being displayed because of the way the DISP window is labeled. Right
now, it should say DISP: big1 .

DISP: big1
b1 0
b2 0
b3 0h
b4 0
b5 0
q1 [...]
q2 {...}
q3 0x0000

Display the Contents of an Aggregate Data Type

 2-22

� Members b1, b2, b3, b4, and b5 are ints; you can tell because they’re dis-
played as integers (shown as plain numbers without prefixes).

� Member q1 is an array; you can tell because q1 shows [. . .] instead of a
value.

� Member q2 is another structure; you can tell because q2 shows {. . .} in-
stead of a value.

� Member q3 is a pointer; you can tell because it is displayed as a hexadeci-
mal address instead of an integer value.

If a member of a structure or an array is itself a structure or an array, or even
a pointer, you can display its members (or the data it points to) in additional
DISP windows (referred to as the original DISP window’s children).

Display what q3 is pointing to:

1) Point at the address displayed next to the q3 label in big1’s
display.

2) Click the left mouse button.

This opens a second DISP window, named big1.q3 , that shows what q3 is
pointing to (it’s pointing to another structure). Close this DISP window or move
it out of the way.

Display array q1 in another DISP window:

1) Point at the [. . .] displayed next to the q1 label in big1’s dis-
play.

2) Click the left mouse button.

This opens another DISP window labeled DISP: big1.q1 .

 Display the Contents of an Aggregate Data Type

2-23 Chapter Title—Attribute Reference

Important! q1 is actually a 2-member array of structures. To view the two dif-
ferent structures, use CONTROL PAGE DOWN and CONTROL PAGE UP . (Look at the
name of this DISP window when you’re switching.)

Try This: Display structure q2 in another DISP window.

1) Close the additional DISP windows or move them out of the way so that
you can clearly see the original DISP window that you opened to display
big1.

2) Make big1’s DISP window the active window.

↓ ↑ 3) Use these arrow keys to move the field cursor (_) through the list of big1’s
members until the cursor points to q2.

F9 4) Now press F9 .

Close all of the DISP windows:

1) Make big1’s DISP window the active window.

2) Press

When you close the main DISP window, the debugger closes all of its children
as well.

Display Data in Another Format

 2-24

Display data in another format

Usually, when you add an item to the WATCH window or open a DISP window,
the data is shown in its natural format. This means that ints are shown as
integers, floats are shown as floating-point values, etc. Occasionally, you may
wish to view data in a different format. This can be especially important if you
want to show memory or register contents in another format.

One way to display data in another format is through casting (which is part of
the C language). In the expression below, the *(float *) portion of the expres-
sion tells the debugger to treat address 0x4000 as type float (exponential floa-
ting-point format).

Display memory contents in floating-point format:

disp *(float *)0x4000

This opens a DISP window to show memory contents in an array format. The
“array” member identifiers don’t necessarily correspond to actual addresses—
they’re relative to the first address you request with the DISP command. In this
case, the item displayed as item [0] is the contents of address 0x4000—it isn’t
memory location 0. Note that you can scroll through the memory displayed in
the DISP window; item [1] is at 0x4003, and item [–1] is at 0x3FFd.

You can also change display formats according to data type. This affects all
data of a specific C data type.

Change display formats according to data types by using the SETF (set
format) command:

1) For comparison, watch the following variables. Their C data types are
listed on the right.

wa i Type int
wa f Type float

2) You can list all the data types and their current display formats:

setf

 Display Data in Another Format

2-25 An Introductory Tutorial

3) Now display the following data types with new formats:

setf int, c Ints as characters
setf float, f Floats as octal integers

4) List the data types to display formats again; note the changes in the
display:

setf

5) Add the variables to the WATCH window again; use labels to identify
the additions:

wa i, NEWi
wa f, NEWf

Notice the differences in the display formats between the first versions
you added and these new versions.

6) Now reset all data types back to their defaults:

setf *

A third way to display data in another format is to use the DISP, ?, MEM, or WA
command with an optional parameter that identifies the new display format.
The following examples are for ? and WA—DISP and MEM work similarly.

Use display formats with the ? and WA commands:

1) Evaluate a variable and display it as a character:

? i,c

2) Add a variable to the watch window and display it as an octal integer:

wa str.a,,o

(Notice that because no label was used with WA, an extra comma was
inserted—otherwise, the o parameter would have been interpreted as
a label.)

To get ready for the next step, close the DISP and WATCH windows.

Change Some Values

 2-26

Change some values

You can edit the values displayed in the MEMORY, CPU, WATCH, and DISP
windows.

Change a value in memory:

1) Move or close the WATCH window if it’s obscuring the
MEMORY window, then display memory beginning with ad-
dress 0x4000:

mem 0x4000

2) Point to the contents of memory location 0x4000.

3) Click the left mouse button. This highlights the field to identify
it as the field that will be edited.

4) Type 00.

5) Press to enter the new value.

6) Press to conclude editing.

Try This: Here’s another method for editing data that lets you edit a few more
values at once.

1) Make the CPU window the active window:

win CPU

↑ ↓ 2) Press the arrow keys until the field cursor (_) points to the PC contents.

F9 3) Press F9 .

4) Type 7000.

↓ 5) Press ↓ twice. You should now be pointing at the contents of register B.

6) Type 99.

7) Press to enter the new value.

ESC 8) Press ESC to conclude editing.

 Define a Memory Map

2-27 An Introductory Tutorial

Define a memory map

You can set up a memory map to tell the debugger which areas of memory it
can and can’t access. This is called memory mapping. When you invoked the
debugger for this tutorial, the debugger automatically read a default memory
map from a batch file included in the 370tools directory. For the purposes of
the sample program, that’s fine (which is why this lesson was saved for
next-to-last).

View the default memory map settings:

ml

Look in the COMMAND window display area—you’ll see a listing of the areas
that are currently mapped.

It’s easy to add new ranges to the map or delete existing ranges.

Change the memory map:

1) Use the MD (memory delete) command to delete a block of memory:

md 0x4000

This deletes the block of memory beginning at address 0x2000.

2) Use the MA (memory add) command to define a new block of memory:

ma 0x4000,0xfff,RAM

Define Your Own Command String / Close the Debugger

 2-28

Define your own command string

If you find that you often enter a command with the same parameters, or often
enter the same commands in sequence, you will find it helpful to have a short-
hand method for entering these commands. The debugger provides an
aliasing feature that allows you to do this.

This lesson shows you how you can define an alias to set up a memory map,
defining the same map that was defined in the previous lesson.

Define an alias for setting up the memory map:

1) Use the ALIAS command to associate a nickname with the commands
used for defining a memory map:

alias mymap,”mr;ma 0x4000,0xfff,RAM;ml”

2) Now, to use this memory map, just enter the alias name:

mymap

This is equivalent to entering the following three commands:

mr
ma 0x4000,0xfff,RAM
ml

Close the debugger

This is the end of the tutorial—close the debugger.

Close the debugger and return to the operating system:

quit

3-1 Chapter Title—Attribute Reference

Tutorial: Using BTT Features

This chapter provides a step-by-step, hands-on demonstration of basic BTT
(breakpoint, trace, and timing) features. This tutorial takes about one hour to
complete.

This tutorial can be used only with the XDS/22 emulation system.

Topic Page

Understanding the example program 3-2

Invoke the debugger and load the example program 3-4

Open the BTT setup dialog box 3-5

Collect traces on a specific address 3-5

Trace on a specific address; breakpoint on address and data 3-7

View the contents of the trace buffer 3-9

Display a specific trace sample 3-10

Change the timing format of trace samples 3-12

Trace on one of two address values; halt on program time out 3-14

Trace on a range of data 3-16

Collect trace samples after breakpointing 3-18

Collecting reads and writes associated with IAQ cycles 3-20

Use a masked data value 3-23

Collect timing statistics 3-25

Jump to another state 3-28

Close the INSPECT window 3-31

Chapter 3

Understanding the Example Program

 3-2

Understanding the example program

The tutorial uses one program, named example, to illustrate trace analyzer
capabilities. This program is not intended to represent a real program—it is
provided for illustration purposes only. The lessons in this tutorial will be more
useful if you have an understanding of the example program.

The example program generates random numbers in the range 1–256. It
writes the random numbers to an array named results. The variable rnum
represents the current random number. The array previous is an index into the
results array. The two members of previous are set to the values of the two
previous random numbers so that the current random number is stored at
results[previous random number]. The program calls two assembly language
functions, pinhi and pinlow.

Figure 3–1 (a) shows the C portion of the example program, and Figure 3–1
(b) shows the assembly language portion. Table 3–1 lists the first 48 numbers
that are generated by the example program (some of the lessons use specific
data points, so it may be useful to know where they come from).

Figure 3–1. Example Program for the Tutorial
(a) example.c

#define SEED 1
extern ioinit();
extern pinhi();
extern pinlow();
int results[256]; /* data storage area */
int previous[2] = {0, 1}; /* previous 2 random numbers */
int rnum = SEED; /* random number */
main()
{

ioinit();
for (; ;)
{

previous[0] = previous[1]; /* save the two previous random numbers */
previous[1] = rnum;
random(&rnum); /* generate a random number */
/***/
/* switch on the two least significant bits of */
/* previous random number */
/***/
switch(rnum & 3)
{

case 0 : write_number();
break;

case 1 : write_number();
break;

case 2 : write_number();
pinhi();
break;

 Understanding the Example Program

3-3 Chapter Title—Attribute Reference

Figure 3–1. Example Program for the Tutorial (Continued)

(a) example.c (continued)

case 3 : write_number();
pinlow();
break;

}
}

}
write_number()
{

results[previous[0]] = rnum;
}
random(r)
int *r;
{

*r = rand() & 0xFF;
}

(b) externs.asm

.global _ioinit, _pinhi, _pinlow
_ioinit mov #1, P023

rets
_pinhi mov #1, P022

rets
_pinlow mov #0, P022

rets
.end

Table 3–1.First 48 Numbers Generated by the Example Program

65 (41h) 35 (23h) 44 (2Ch) 49 (31h)

22 (16h) 47 (2Fh) 117 (75h) 45 (2Dh)

39 (27h) 125 (7Dh) 66 (42h) 25 (19h)

68 (44h) 68 (44h) 51 (33h) 105 (69h)

121 (79h) 98 (62h) 77 (4Dh) 53 (35h)

21 (15h) 82 (52h) 100 (64h) 59 (3Bh)

89 (59h) 98 (62h) 119 (77h) 125 (7Dh)

28 (1Ch) 99 (63h) 111 (6Fh) 16 (10h)

63 (3Fh) 105 (69h) 110 (6Eh) 27 (1Bh)

15 (Fh) 19 (13h) 86 (56h) 122 (7Ah)

10 (Ah) 80 (50h) 97 (61h) 94 (5Eh)

49 (31h) 40 (28h) 74 (4Ah) 52 (34h)

Invoke the Debugger and Load the Example Program

 3-4

Invoke the debugger and load the example program

Included with the debugger is a BTT demonstration program named example.
This lesson shows you how to invoke the debugger. Use the –b option so that
the debugger uses a larger display.

Invoke the debugger:

� If you are using serial communication port 1, enter:

xds370 example

� If you are using serial communication port 2, enter:

xds370 –p2 example

Now you should see a display similar to this (it may not be exactly the same,
but it should be close).

DISASSEMBLY

MEMORY

COMMAND

>>>

370 XDS v2.06 BTT v1.4

Loading example.out
 39 Symbols loaded
Done

CPU

PC 71b8
A 0e
B 00
ST a0
SP 24

71b8 88 c_int00: MOVW #0210Ah, R021

71bc 98 MOVW R021, R01F

71bf 52 MOV #022h, B

71c1 fd LDSP

71c2 8e CALL 71CCh

71c5 8e CALL main

71c8 8e CALL exit

71cb fa RTI

71cc 88 MOVW #0726Ch, R0F

71d0 00 JMP 71F2h

71d2 84 MOV 3(R0F), A

0000 03 00 70 46 db 68 20 02 7f 75 4b 81
000c 21 08 72 84 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 21 0e 21 0e 00 70
0024 53 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

 Open the BTT Setup Dialog Box / Collect Traces on a Specific Address

3-5 Tutorial: Using BTT Features

Open the BTT setup dialog box

Many of the BTT settings that you must define are made from within the BTT
Setup dialog box. In this lesson, you’ll learn how to open this dialog box.

Use the BTT Setup dialog box:

1) Open the BTT Setup dialog box:

BTT→Setup

The dialog box is labeled like a window. Beneath the BTT Setup label,
you should see another label that says State 0. That means that this
is where you can define and view information related to state 0.

2) Click on the <Next state> field.

The label now says State 1. There are a total of four states, labeled
state 0–state 3. For each state, you can define actions such as traces
and hardware breakpoints.

3) Click on <Next state> until you’re back to state 0.

4) Click on <Cancel> to close the BTT Setup dialog box.

Collect traces on a specific address

In this lesson, you’ll:

� Learn how to select the state mode,
� Define conditions for collecting trace samples (the example program tem-

porarily stores random numbers into an array named previous; you’ll col-
lect trace samples whenever previous[1] is accessed),

� Learn how to open the INSPECT window,
� Run the example program (collecting samples during the run), and
� Halt program execution by pressing ESC .

Set up for tracing:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Make sure that you’re in state 0.

3) In the State mode portion of the dialog box, click on ()Address only.

This selects address-only state mode.

lesson continues on the next page →

Collect Traces on a Specific Address

 3-6

Selecting this state mode provides you with additional BTT resources. The
default state mode (address-and-data state mode) limits some of the BTT
resources, so if you don’t plan to use data values for defining traces, break-
points, etc., you should select address-only state mode to ensure that you
have access to all available resources.

4) Define conditions for a trace:

a) In the BTT Setup dialog box, click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

This opens a dialog box where you can define the conditions for
a trace action.

c) In the Address qualifiers box, (*)One point—which is the default
selection—should already be selected. If it isn’t selected, click on
it.

d) In the addr1 field, type:

previous+1

e) Click on <OK> to indicate that you are finished defining conditions
for the trace.

This closes the Trace action dialog box and returns you to the BTT
Setup dialog box. Information is now displayed about the trace
action that you defined; the address is shown as 4001, which is
the address of previous[1].

5) Click on <OK> to indicate that you are finished setting up the BTT.

This closes the BTT Setup dialog box.

6) Open the INSPECT window:

BTT→Inspect

7) Begin running the program, then halt program execution:

run

ESC

The traces you collected are now displayed in the INSPECT window; the con-
tents of this window will be examined after the next lesson.

 Trace on a Specific Address; Breakpoint on Address and Data

3-7 Tutorial: Using BTT Features

Trace on a specific address; breakpoint on address and data

In the preceding lesson, you collected traces whenever the address of
previous[1] was accessed. The number of traces you collected was random
because program execution was halted by pressing ESC .

In this lesson, you’ll:

� Halt tracing by setting a breakpoint to occur when the value 42 is written
to previous[1].

� Switch back to address-and-data state mode because you’ll be using a
data value when you define the breakpoint conditions.

The INSPECT window, opened in the preceding lesson, remains open. The
traces collected in the preceding lesson will be overwritten by the traces
collected in this lesson.

Set up the breakpoint:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Make sure that you’re in state 0.

3) In the State mode portion of the dialog box, click on ()Address and
data.

This selects address-and-data state mode.

4) The trace conditions remain from the preceding lesson; it is not neces-
sary to redefine or alter them.

5) Define conditions for the breakpoint:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <BP/event>.

The debugger opens a dialog box where you can define condi-
tions for a BP/event action.

lesson continues on the next page →

Trace on a Specific Address; Breakpoint on Address and Data

 3-8

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

previous+1

e) In the Data qualifiers box, (*)One point should already be
selected.

f) In the data1 field, type:

42

g) In the Cycle qualifiers box, click on [X]MR and [X]IAQ so that only
[X]MW is selected.

h) Click on <OK>.

This returns you to the BTT Setup dialog box.

6) Click on <OK>.

This closes the BTT Setup dialog box.

7) Run the example program:

rrun

 View the Contents of the Trace Buffer

3-9 Tutorial: Using BTT Features

View the contents of the trace buffer

The traces collected in the preceding lesson are visible in the INSPECT win-
dow. You should see a window like the one below:

Inspect
INDX ST h m s ms us ns EXTERNAL CYCLE ADDR DATA REVERSE ASM
0000 0 0:00:00.000 057 400 11111111 WRITE 4001 01
0001 0 0:00:00.000 264 400 11111111 READ 4001 01
0002 0 0:00:00.000 271 200 11111111 WRITE 4001 01
0003 0 0:00:00.000 594 800 11111111 READ 4001 01
0004 0 0:00:00.000 601 600 11111111 WRITE 4001 41
0005 0 0:00:00.000 933 800 11111111 READ 4001 41

T1 0:00:00.000 000 000 AVG1 0:00:00.000 000 000 T2 0:00:00.000 000 000

The INSPECT window is divided into two parts. The last line shows timing
statistics (these are discussed later in the tutorial). The upper portion shows
the contents of the trace buffer. Each entry in the upper portion shows a single
trace sample. Each trace sample shows:

� The position of the trace sample within the trace buffer (INDX field). In
general, trace sample 0000 would be the first sample collected, and trace
sample 2046 would be the last sample collected. However, you may not
always collect a full 2047 samples.

� The state during which the trace sample was collected (ST field).

� Timing information that indicates when the trace sample was collected (h
to ns fields).

� Information about the values on external signals (EXTERNAL field).

� The type of memory cycle that took place when the trace sample was
collected (CYCLE field).

� The value that was on the address bus (ADDR field).

� The value that was on the data bus (DATA field).

� Any assembly language code associated with the trace sample
(REVERSE ASM field).

Display a Specific Trace Sample

 3-10

Display a specific trace sample

The trace buffer can hold up to 2047 trace samples. You can resize or scroll
the INSPECT window to view additional entries. You can also display specific
samples.

In this lesson, you’ll display specific trace samples according to:

� The sample’s position within the trace buffer,
� Specific conditions that the sample meets, or
� Whether or not the sample also met BP/event conditions.

Locate a trace sample based on its position within the trace buffer:

� Find the 30th trace sample.

1) Select the Position entry from the BTT menu:

BTT→Position

This opens a dialog box where you can enter the trace sample
number.

2) In the Sample Number field, type:

30

3) Click on <OK>.

The display in the INSPECT window changes so that trace sam-
ple #30 is displayed in the center of the window.

� Find the last trace sample.

1) Select the Position entry from the BTT menu:

BTT→Position

2) Click on <Bottom>.

The number in the Sample Number field changes to show the
number of the last trace sample.

3) Click on <OK>.

The display in the INSPECT window changes so that the last trace
sample is displayed on the last line.

 Display a Specific Trace Sample

3-11 Chapter Title—Attribute Reference

� The last two parts of this lesson use the BTT→Lookup selection.
Lookup locates the next trace sample that meets certain conditions.
Because you’re already at the last sample, there is no next sample.
Move back to the beginning of the trace buffer:

1) Select the Position entry from the BTT menu:

BTT→Position

2) In the Sample Number field, type:

0

3) Click on <OK>.

The display in the INSPECT window changes so that the first
trace sample is displayed.

� Look for a trace sample where the value 63 (0x3F) is read from pre-
vious[1]:

1) Select the Lookup entry from the BTT menu:

BTT→Lookup

This opens a dialog box where you can enter the conditions that
you’re looking for. The dialog box looks very similar to the dialog
boxes where you define conditions for traces, BP/events, etc.

2) In the Address and data qualifiers boxes, (*)One point should al-
ready be selected.

3) In the addr1 field, type:

previous+1

4) In the data1 field, type:

0x3f

5) In the Cycle qualifiers box, click on [X]MW and [X]IAQ so that only
[X]MR is selected.

6) Click on <OK>.

The display in the INSPECT window changes to display the trace
sample that meets the defined conditions.

lesson continues on the next page →

Display a Specific Trace Sample / Change the Timing Format of Trace Samples

 3-12

� Look for a trace sample that was also an event:

1) Select the Lookup entry from the BTT menu:

BTT→Lookup

This opens the same dialog box used in the preceding example.

2) In the Flag field at the top of the dialog box, click on ()Last.

3) In the addr1 and data1 fields and their associated mask fields,
type:

0

The addr1 and data1 fields must be cleared because they re-
tained the data from your preceding use of BTT→Lookup. The
mask fields must also be cleared; the purpose of the mask values
is explained in a later lesson.

4) In the Cycle qualifiers box, click on [X]MW and [X]IAQ to re-enable
them.

5) Click on <OK>.

The display in the INSPECT window changes to display the BP/
event, which was the last event collected that also met trace
conditions.

Change the timing format of trace samples

The h–ns fields in the INSPECT window show information about when a trace
sample was collected. By default, these fields show the total amount of time
that has elapsed from when tracing began to when a particular trace sample
was collected.

In this lesson, you’ll change the format of the trace-sample timing statistics to
show one of three measurements:

� The first format shows the time difference between any trace sample and
the previously collected trace sample.

� The second format shows the time difference between any trace sample
and a specific sample within the trace buffer; the specific sample is
selected by cursor position.

� The third format returns you to the default timing statistics.

 Change the Timing Format of Trace Samples

3-13 Chapter Title—Attribute Reference

Change the format of the trace sample timing statistics:

� Show the time difference between any trace sample and the preced-
ing trace sample.

1) Select the Format entry from the BTT menu:

BTT→Format

This opens a dialog box where you can select the time format.

2) Click on ()Delta.

3) Click on <OK>.

The times displayed in the INSPECT window change to show the
difference between adjacent samples.

� Select a trace sample, then show timing statistics as the difference
from the selected sample.

1) First, select a trace sample that will serve as a marker. For this ex-
ample, use trace sample #48. Select Position from the BTT menu:

BTT→Position

2) In the Sample Number field, type:

48

3) Click on <OK>.

The INSPECT window changes to display sample #48; the cursor
is positioned on this trace sample.

4) Select the Format entry from the BTT menu:

BTT→Format

5) Click on ()Mark.

6) Click on <OK>.

The times displayed in the INSPECT window change to show the
time difference from sample #48. Samples collected before sam-
ple #48 are shown as negative times; samples collected after
sample #48 are shown as positive times.

lesson continues on the next page →

Change the Timing Format of Trace Samples / Trace on One of Two Address Values

 3-14

� Switch back to the default timing format, which shows the amount of
time elapsed since tracing began.

1) Select the Format entry from the BTT menu:

BTT→Format

2) Click on ()Absolute.

3) Click on <OK>.

The times displayed in the INSPECT window return to the default
format.

Trace on one of two address values; halt on program time out

In addition to defining actions based on an address or data access, you can
define an action based on one of two addresses or data values being
accessed.

In this lesson, you’ll:

� Collect trace samples whenever pinhi or pinlow is accessed.

� Use the time-out timer, which limits program execution time by specifying
the maximum amount of time that your program can run.

Define a trace that is qualified by either of two addresses:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) Define the conditions for tracing:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the Trace action dialog box.

c) In the Address qualifiers box, click on ()Two points.

 Trace on One of Two Address Values; Halt on Program Time Out

3-15 Tutorial: Using BTT Features

d) In the addr1 field, type:

pinhi

e) In the addr2 field, type:

pinlow

f) Click on <OK>.

This returns you to the BTT Setup dialog box.

4) Assign a value to the time-out timer:

a) Click on <Globals> (at the bottom of the dialog box).

This opens the Globals dialog box.

b) In the Time out field, type:

0001

The resulting value should look like this:

[0001.000 000 000]

This defines a time-out value of 1 second.

c) Click on <OK>.

This returns you to the BTT Setup dialog box.

5) Click on <OK> .

This closes the BTT Setup dialog box.

6) Run the example program:

rrun

Program execution halts after 1 second. It is not always necessary (or
even desirable) to reset before running a program; however, for the
purposes of this tutorial, resetting before running ensures that you will
obtain the correct lesson results.

Trace on a Range of Data

 3-16

Trace on a range of data

In addition to defining actions based on one or two specific address or data
values, you can define actions based on an address’ or data value’s relation-
ship to a range.

In this lesson, you’ll:

� Trace on values within a range of data.
� Trace on values that are outside of the data range.

The time-out timer defined in the preceding lesson will remain in effect for this
lesson.

� Trace on data values within a range:

1) Open the BTT Setup dialog box:

BTT→Setup

2) The dialog box shows a description of the preceding trace condi-
tions. Point to this description and click the left mouse button.

This opens the Trace action dialog box so that you can edit the
existing trace settings.

3) Define the conditions for tracing:

a) In the Address qualifiers box, click on (*)One point.

b) In the addr1 field, type:

0x4001

This is the address of previous[1].

c) In the Data qualifiers box, click on ()In range.

d) In the data1 field, type:

90

e) In the data2 field, type:

130

f) Click on <OK>.

This returns you to the BTT Setup dialog box.

 Trace on a Range of Data

3-17 Tutorial: Using BTT Features

4) Click on <OK>.

This closes the BTT Setup dialog box.

5) Run the example program:

rrun

� Trace on data values outside of the range:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Point to the description of the existing trace conditions and click
the left mouse button.

This opens the Trace action dialog box so that you can edit the
existing trace settings.

3) Redefine the trace conditions:

a) In the Data qualifiers box, click on ()Outside range.

b) Click on <OK>.

This returns you to the BTT Setup dialog box.

4) Click on <OK>.

This closes the BTT Setup dialog box.

5) Run the example program:

rrun

Collect Trace Samples After Breakpointing

 3-18

Collect trace samples after breakpointing

Sometimes it is desirable to collect trace samples after a BP/event is met. This
is useful when you are interested in collecting information about the state the
processor is in after some event occurs. To do this, you define the BP/event
and the trace conditions, then set up a mechanism that allows the BTT to rec-
ognize the BP/event when it occurs, but delays the BTT from actually execut-
ing the breakpoint until a specified number of trace samples are collected.

In this lesson, you’ll:

� Collect trace samples after the value 65 is written to previous[1].

� Use a component called the delay counter to tell the BTT how many trace
samples it should collect before executing the breakpoint.

Collect traces after a BP/event is recognized:

1) Open the BTT Setup dialog box.

BTT→Setup

2) Assign a value to the delay counter and reset the time-out timer:

a) Click on <Globals> (at the bottom of the dialog box).

This opens the Globals dialog box.

b) In the Delay count field, type:

50

This tells the BTT to collect 50 trace samples after the BP/event
conditions are met. The breakpoint will be executed after the trace
samples are collected.

c) In the Time out field, type:

0000

The resulting value should look like this:

[0000.000 000 000]

This disables the time-out timer.

d) Click on <OK>.

This returns you to the BTT Setup dialog box.

 Collect Trace Samples After Breakpointing

3-19 Tutorial: Using BTT Features

3) Click on <Clear state>.

This clears the actions previously defined for state 0 but doesn’t affect
the global settings.

4) Define the conditions for the breakpoint:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <BP/event>.

The debugger opens the BP/event action dialog box.

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

previous+1

e) In the Data qualifiers box, (*)One point should already be
selected.

f) In the data1 field, type:

65

g) Click on <OK>.

This returns you to the BTT Setup dialog box.

5) Define the the conditions for the trace samples:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the trace action dialog box.

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

previous+1

lesson continues on the next page →

Collect Trace Samples After Breakpointing / Collect Reads and Writes Associated With IAQ Cycles

 3-20

e) In the Data qualifiers box, click on ()In range.

f) In the data1 field, type:

100

g) In the data2 field, type:

200

h) In the Cycle qualifiers box, click on [X]MR and [X]IAQ so that only
[X]MW is selected.

i) Click on <OK>.

This returns you to the BTT Setup dialog box.

6) Click on <OK>.

This closes the BTT Setup dialog box.

7) Run the example program:

rrun

Collect reads and writes associated with IAQ cycles

The BTT supports two modes for collecting trace samples. So far, you have
used only the default trace mode, called normal mode. In normal mode, the
only samples that are collected are those that meet the trace conditions you’ve
defined. A second trace mode, TRIX (trace instruction extended) mode,
includes any reads and writes associated with a qualifying IAQ cycle.

In this lesson, you’ll:

� Collect traces to the first assembly language instruction associated with
this line:

results[previous[0]] = rnum;

which appears in the write_number function. (The first disassembly
address associated with this line is at 0x7087.)

� Collect samples twice: once with normal trace mode and a second time
with TRIX trace mode.

� Use a global setting called max trace, which defines the total number of
trace samples that will be collected before program execution halts.

 Collect Reads and Writes Associated With IAQ Cycles

3-21 Tutorial: Using BTT Features

Run the first trace session using normal trace mode:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) Define a max trace value and reset the delay count:

a) Click on <Globals>.

b) In the Delay count field, type:

0

This disables the delay count.

c) In the Max trace field, type:

5

The BTT will collect 5 trace samples before halting program
execution.

d) Click on <OK>.

This returns you to the BTT Setup dialog box.

4) Define the conditions for tracing:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the trace action dialog box.

c) In the Address qualifiers box, (*)One point should already be se-
lected.

d) In the addr1 field, type:

0x7087

e) Click on <OK>.

This returns you to the BTT Setup dialog box.

lesson continues on the next page →

Collect Reads and Writes Associated With IAQ Cycles

 3-22

5) Click on <OK>.

This closes the BTT Setup dialog box.

6) Restart the program entry point and run the example program:

rrun

All the trace samples show this same information:

CYCLE ADDR DATA REVERSE ASM
IAQ 7087 8A MOV.bss,A

Run the second trace session using TRIX trace mode:

1) Open the BTT Setup dialog box:

BTT→Setup

2) In the Trace mode box, click on ()TRIX.

This selects TRIX trace mode.

3) Click on <OK>.

This closes the BTT Setup dialog box.

4) Restart the program entry point and run the example program:

rrun

Now the INSPECT window should show any reads or writes that are asso-
ciated with the instruction at address 0x7087:

CYCLE ADDR DATA REVERSE ASM
IAQ 7087 8A MOV.bss,A
READ 7088 20
READ 7089 00
READ 2000 01
WRITE 0000 01

 Use a Masked Data Value

3-23 Tutorial: Using BTT Features

Use a masked data value

When you define the conditions for an action, you can identify specific bits with-
in an address or data value that should be ignored. To do this, you use a mask .
A mask is a value that is ANDed with another value, resulting in the actual val-
ue to be used in the condition. The mask has 0s in the bit positions that should
be ignored in the original data value or address.

In this lesson, you’ll mask the data value and collect trace samples only when
the last digit is a 5. Here’s how the mask value is calculated:

Data value: 1 1 1 1 0 1 0 1 F516

Mask value: 0 0 0 0 1 1 1 1 0F16

Qualifying values: X X X X 0 1 0 1

� The data value is specified as 0xF5:

� The first hex digit doesn’t matter, because it will be masked out; for
convenience, specify it as F.

� The second hex digit must be a 5 because you will be collecting values
that end in 5.

� The mask value is specified as 0x0F:

� The first hex digit must be a 0 because this is the don’t-care part of the
value.

� The second hex digit must be F because F AND 5 produces 5.

Define trace conditions using a masked data value:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) Define a larger max trace value:

a) Click on <Globals>.

lesson continues on the next page →

don’t care 5

Use a Masked Data Value

 3-24

b) In the Max trace field, type:

2000

The BTT will collect 2000 trace samples before halting program
execution.

c) Click on <OK>.

This returns you to the BTT Setup dialog box.

4) Define conditions for tracing:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the trace action dialog box.

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

previous+1

e) In the Data qualifiers box, (*)One point should already be
selected.

f) In the data1 field, type:

0xF5

g) In the mask field, type:

0x0F

h) Click on <OK>.

This returns you to the BTT Setup dialog box.

5) Click on <OK>.

This closes the BTT Setup dialog box.

6) Run the example program:

rrun

Examine the INSPECT window; all the values listed in the DATA field end with
a 5.

 Collect Timing Statistics

3-25 Tutorial: Using BTT Features

Collect timing statistics

You can use two timers, the point timer and the range timer, for collecting
program-timing statistics. The timers work similarly, but the method for defin-
ing conditions for them differs slightly.

This lesson is divided into two parts. In the first part, you’ll:

� Assign a time-out value to limit program run time to two seconds. (Be-
cause you won’t collect any traces in this lesson, the max trace value from
the previous lesson would not be useful.)

� Define an action that starts the point timer whenever the pinhi function is
accessed and stops the point timer when the pinlow function is accessed.

� Examine the collected timing statistics.

Note that you will not be collecting trace samples in either part of the lesson—it
is not necessary to collect trace samples in order to gather timing statistics.

Define conditions for a point timer action:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) Reset the max trace value and assign a time-out value:

a) Click on <Globals>.

b) In the Max trace field, type:

0

This resets the max trace value.

c) In the Time out field, type:

0002

The resulting value should look like this:

[0002.000 000 000]

This defines a time-out value of 2 seconds.

d) Click on <OK>.

This returns you to the BTT Setup dialog box.

lesson continues on the next page →

Collect Timing Statistics

 3-26

4) Define a point timer action:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Point Timer>.

This displays an action dialog box where you can define the condi-
tions for starting and stopping the point timer. Look at the Address
qualifiers box—no qualifiers are selected. You must define two
address points for a point timer, so selections are unnecessary.

c) In the addr1 field, type:

pinhi

d) In the addr2 field, type:

pinlow

e) Click on <OK>.

This returns you to the BTT Setup dialog box.

5) Click on <OK>.

This closes the BTT Setup dialog box.

6) Run the example program:

rrun

The INSPECT window should now show the timing information that was
collected. The last line of the window should look something like this (your
numbers may be different):

T1 0:00:00.090 675 800 AVG1 0:00:00.001 416 800 T2 0:00:00.000 000 000

Notice that the statistics are not labeled point timer or range timer—they’re
labeled T1 and T2, for timer 1 and timer 2. Whatever timer action you define
first is reported as timer 1; in this case, the point timer statistics are shown
under timer 1. The timer action you define second is reported as timer 2; in this
case, no second timer action was defined, so there are no timer 2 statistics.

The statistics listed for AVG1 show the average amount of time that timer 1 (in
this case, the point timer) was run.

 Collect Timing Statistics

3-27 Tutorial: Using BTT Features

In this part of the lesson, you’ll:

� Use the same time-out value used in the first part of the lesson.

� Define a new action that starts the range timer whenever a data value in
the range 0–100 is accessed and stops the range timer whenever a value
in the range 101–200 is accessed.

� Examine the collected timing statistics.

Define conditions for a range timer action:

1) Open the BTT Setup dialog box:

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) Define a Range Timer action:

a) In the BTT Setup dialog box, click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Range timer>.

This displays an action dialog box where you can define the condi-
tions for starting the range timer.

c) In the Data qualifiers box, click on ()In range.

d) In the data1 field, type:

0

e) In the data2 field, type:

100

f) Click on <OK>.

This closes the first action dialog box and opens a second box
where you can define the conditions for stopping the range timer.

g) In the Data qualifiers box, click on ()In range.

h) In the data1 field, type:

101

lesson continues on the next page →

Collect Timing Statistics / Jump to Another State

 3-28

i) In the data2 field, type:

200

j) Click on <OK>.

This closes the second action dialog box and returns you to the
BTT Setup dialog box.

4) Click on <OK>.

This closes the BTT Setup dialog box.

5) Run the example program:

rrun

The timer 1 statistics now shown in the INSPECT window are the statistics for
the range timer action.

Jump to another state

Another of the actions that you can define is a jump to another state. This type
of action is useful for handling special cases.

In this lesson:

� You’ll collect traces on writes to previous[1] until pinhi is accessed.

� When pinhi is accessed, you’ll jump from state 0 to state 1. You’ll collect
traces whenever pinhi is accessed, until pinlow is accessed.

� When pinlow is accessed, you’ll jump back to state 0 and continue collect-
ing traces on writes to previous[1].

Set up jump actions:

1) Open the BTT Setup dialog box.

BTT→Setup

2) Click on <Clear state>.

This clears the actions previously defined for state 0.

3) In the State mode box, click on ()Address only.

This selects address-only state mode.

 Jump to Another State

3-29 Tutorial: Using BTT Features

4) Define the conditions for tracing:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the trace action dialog box.

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

previous+1

e) In the Cycle qualifiers box, click on [X]MR and [X]IAQ so that only
[X]MW is selected.

f) Click on <OK>.

This returns you to the BTT Setup dialog box.

5) Define the conditions for jumping:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Jump>.

The debugger opens a dialog box where you can define the condi-
tions for a jump action.

c) In the Jump to.. field, type:

1

d) In the Address qualifiers box, (*)One point should already be
selected.

e) In the addr1 field, type:

pinhi

f) Click on <OK>.

This returns you to the BTT Setup dialog box.

6) Click on <Next state>.

This takes you to state 1.

lesson continues on the next page →

Jump to Another State

 3-30

7) Click on <Clear state>.

This clears the actions previously defined for state 1.

8) In the State mode box, click on ()Address only.

This selects address-only state mode.

9) Define the conditions for the second trace:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Trace>.

The debugger opens the trace action dialog box.

c) In the Address qualifiers box, (*)One point should already be
selected.

d) In the addr1 field, type:

pinhi

e) Click on <OK>.

This returns you to the BTT Setup dialog box.

10) Define the conditions for jumping back to state 0:

a) Click on <Add action...>.

The debugger displays the Select action menu.

b) Click on <Jump>.

The debugger opens the jump action dialog box.

c) The Jump to... field should already contain a 0.

0 is the default value. Since you want to go back to state 0 when
the new jump conditions are met, it’s not necessary to edit the
Jump to... field.

d) In the Address qualifiers box, (*)One point should already be
selected.

e) In the addr1 field, type:

pinlow

f) Click on <OK>.

 Jump to Another State / Close the INSPECT Window

3-31 Tutorial: Using BTT Features

11) Assign a max trace value:

a) Click on <Globals>.

b) In the Max trace field, type:

2047

c) In the Time out field, type:

0000

The resulting value should look like this:

[0000.000 000 000]

This disables the time-out timer.

d) Click on <OK>.

This returns you to the BTT Setup dialog box. Note that although
you are defining this value in state 1, it applies to all states.

12) Click on <OK>.

This closes the BTT Setup dialog box.

13) Run the example program:

rrun

Scroll through the INSPECT window and watch the ST field; you’ll see that it
switches from 0 to 1 and back again because traces were collected in both
states.

Close the INSPECT window

This is the end of the tutorial.

Close the INSPECT window:

1) Make the INSPECT window the active window:

win INSPECT

2) Press .

This closes the window.

F4

 3-32

4-1 Chapter Title—Attribute Reference

The Debugger Display

The ’370 C source debugger has a window-oriented display. This chapter
shows what windows can look like and describes the basic types of windows
you will use.

Topic Page

4.1 Debugging Modes and Default Displays 4-2
Auto mode 4-2
Assembly mode 4-3
Mixed mode 4-4
Restrictions associated with these debugging modes 4-4

4.2 Descriptions of the Different Kinds of Windows 4-5
and Their Contents
COMMAND window 4-6
DISASSEMBLY window 4-7
FILE window 4-8
CALLS window 4-9
INSPECT window (XDS/22 only) 4-11
PROFILE window 4-13
MEMORY window 4-14
CPU window 4-17
DISP windows 4-18
WATCH window 4-19

4.3 Cursors 4-20

4.4 The Active Window 4-21
Identifying the active window 4-21
Selecting the active window 4-22

4.5 Manipulating Windows 4-24
Resizing a window 4-24
Zooming the active window 4-26
Moving a window 4-27

4.6 Manipulating a Window’s Contents 4-29
Scrolling through a window’s contents 4-29
Editing the data displayed in windows 4-31

4.7 Closing a Window 4-32

Chapter 4

Debugging Modes and Default Displays

 4-2

4.1 Debugging Modes and Default Displays

The basic debugger environment has three debugging modes:

� Auto mode
� Assembly mode
� Mixed mode

Each mode changes the debugger display by adding or hiding specific win-
dows. Some windows, such as the COMMAND window, may be present in all
modes. The following figures show the default displays for these modes and
show the windows that the debugger automatically displays for these modes.

These modes cannot be used within the profiling environment; only the
COMMAND, PROFILE, DISASSEMBLY, and FILE windows are available.

Auto mode

In auto mode , the debugger automatically displays whatever type of code is
currently running—assembly language or C. This is the default mode; when
you first invoke the debugger, you’ll see a display similar to Figure 4–1. Auto
mode has two types of displays:

� When the debugger is running assembly language code, you’ll see an as-
sembly display similar to the one in Figure 4–1. The DISASSEMBLY win-
dow displays the reverse assembly of memory contents.

Figure 4–1. Typical Assembly Display (for Auto Mode and Assembly Mode)

MEMORYCOMMAND

>>>

CPU

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

PC 7185
A 87
B 00
ST 40
SP 22

0000 87 00 cb 01 00 00 28 e5 00 00 00 00
000c 28 81 72 44 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 28 87 28 8f 00 70
0024 40 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

DISASSEMBLY

7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh
719f f4 MOV 3(R0F),A
71a3 d0 MOV A,R0D
71a5 f4 MOV 2(R0F),A
71a9 d0 MOV A,R0C
71ab 70 INCW #4,R0F
71ae 00 JMP 71BAh
71b0 9a MOV @R0F,A

’370 Debugger Version 4.01

Copyright (c) 1990, 1992 Texas Instr

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

 Debugging Modes and Default Displays

4-3 The Debugger Display

� When the debugger is running C code, you’ll see a C display similar to the
one in Figure 4–2. (This assumes that the debugger can find your C
source file to display in the FILE window. If the debugger can’t find your
source, then it switches to mixed mode.)

Figure 4–2. Typical C Display (for Auto Mode Only)

COMMAND

>>>

CALLS

1: main()

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

0052 extern call();
0053 extern meminit();
0054
0055 main();
0056 {
0057 int i = 0;
0058 int j = 0, k = 0;
0059
0060 meminit();
0061 for (i=0;i<0x70;i++)
0062 {
0063 call(i);
0064 if (i & 1) j += i;
0065 aai[k][k] = j;
0066 if (!(i & 0xFFFF)) k++;
0067 }

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

Done

file sample.c

FILE: sample.c

When you’re running assembly language code, the debugger automatically
displays windows as described for assembly mode.

When you’re running C code, the debugger automatically displays the COM-
MAND, CALLS, and FILE windows. If you want, you can also open the IN-
SPECT window, a WATCH window, and DISP windows.

Assembly mode

Assembly mode is for viewing assembly language programs only. In this
mode, you’ll see a display similar to the one shown in Figure 4–1. When you’re
in assembly mode, you’ll always see the assembly display, regardless of
whether C or assembly language is currently running.

Windows that are automatically displayed in assembly mode include the
MEMORY window, the DISASSEMBLY of memory contents, the CPU register
window, and the COMMAND window. If you choose, you can also open the
INSPECT window and a WATCH window in assembly mode.

Debugging Modes and Default Displays

 4-4

Mixed mode

Mixed mode is for viewing assembly language and C code at the same time.
Figure 4–3 shows the default display for mixed mode.

Figure 4–3. Typical Mixed Display (for Mixed Mode Only)

DISASSEMBLY CPU

COMMAND

>>>

Loading sample.out

Done

file sample.c

FILE: sample.c
CALLS

1: main()

7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh
719f f4 MOV 3(R0F),A
71a3 d0 MOV A,R0D

0052 extern call();
0053 extern meminit();
0054
0055 main();
0056 {
0057 int i = 0;
0058 int j = 0, k = 0;
0059
0060 meminit();
0061 for (i=0;i<0x70;i++)

MEMORY
000087 00 cb 01 00 00 28 e5 00 00 00 00
000c28 81 72 44 00 00 00 00 00 00 00 00
001800 00 00 00 00 00 28 87 28 8f 00 70
002440 00 00 00 00 00 00 00 00 00 00 00
003000 00 00 00 00 00 00 00 00 00 00 00

PC 7185
A 87
B 00
ST 40
SP 22

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

In mixed mode, the debugger displays all windows that can be displayed in
auto and assembly modes—regardless of whether you’re currently running
assembly language or C code. This is useful for finding bugs in C programs
that exploit specific architectural features of the ’370.

Restrictions associated with debugging modes

The assembly language code that the debugger shows you is the disassembly
(reverse assembly) of memory’s contents. If you load object code into memory,
then the assembly language code is the disassembly of that object code. If you
don’t load an object file, then the disassembly won’t be very useful.

Some commands are valid only in certain modes, especially if a command ap-
plies to a window that is visible only in certain modes. In this case, entering the
command causes the debugger to switch to the mode that is appropriate for
the command. This applies to these commands:

dasm func mem

calls file disp

 Descriptions of the Different Kinds of Windows and Their Contents

4-5 The Debugger Display

4.2 Descriptions of the Different Kinds of Windows and Their Contents

The debugger can show several types of windows. This section lists the vari-
ous types of windows and describes their characteristics.

Every window is identified by a name in its upper left corner. Each type of win-
dow serves a specific purpose and has unique characteristics. There are 10
different windows:

� The COMMAND window provides an area for typing in commands and
for displaying various types of information such as progress messages,
error messages, or command output.

� Code-display windows are for displaying assembly language or C code.
There are three code-display windows:

� The DISASSEMBLY window displays the disassembly (assembly lan-
guage version) of memory contents.

� The FILE window displays any text file that you want to display; its
main purpose, however, is to display C source code.

� The CALLS window identifies the current function traceback (when C
code is running).

� The INSPECT window displays trace samples and timing information.

� The PROFILE window displays statistics about code execution. This
window is available only when you are in the profiling environment.

� Data-display windows are for observing and modifying various types of
data. There are four data-display windows:

� A MEMORY window displays the contents of a range of memory. You
can display up to four MEMORY windows at one time.

� A CPU window displays the contents of ’370 CPU registers.

� A DISP window displays the contents of an aggregate type such as an
array or structure, showing the values of the individual members. You
can display up to 120 DISP windows at one time.

� A WATCH window displays selected data such as variables, specific
registers, or memory locations.

You can move or resize any of these windows; you can also edit any value in
a data-display window. Before you can perform any of these actions, however,
you must select the window you want to move, resize, or edit, and make it the
active window. For more information about making a window active, see Sec-
tion 4.4, The Active Window, on page 4-21.

The remainder of this section describes the individual windows.

Descriptions of the Different Kinds of Windows and Their Contents

 4-6

COMMAND window

COMMAND

>>>

Loading sample.out

Done

64 symbols loaded

file sample.c

go main

display
area

command
line

command line
cursor

Purpose � Provides an area for entering commands
� Provides an area for echoing commands and displaying

command output, errors, and messages

Editable? Command line is editable; command output isn’t

Modes All modes

Created Automatically

Affected by � All commands entered on the command line
� All commands that display output in the display area
� Any input that creates an error

The COMMAND window has two parts:

� Command line. This is where you enter commands. When you want to
enter a command, just type—no matter which window is active. The
debugger keeps a list of the last 50 commands that you entered. You can
select and re-enter commands from the list without retyping them.

� Display area . This area of the COMMAND window echoes the command
that you entered, shows any output from the command, and displays
debugger messages.

For more information about the COMMAND window and entering commands,
refer to Chapter 5.

 Descriptions of the Different Kinds of Windows and Their Contents

4-7 The Debugger Display

DISASSEMBLY window

DISASSEMBLY

memory
address

object
code

disassembly
(assembly language
constructed from object code)

current PC7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh

Purpose Displays the disassembly (or reverse assembly) of memory
contents

Editable? No; pressing the edit key (F9) or the left mouse button sets
a breakpoint on an assembly language statement

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by � DASM and ADDR commands
� Breakpoint and run commands

Within the DISASSEMBLY window, the debugger highlights

� The statement that the PC is pointing to (if that line is in the current display)
� Any breakpointed statements with software breakpoints.
� The address and object code fields for all statements associated with the

current C statement, as shown below

DISASSEMBLY

FILE: t1.c

current PC

These assembly
language statements

are associated with
this C statement

7185 88 c_into0: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h

0052 extern call();
0053 extern meminit();
0054
0055 main();
0056 {
0057 int i = 0;

Descriptions of the Different Kinds of Windows and Their Contents

 4-8

FILE window

FILE: sample.c

text
file

0052 extern call();
0053 extern meminit();
0054
0055 main();
0056 {
0057 int i = 0;
0058 int j = 0, k = 0;
0059
0060 meminit();
0061 for (i=0;i<0x70;i++)
0062 {
0063 call(i);
0064 if (i & 1) j += i;
0065 aai[k][k] = j;

Purpose Shows any text file you want to display

Editable? No; Pressing the edit key (F9) or the left mouse button sets
a breakpoint.

Modes Auto (C display only) and mixed

Created � With FILE command
� Automatically when you’re in auto or mixed mode and

your program begins executing C code

Affected by � FILE, FUNC, and ADDR commands
� Breakpoint and run commands

You can use the FILE command to display the contents of any file within the
FILE window, but this window is especially useful for viewing C source files.
Whenever you single-step a program or run a program and halt execution, the
FILE window automatically displays the C source associated with the current
point in your program. This overwrites any other file that may have been dis-
played in the window.

Within the FILE window, the debugger highlights:

� The statement that the PC is pointing to (if that line is in the current display)
� Any statements where you’ve set a breakpoint

 Descriptions of the Different Kinds of Windows and Their Contents

4-9 The Debugger Display

CALLS window

CALLS

3: subx()

2: call()

1: main() current function

order of functions called

names of functions called

is at top of list

Purpose Lists the function you’re in, its caller, and the caller’s caller,
etc., as long as each function is a C function

Editable? No; you can’t edit the window’s contents

Modes Auto (C display only) and mixed

Created � Automatically when you’re displaying C code
� With the CALLS command if you closed the window

Affected by Run and single-step commands

The display in the CALLS window changes automatically to reflect the latest
function call.

CALLS

1: **UNKNOWN

CALLS

1: main()

If you haven’t run any code, then no
functions have been called yet. You’ll also
see this if you’re running code but are not

currently running a C function.

In C programs, the first C function is main .

As your program runs, the contents of the
CALLS window change to reflect the cur-
rent routine that you’re in and where the

routine was called from. When you exit a
routine, its name is popped from the

CALLS list.

CALLS

2: xcall()

1: main()

CALLS

1: main()

Descriptions of the Different Kinds of Windows and Their Contents

 4-10

If a function name is listed in the CALLS window, you can easily display the
function in the FILE window:

1) Point the mouse cursor at the appropriate function name that is listed in
the CALLS window.

2) Click the left mouse button. This displays the selected function in the FILE
window.

1) Make the CALLS window the active window (see Section 4.4, The Active
Window, page 4-21).

↓ ↑ 2) Use the arrow keys to move up/down through the list of function names
until the appropriate function is indicated.

F9 3) Press F9 . This displays the selected function in the FILE window.

You can close and reopen the CALLS window.

� Closing the window is a two-step process:

1) Make the CALLS window the active window.

2) Press F4 .

� To reopen the CALLS window after you’ve closed it, enter the CALLS com-
mand. The format for this command is:

calls

 Descriptions of the Different Kinds of Windows and Their Contents

4-11 Chapter Title—Attribute Reference

INSPECT window

Inspect
INDX ST h m s ms us ns EXTERNAL CYCLE ADDR DATA REVERSE ASM
0000 0 0:00:00.000 000 400 11111111 IAQ 7003 8C BR 7000h
0001 0 0:00:00.000 000 800 11111111 READ 7004 70
0002 0 0:00:00.000 001 200 11111111 READ 7005 00
0003 0L 0:00:00.000 002 200 11111111 IAQ 7000 42 MOV R07,R08
0004 0 0:00:00.000 002 600 11111111 READ 7001 07
0005 0 0:00:00.000 002 800 11111111 READ 0007 00

T1 0:00:00.000 000 000 AVG1 0:00:00.000 000 000 T2 0:00:00.000 000 000

trace buffer

point & range
timer statistics

Purpose Displays the contents of the trace buffer; also displays point
and range timer statistics

Editable? No

Modes All

Created By the INSPect command

Affected by � BTT→Format menu selection
� BTT→Position menu selection
� BTT→Lookup menu selection

The INSPECT window shows two types of information:

� The upper portion of the window displays the contents of the trace buffer.
For a description of the fields in this area of the window, refer to Table 4–1.

� The lower portion of the window shows statistics for the point and range
timers. Depending on which timer action you select first, one of the timers
will be labeled as timer 1, and the other will be labeled as timer 2. The times
listed in the INSPECT window are the total times for both timers, plus the
average time for timer 1.

For more information about the INSPECT window, see Section 11.9, Viewing
Trace Buffer and Timing Information, on page 11-20.

XDS/22
emulator

only

Descriptions of the Different Kinds of Windows and Their Contents

 4-12

Table 4–1.Description of Trace Sample Information

Field Description

INDX Shows the trace sample’s number within the trace buffer.

ST Shows which state the BTT was in when it collected the trace
sample. It will also show an E if the sample met BP/event condi-
tions or an L if the sample was the last BP/event and caused a
hardware breakpoint.

h–ns Shows timing information about the trace sample. You can show
one of three different types of timing: the total time since tracing
began (default), the difference between current sample and pre-
vious sample, or the difference between current sample and any
selected sample. To choose the type of time reporting, choose
Format from the BTT menu.

EXTERNAL Shows the values on the eight external probes.

CYCLE Shows whether the cycle was a memory read (MR), memory
write (MW), or instruction acquisition (IAQ).

ADDR Shows the value on the address bus.

DATA Shows the value on the data bus.

REVERSE ASM Shows the associated assembly language code (if any).

XDS/22
emulator

only

 Descriptions of the Different Kinds of Windows and Their Contents

4-13 Chapter Title—Attribute Reference

PROFILE window

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

AR 00f00001–00f00008 1 65 65 19 19

CL <sample>#58 1 50 50 7 7

CR <sample>#59–64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3

AL 00f00059 disabled

profile
areas

profile data

Purpose Displays statistics collected during a profiling session

Editable? No

Modes Auto

Created By invoking the debugger with the –profile option (you must
be in a Microsoft Windows environment to use the profiler)

Affected by � The PF and PQ commands
� Any commands on the View menu
� Clicking in the header area of the window

The PROFILE window is visible only when you are in the profiling environment.
The illustration above shows the window with a default set of data, but the
display can be modified to show specific sets of data collected during a profil-
ing session.

Note that within the profiling environment, the only other windows that are
available are the COMMAND window, the DISASSEMBLY window, and the
FILE window.

For more information about the PROFILE window (and about profiling in gen-
eral), refer to Chapter 12, Profiling Code Execution.

XDS/22
emulator

only

Descriptions of the Different Kinds of Windows and Their Contents

 4-14

MEMORY windows

MEMORY

addresses

data

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe
71d9 21 12 18 f4 eb ff 21 12 19 9b 21 8a

Purpose Displays the contents of memory

Editable? Yes—you can edit the data (but not the addresses)

Modes Auto (assembly display only), assembly, and mixed

Created � Automatically (the default MEMORY window only)

� You can display up to three additional MEMORY windows
with the MEM# commands

Affected by MEM commands: MEM, MEM1, MEM2, and MEM3.

A MEMORY window has two parts:

� Addresses. The first column of numbers identifies the addresses of the
first column of displayed data. No matter how many columns of data you
display, only one address column is displayed. Each address in this col-
umn identifies the address of the data immediately to its right.

� Data. The remaining columns display the values at the listed addresses.
You can display more data by making the window wider and/or longer.

The MEMORY window above has twelve columns of data, so each new
address is incremented by twelve. Although the window shows twelve col-
umns of data, there is still only one column of addresses; the first value is at
address 0x7185, the second at address 0x7191, etc.; the thirteenth value
(first value in the second row) is at address 0x7215, etc.

As you run programs, some memory values change as the result of program
execution. The debugger highlights the changed values. Depending on how
you configure memory for your application, some locations may be invalid/
unconfigured. The debugger also highlights these locations (by default, it
shows these locations in red).

 Descriptions of the Different Kinds of Windows and Their Contents

4-15 Chapter Title—Attribute Reference

Three additional MEMORY windows called MEMORY1, MEMORY2, and
MEMORY3 are available. The default MEMORY window does not have an ex-
tension number in its name; this is because MEMORY1, MEMORY2, and
MEMORY3 are optional windows and can be opened and closed throughout
your debugging session. Having four windows allows you to view four different
memory ranges. Refer to Figure 4–4.

Figure 4–4. The Default and Additional MEMORY Windows

MEMORY3

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe

The default
MEMORY window

Additional
MEMORY windows

MEMORY2

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe

MEMORY1
7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe

MEMORY

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe

To create an additional MEMORY window or to display another range of
memory in the current window, use the MEM command.

� Creating a new MEMORY window.

If the default MEMORY window is the only window open and you want to
open another MEMORY window, enter the MEM command with the ap-
propriate extension number:

mem[#] address

For example, if you want to create a new memory window starting at ad-
dress 0x8000, you would enter:

mem1 0x8000

This displays a new window, MEMORY1, showing the contents of memory
starting at the address 0x8000.

Descriptions of the Different Kinds of Windows and Their Contents

 4-16

� Displaying a new memory range in the current MEMORY window.

Displaying another block of memory identifies a new starting address for
the memory range shown in the current MEMORY window. The debugger
displays the contents of memory at address in the first data position in your
MEMORY window. The end of the range is defined by the size of the win-
dow.

If the only memory window open is the default MEMORY window, you can
view different memory locations by entering:

mem address

To view different memory locations in the optional MEMORY windows, use
the MEM command with the appropriate extension number on the end. For
example:

To do this. . . Enter this. . .

View the block of memory starting at address
0x8000 in the MEMORY1 window

mem1 0x8000

View another block of memory starting at address
0x002f in the MEMORY2 window

mem2 0x002f

Note:

If you want to view a different block of memory explicitly in the default
MEMORY window, you can use the alias command MEM0. This works
exactly the same as the MEM command. To use this command, enter:

mem0 address

You can close and reopen additional MEMORY windows as often as you like.

� Closing an additional MEMORY window.

Closing a window is a two-step process:

1) Make the appropriate MEMORY window the active window (see Sec-
tion 4.4, on page 4-21).

2) Press F4 .

Remember, you cannot close the default MEMORY window.

� Reopening an additional MEMORY window.

To reopen an additional MEMORY window after you’ve closed it, enter the
MEM command with its appropriate extension number.

 Descriptions of the Different Kinds of Windows and Their Contents

4-17 The Debugger Display

CPU window

register
name

register
contents

CPU

The display changes
when you resize the

window

CPU

PC 7185
A 87
B 00
ST 40
SP 22

PC 7185
A 87 B 00
ST 40 SP 22

Purpose Displays the contents of the ’370 CPU registers

Editable? Yes—you can edit the value of any displayed register

Modes Auto (assembly display only), assembly, and mixed

Created Automatically

Affected by Data-management commands

As you run programs, some values displayed in the CPU window change as
the result of program execution. The debugger highlights the changed values.

Descriptions of the Different Kinds of Windows and Their Contents

 4-18

DISP windows

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18

f4 [...]

structure
members

member
values

This member is an array, and you
can display its contents in a sec-

ond DISP window

DISP: str.f4

[0] 4427

[1] 1778

[2] 5554

[3] 3567

[4] 1384

[5] 1824

[6] 3565

[7] 3774

[8] 1347

[9] 1384

Purpose Displays the members of a selected structure, array or
pointer, and the value of each member

Editable? Yes—you can edit individual values

Modes Auto (C display only) and mixed

Created With the DISP command

Affected by The DISP command

A DISP window is similar to a WATCH window, but it shows the values of an
entire array or structure instead of a single value. Use the DISP command to
open a DISP window; the basic syntax is:

disp expression

Data is displayed in its natural format:

� Integer values are displayed in decimal.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

If any of the displayed members are arrays, structures, or pointers, you can
bring up additional DISP windows to display their contents—up to 120 DISP
windows can be open at once.

 Descriptions of the Different Kinds of Windows and Their Contents

4-19 The Debugger Display

WATCH window

WATCH

1: R0 0x02

2: X+X 4

3: PC 0x4044

watch index

label current value

Purpose Displays the values of selected expressions

Editable? Yes—you can edit the value of any expression whose value
specifies a storage location (in registers or memory). In the
window above, for example, you could edit the value of PC but
couldn’t edit the value of X+X.

Modes Auto, assembly, and mixed

Created With the WA command

Affected by WA, WD, and WR commands

The WATCH window helps you to track the values of arbitrary expressions,
variables, and registers. Use the WA command for this; the syntax is:

wa expression [, [label] [,display format]]

WA adds expression to the WATCH window. (If there’s no WATCH window,
then WA also opens a WATCH window).

To delete individual entries from the WATCH window, use the WD command.
To delete all entries at once and close the WATCH window, use the WR com-
mand.

Cursors

 4-20

4.3 Cursors

The debugger display has three types of cursors:

� The command-line cursor is a block-shaped cursor that identifies the
current character position on the command line. Arrow keys do not affect
the position of this cursor.

COMMAND

>>>

’370 Debugger Version 4.01

Copyright (c) 1990, 1992 Texas Instruments

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

Done

file sample.c

go main

command line cursor

� The mouse cursor is a block-shaped cursor that tracks mouse move-
ments over the entire display. This cursor is controlled by the mouse driver
installed on your system; if you haven’t installed a mouse, you won’t see
a mouse cursor on the debugger display.

� The current-field cursor identifies the current field in the active window.
This is the hardware cursor that is associated with your EGA or VGA card.
Arrow keys do affect this cursor’s movement.

CPU

current field cursor

PC 7185
A 87
B 00
ST 40
SP 22

 The Active Window

4-21 The Debugger Display

4.4 The Active Window

The windows in the debugger display aren’t fixed in their position or in their
size. You can resize them, move them around, and, in some cases, close
them. The window that you’re going to move, resize, or close must be active .

You can move, resize, or close only one window at a time; thus, only one win-
dow at a time can be the active window . Whether or not a window is active
doesn’t affect the debugger’s ability to update information in a window—it af-
fects only your ability to manipulate a window.

Identifying the active window

The debugger highlights the active window. When windows overlap on your
display, the debugger pops the active window to be on top of other windows.

You can alter the active window’s border style and colors if you wish;
Figure 4–5 illustrates the default appearance of an active window and an
inactive window.

Figure 4–5. Default Appearance of an Active and an Inactive Window

COMMAND

>>>

TMS370 Silicon Revision B

’370 XDS v2.06 PT v1.4

Loading sample.out

Done

go main

COMMAND

>>>

This window is
highlighted to show

that it is active

This window is not
highlighted and is

not active

An active window (default appearance)

An inactive window (default appearance)

’370 Debugger Version 4.01

Copyright (c) 1990, 1992 Texas Ins

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

Note: On black-and-white monitors , the border and selection corner are highlighted as
shown in the illustration. On color monitors , the border and selection corner are high-
lighted as shown in the illustration, but they also change color (by default, they change
from white to yellow when the window becomes active).

The Active Window

 4-22

Selecting the active window

You can use one of several methods for selecting the active window.

1) Point to any location within the boundaries or on any border of the desired
window.

2) Click the left mouse button.

Note that if you point and click within the window, you might also select the cur-
rent field. For example,

� If you point and click inside the CPU window, then the register you’re point-
ing at becomes active, and the debugger treats any text that you type as
a new register value. If you point inside the MEMORY window, then the
address value you’re pointing at becomes active, and the debugger treats
any text that you type as a new memory value.

Press ESC to get out of this.

� If you point and click inside the DISASSEMBLY or FILE window, you’ll set
a breakpoint on the statement you’re pointing to.

Press the mouse button again to clear the breakpoint.

F6 This key cycles through the windows on your display, making each one active
in turn and making the previously active window inactive. Pressing this key
highlights one of the windows, showing you that the window is active. Pressing

F6 again makes a different window active. Press F6 as many times as nec-
essary until the desired window becomes the active window.

 The Active Window

4-23 The Debugger Display

win The WIN command allows you to select the active window by name. The
format of this command is

win WINDOW NAME

Note that the WINDOW NAME is in uppercase (matching the name exactly as
displayed). You can spell out the entire window name, but you really need to
specify only enough letters to identify the window.

For example, to select the DISASSEMBLY window as the active window, you
could enter either of these two commands:

win DISASSEMBLY
or win DISA

If several windows of the same type are visible on the screen, don’t use the
WIN command to select one of them.

If you supply an ambiguous name (such as C, which could stand for CPU or
CALLS), the debugger selects the first window it finds whose name matches
the name you supplied. If the debugger doesn’t find the window you asked for
(because you closed the window or misspelled the name), then the WIN
command has no effect.

Manipulating Windows

 4-24

4.5 Manipulating Windows

A window’s size and its position in the debugger display aren’t fixed—you can
resize and move windows.

Note:

You can resize or move any window, but first the window must be active . For
information about selecting the active window, refer to Section 4.4 (page
4-21).

Resizing a window

The minimum window size is three lines by four characters. The maximum
window size varies, depending on which screen size you’re using, but you
can’t make a window larger than the screen.

There are two basic ways to resize a window:

� You can resize a window by using the mouse.

� You can resize a window by using the SIZE command.

1) Point to the lower right corner of the window. This corner is
highlighted—here’s what it looks like.

COMMAND

>>>

lower right corner
(highlighted)

’370 Debugger Version 1.00

Copyright (c) 1990, 1992 Texas

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

Done

file sample.c

2) Grab the highlighted corner by pressing one of the mouse buttons; while
pressing the button, move the mouse in any direction. This resizes the
window.

3) Release the mouse button when the window reaches the desired size.

 Manipulating Windows

4-25 Chapter Title—Attribute Reference

size The SIZE command allows you to size the active window. The format of this
command is:

size [width, length]

You can use the SIZE command in one of two ways:

Method 1 Supply a specific width and length

Method 2 Omit the width and length parameters and use arrow keys to
interactively resize the window.

SIZE, method 1: Use the width and length parameters. Valid values for the
width and length depend on the screen size and the window position on the
screen. If the window is in the upper left corner of the screen, the maximum
size of the window is the same as the screen size minus one line. (The extra
line is needed for the menu bar.) For example, if the screen size is 80 charac-
ters by 25 lines, the largest window size is 80 characters by 24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as
described on page 4-26.

For example, if you want to use commands to make the CALLS window 8 char-
acters wide by 20 lines long, you could enter:

win CALLS
size 8, 20

Manipulating Windows

 4-26

SIZE, method 2: Use arrow keys to interactively resize the window. If you
enter the SIZE command without width and length parameters, you can use
arrow keys to size the window.

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the cursor keys, you must press or .

For example, if you want to make the CPU window three lines longer and two
characters narrower, you can enter:

win CPU
size

↓ ↓ ↓ ← ← ESC

Zooming a window

Another way to resize the active window is to zoom it. Zooming a window
makes it as large as possible so that it takes up the entire display (except for
the menu bar) and hides all the other windows. Unlike the SIZE command,
zooming is not affected by the window’s position in the display.

To “unzoom” a window, repeat the same steps you used to zoom it. This will
return the window to its prezoom size and position.

There are two basic ways to zoom or unzoom a window:

� By using the mouse.

� By using the ZOOM command.

1) Point to the upper left corner of the window. This corner is highlighted—
here’s what it looks like:

COMMAND

>>>

upper left corner
(highlighted)

’370 Debugger Version 1.00

Copyright (c) 1990, 1992 Texas

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

2) Click the left mouse button.

 Manipulating Windows

4-27 The Debugger Display

zoom You can also use the ZOOM command to zoom/unzoom the window. The
format for this command is:

zoom

Moving a window

The windows in the debugger display don’t have fixed positions–you can move
them around.

There are two ways to move a window:

� You can move a window by using the mouse.

� You can move a window by using the MOVE command.

1) Point to the left or top edge of the window.

COMMAND

>>>

Point to the top edge
or the left edge

Copyright (c) 1990, 1992 Texas

TMS370 Silicon Revision B

Loading sample.out

 67 symbols loaded

Done

2) Press the left mouse button, but don’t release it; now move the mouse in
any direction.

3) Release the mouse button when the window is in the desired position.

Manipulating Windows

 4-28

move The MOVE command allows you to move the active window. The format of this
command is:

move [X position, Y position [, width, length]]

You can use the MOVE command in one of two ways:

Method 1 Supply a specific X position and Y position

Method 2 Omit the X position and Y position parameters and use arrow
keys to interactively resize the window

MOVE, method 1: Use the X position and Y position parameters. You can
move a window by defining a new XY position for the window’s upper left cor-
ner. Valid X and Y positions depend on the screen size and the window size.
X positions are valid if the X position plus the window width in characters is less
than or equal to the screen width in characters. Y positions are valid if the Y
position plus the widow height is less than or equal to the screen height in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

MOVE, method 2: Use arrow keys to interactively move the window. If you
enter the MOVE command without X position and Y position parameters, you
can use arrow keys to move the window:

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the cursor keys, you must press or .

For example, if you want to move the COMMAND window up two lines and
right five characters, you can enter:

win COM
move

↑ ↑ → → → → → ESC

Note:

If you choose, you can resize a window at the same time you move it. To do
this, use the width and length parameters in the same way that they are used
for the SIZE command.

 Manipulating a Window’s Contents

4-29 The Debugger Display

4.6 Manipulating a Window’s Contents

Although you may be concerned with changing the way windows appear in the
display—where they are and how big/small they are—you’ll usually be inter-
ested in something much more important: what’s in the windows. Some win-
dows contain more information than can be displayed on a screen; others con-
tain information that you’d like to change. This section tells you how to view
the hidden portions of data within a window and which data can be edited.

Note:

You can scroll and edit only the active window . For information about select-
ing the active window, refer to Section 4.4 (page 4-21).

Scrolling through a window’s contents

If you resize a window to make it smaller, you may hide information. Some-
times, a window may contain more information than can be displayed on a
screen. In these cases, the debugger allows you to scroll information up and
down within the window.

There are two ways to view hidden portions of a window’s contents:

� You can use the mouse to scroll the contents of the window.

� You can use function keys and arrow keys.

You can use the mouse to point to the scroll arrows on the righthand side of
the active window. This is what the scroll arrows look like:

scroll up

FILE: sample.c

scroll down

0052 extern call();
0053 extern meminit();
0054
0055 main();
0056 {
0057 int i = 0;
0058 int j = 0, k = 0;
0059
0060 meminit();
0061 for (i=0;i<0x70;i++)
0062 {
0063 call(i);
0064 if (i & 1) j += i;
0065 aai[k][k] = j;
0066 if (!(i & 0xFFFF)) k++;
0067 }

Manipulating a Window’s Contents

 4-30

To scroll window contents up or down:

1) Point to the appropriate scroll arrow.

2) Press the left mouse button; continue to press it until the information you’re
interested in is displayed within the window.

3) Release the mouse button when you’re finished scrolling.

You can scroll up/down one line at a time by pressing the mouse button and
releasing it immediately.

In addition to scrolling, the debugger supports the following methods for mov-
ing through a window’s contents.

PAGE UP

The page-up key scrolls up through the window contents, one window length
at a time. You can use CONTROL PAGE UP to scroll up through an array of struc-
tures displayed in a DISP window.

PAGE DOWN

The page-down key scrolls down through the window contents, one window
length at a time. You can use CONTROL PAGE DOWN to scroll down through an
array of structures displayed in a DISP window.

HOME When the FILE window is active, pressing HOME adjusts the window’s con-
tents so that the first line of the text file is at the top of the window. You can’t
use HOME outside of the FILE window.

END When the FILE window is active, pressing END adjusts the window’s contents
so that the last line of the file is at the bottom of the window. You can’t use END

outside of the FILE window.

↑ Moves the field cursor up one line at a time.

↓ Moves the field cursor down one line at a time.

← In the FILE window, scrolls the display left eight characters at a time. In other
windows, moves the field cursor left one field; at the first field on a line, wraps
back to the last fully displayed field on the previous line.

→ In the FILE window, scrolls the display right eight characters at a time. In other
windows, moves the field cursor right one field; at the last field on a line, wraps
around to the first field on the next line.

 Manipulating a Window’s Contents

4-31 The Debugger Display

Editing the data displayed in windows

You can edit the data displayed in the MEMORY, CPU, DISP, and WATCH win-
dows by using an overwrite “click and type” method or by using commands that
change the values. (This is described in detail in Section 8.3, page 8-4.)

Note:

In the FILE, DISASSEMBLY, CALLS, and PROFILE windows, the “click and
type” method of selecting data for editing—pointing at a line and pressing F9

or the left mouse button—does not allow you to modify data.

� In the FILE and DISASSEMBLY windows, pressing F9 or the mouse but-
ton sets or clears a breakpoint on any line of code that you select. You
can’t modify text in a FILE or DISASSEMBLY window.

� In the CALLS window, pressing the mouse button shows the source for
the function named on the selected line.

� In the PROFILE window, pressing F9 has no effect. Clicking the mouse
button in the header displays a different set of data; clicking the mouse
button on an area name shows the code associated with the area.

Closing a Window

 4-32

4.7 Closing a Window

The debugger opens various windows on the display according to the debug-
ging mode you select. When you switch modes, the debugger may close some
windows and open others. Additionally, you may choose to open DISP,
WATCH, and MEMORY windows.

Most of the windows remain open—you can’t close them. However, you can
close the CALLS, INSPECT, DISP, WATCH, and additional MEMORY
windows.

� To close the CALLS or INSPECT window:

1) Make the CALLS or INSPECT window the active window.

2) Press F4 .

� To close a DISP window:

1) Make the appropriate DISP window the active window.

2) Press F4 .

If the DISP window that you close has any children, they are closed also.

� To close an additional MEMORY window:

1) Make the appropriate MEMORY window the active window.

2) Press F4 .

Note:

You cannot close the default MEMORY window.

� To close the WATCH window, enter:

wr

When you close a window, the debugger remembers the window’s size and
position. The next time you open the window, it will have the same size and
position. That is, if you close the CALLS window, then reopen it, it will have the
same size and position as it did before you closed it. Since you can open
numerous DISP and MEM windows, when you open one, it will occupy the
same position as the last one of that type that you closed.

5-1 Chapter Title—Attribute Reference

Entering and Using Commands

The debugger provides you with several methods for entering commands:

� From the command line
� From the pulldown menus (using keyboard combinations or the mouse)
� With function keys
� From a batch file

Mouse use and function key use differ from situation to situation; their use is
described throughout this book whenever applicable. This chapter includes
specific rules that apply to entering and using pulldown menus. Also included
is information about entering DOS commands and defining your own com-
mand strings.

Topic Page

5.1 Entering Commands From the Command Line 5-2
How to type in and enter commands 5-3
Sometimes, you can’t type a command 5-4
Using the command history 5-5
Clearing the display area 5-5
Recording information from the display area 5-6

5.2 Using the Menu Bar and the Pulldown Menus 5-7
Pulldown menus in the profiling environment 5-8
Using the pulldown menus 5-8
Escaping from the pulldown menus 5-9
Using menu bar selections that don’t have pulldown menus 5-10

5.3 Using Dialog Boxes 5-11
Entering text in a dialog box 5-11
Selecting parameters in a dialog box 5-12
Closing a dialog box 5-15

5.4 Entering Commands From a Batch File 5-16
Echoing strings in a batch file 5-17
Controlling command execution in a batch file 5-18

5.5 Defining Your Own Command Strings 5-20

5.6 Entering Operating-System Commands 5-23
Entering a single command from the debugger command line 5-23
Entering several command from a system shell 5-24
Additional system commands 5-24

Chapter 5

Entering Commands From the Command Line

 5-2

5.1 Entering Commands From the Command Line

The debugger supports a complete set of commands that help you to control
and monitor program execution, customize the display, and perform other
tasks. These commands are discussed in various sections throughout this
book, as they apply to the current topic. Chapter 13 summarizes all of the
debugger commands with an alphabetical reference.

Although there are a variety of methods for entering most of the commands,
all of the commands can be entered by typing them on the command line in
the COMMAND window. Figure 5–1 shows the COMMAND window.

Figure 5–1. The COMMAND Window

COMMAND

>>> go main

display
area

command
line

370 Debugger Version 1.00
Copyright (c) 1990, 1992 Texas Instruments
TMS’370Silicon Revision B
’370XDS v2.10 BTT v1.4

Loading sample.c
 67 symbols

The COMMAND window serves two purposes.

� The command line portion of the window provides you with an area for
entering commands. For example, the command line in Figure 5–1 shows
that a GO command was typed in (but not yet entered).

� The display area provides the debugger with an area for echoing com-
mands, displaying command output, or displaying errors and messages
for you to read. For example, the command output in Figure 5–1 shows
the messages that are displayed when you first bring up the debugger and
also shows that a file was loaded.

If you enter a command by using an alternate method (using the mouse, a
pulldown menu, or function keys), the COMMAND window doesn’t echo
the entered command.

 Entering Commands From the Command Line

5-3 Entering and Using Commands

How to type in and enter commands

You can type a command at almost any time; the debugger automatically
places the text on the command line when you type. When you want to enter
a command, just type—no matter which window is active. You don’t have to
worry about making the COMMAND window active or moving the field cursor
to the command line. When you start to type, the debugger usually assumes
that you’re typing a command and puts the text on the command line (except
under certain circumstances, which are explained on the next page). Com-
mands themselves are not case sensitive, although some parameters (such
as window names) are.

To execute a command that you’ve typed, just press . The debugger then:

1) Echoes the command to the display area,
2) Executes the command and displays any resulting output, and
3) Clears the command line when command execution completes.

Once you’ve typed a command, you can edit the text on the command line with
these keystrokes.

To... Press...

Move back over text without erasing characters or

Move forward through text without erasing
characters

Move back over text while erasing characters

Move forward through text while erasing charac-
ters

Insert text into the characters that are already on
the command line

Note:

� You cannot use the arrow keys to move through or edit text on the command line.

� Typing a command doesn’t make the COMMAND window the active window.

� If you press when the cursor is in the middle of text, the debugger truncates the input text at the
point where you press .

Entering Commands From the Command Line

 5-4

Sometimes, you can’t type a command

At most times, you can press any alphanumeric or punctuation key on your
keyboard (any printable character); the debugger interprets this as part of a
command and displays the character on the command line. In a few instances,
however, pressing an alphanumeric key is not interpreted as information for
the command line.

� When you’re pressing the ALT key, typing certain letters causes the
debugger to display a pulldown menu.

� When a pulldown menu is displayed, typing a letter causes the debugger
to execute a selection from the menu.

� When you’re pressing the CONTROL key, pressing H or L moves the
command-line cursor backward or forward through the text on the com-
mand line.

� When you’re editing a field, typing enters a new value in the field.

� When you’re using the MOVE or SIZE command interactively, pressing
keys affects the size or position of the active window. Before you can enter
any more commands, you must press ESC to terminate the interactive
moving or sizing.

� When you’ve brought up a dialog box, typing enters a parameter value at
the current field in the box. Refer to Section 5.3, on page 5-11, for more
information on dialog boxes.

 Entering Commands From the Command Line

5-5 Entering and Using Commands

Using the command history

The debugger keeps an internal list, or command history , of the commands
that you enter. It remembers the last 50 commands that you entered. If you
want to reenter a command, you can move through this list, select a command
that you’ve already executed, and re-execute it.

Use these keystrokes to move through the command history.

To... Press...

Repeat the last command that you entered

Move forward through the list of executed commands on the com-
mand line, one by one

Move backward through the list of executed commands, one by
one

As you move through the command history, the debugger displays the com-
mands, one by one, on the command line. When you see a command that you
want to execute, simply press to execute the command. You can also edit
these displayed commands in the same manner that you can edit new com-
mands.

Clearing the display area

Occasionally, you may want to completely blank out the display area of the
COMMAND window; the debugger provides a command for this.

cls Use the CLS command to clear all displayed information from the display area.
The format for this command is:

cls

Entering Commands From the Command Line

 5-6

Recording information from the display area

The information shown in the display area of the COMMAND window can be
written to a log file. The log file is a text file that contains commands you’ve en-
tered, their results, and error or progress messages. To record this information
in a log file, use the DLOG command.

Log files can be executed by using the TAKE command. When you use DLOG
to record the information from the COMMAND window display area, the de-
bugger automatically precedes all error or progress messages and command
results with a semicolon to turn them into comments. This way, you can easily
re-execute the commands in your log file by using the TAKE command.

� To begin recording the information shown in the COMMAND window dis-
play area, use:

dlog filename

This command opens a log file called filename that the information is re-
corded into.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The extended format for the DLOG command is:

dlog filename [,{a | w}]

The optional parameters of the DLOG command control how the log file is
created and/or used:

� Creating a new log file. If you use the DLOG command without one of
the optional parameters, the debugger creates a new file that it records the
information into. If you are recording to a log file already, entering a new
DLOG command and filename closes the previous log file and opens a
new one.

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the ap-
pend (a) option.

 Using the Menu Bar and the Pulldown Menus

5-7 Entering and Using Commands

5.2 Using the Menu Bar and the Pulldown Menus

In all three of the debugger modes, you’ll see a menu bar at the top of the
screen. The menu selections offer you an alternative method for entering
many of the debugger commands. Figure 5–2 points out the menu bar in a
mixed-mode display. There are several ways to use the selections on the
menu bar, depending on whether the selection has a pulldown menu or not.

Figure 5–2. The Menu Bar in the Basic Debugger Display

menu bar
DISASSEMBLY

Break Watch Memory MoDe Run=F5 Step=F8 Next=F10ColorLoad BTT

CPU

COMMAND

>>>

FILE: sample.c CALLS

1: main()

MEMORY
’370 XDS v2.06 BTT v1.4

Loading sample.out
 67 symbols loaded
Done

0000 87 00 cb 01 00 00 28 e5 00 00 00 00
000c 28 81 72 44 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 28 87 28 8f 00 70
0024 40 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00

0052 extern call();
0053 extern meminit();
0054
0055 main()
0056 {
0057 int i = 0;
0058 int j = 0, k = 0;
0059 meminit ();
0060 for (i=0;i<0x70;i++)

7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021,R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit
7198 fa RTI
7199 88 MOVW #0723Ah,R0F
719d 00 JMP 71BFh
719f f4 MOV 3(R0F),A
71a3 d0 MOV A,R0D

PC 7185
A 87 B 00
ST 40 SP 22

Several of the selections on the menu bar have pulldown menus; if they could
all be pulled down at once, they’d look like Figure 5–3.

Figure 5–3. All of the Pulldown Menus (Basic Debugger Display)

Load
Load
Reload
Symbols

REstart
ReseT

File

Config

Break
Add
Delete
Reset
List

Watch
Add
Delete
Reset

Memory
Add
Delete
Reset
List
Enable

Fill
Save

Color
Load
Save
Config

Border
Prompt

Mode
C (auto)
Asm
Mixed

Setup

I nspect
Position
Lookup
Format
SAve

BTT

Note: The BTT menu is available only when you are using the XDS/22 emulation system.

Using the Menu Bar and the Pulldown Menus

 5-8

Pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

mAp Mark Enable Disable Unmark View Stop–points ProfileLoad

The Load menu corresponds to the Load menu available in the basic debugger
environment. The other entries provide access to profiling commands. The
mAp menu provides memory map commands available from the basic
Memory menu.

Note that the menu bar and associated pulldown menus occupy fixed positions
on the display. Unlike windows, you can’t move, resize, or cover the menu bar
or pulldown menus.

Using the pulldown menus

There are several ways to display the pulldown menus and then execute your
selections from them. Executing a command from a menu is similar to
executing a command by typing it in.

� If you select a command that has no parameters, then the debugger
executes the command as soon as you select it.

� If you select a command that has one or more parameters, the debugger
displays a dialog box when you make your selection. A dialog box offers
you the chance to type in the parameter values for the command.

The following paragraphs describe several methods for selecting commands
from the pulldown menus.

Mouse method 1

1) Point the mouse cursor at one of the appropriate selections in the menu
bar.

2) Press the left mouse button, but don’t release the button.

3) While pressing the mouse button, move the mouse downward until your
selection is highlighted on the menu.

4) When your selection is highlighted, release the mouse button.

 Using the Menu Bar and the Pulldown Menus

5-9 Entering and Using Commands

Mouse method 2

1) Point the cursor at one of the appropriate selections in the menu bar.

2) Click the left mouse button. This displays the menu until you are ready to
make a selection.

 3) Point the mouse cursor at your selection on the pulldown menu.

4) When your selection is highlighted, click the left mouse button.

Keyboard method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

X 3) Press and release the key that corresponds to the highlighted letter of your
selection in the menu.

Keyboard method 2

ALT 1) Press the ALT key; don’t release it.

X 2) Press the key that corresponds to the highlighted letter in the selection
name; release both keys. This displays the menu and freezes it.

↓ ↑ 3) Use the arrow keys to move up and down through the menu.

4) When your selection is highlighted, press .

Escaping from the pulldown menus

� If you display a menu and then decide that you don’t want to make a selec-
tion from this menu, you can:

� Press ESC

or

� Point the mouse outside of the menu; press and then release the left
mouse button.

� If you pull down a menu and see that it is not the menu you wanted, you
can point the mouse at another entry and press the left mouse button, or
you can use the ← and → keys to display adjacent menus.

Using the Menu Bar and the Pulldown Menus

 5-10

Using menu bar selections that don’t have pulldown menus

These three menu bar selections are single-level entries without pulldown me-
nus:

Run=F5 Step=F8 Next=F10

There are two ways to execute these choices.

1) Point the cursor at one of these selections in the menu bar.

2) Press and release the left mouse button.

This executes your choice in the same manner as typing in the associated
command without its optional expression parameter.

F5 Pressing this key is equivalent to typing in the RUN command without an ex-
pression parameter.

F8 Pressing this key is equivalent to typing in the STEP command without an ex-
pression parameter.

F10 Pressing this key is equivalent to typing in the NEXT command without an ex-
pression parameter.

 Using Dialog Boxes

5-11 Entering and Using Commands

5.3 Using Dialog Boxes

Many of the debugger commands have parameters. When you execute these
commands from pulldown menus, you must have some way of providing
parameter information. The debugger allows you to do this by displaying a
dialog box that asks for this information.

Some debugger commands have very simple dialog boxes that provide you
with an alternative method for typing in values. Other commands, such as BTT
commands, have more complex dialog boxes; in addition to typing in values,
you may be asked to make selections from a list of predefined parameters.

Entering text in a dialog box

Entering text in a dialog box is much like entering commands on the command
line. For example, the Add entry on the Watch menu is equivalent to entering
the WA command. This command has three parameters:

wa expression [, [label] [, display format]]

When you select Add from the Watch menu, the debugger displays a dialog
box that asks you for this parameter information. The dialog box looks like this:

Label

Expression

Format

Watch Add

<<OK>> <C ANCEL>

You can enter an expression just as you would if you were to type the WA
command, and then press TAB or ↓ . The cursor moves down to the next pa-
rameter:

Watch Add

<<OK>> <C ANCEL>

Label

Expression

Format

MY_VAR

When the dialog box displays more than one parameter, you can use the arrow
keys to move from parameter to parameter. You can omit entries for optional
parameters, but the debugger won’t allow you to skip required parameters.

Using Dialog Boxes

 5-12

In the case of the WA command, the two parameters, label and format, are op-
tional. If you want to enter a parameter, you may do so; if you don’t want to use
these optional parameters, don’t type anything in their fields—just continue to
the next parameter.

Modifying text in a dialog box is similar to editing text on the command line:

� When you display a dialog box for the first time during a debugging ses-
sion, the parameter fields are empty. When you bring up the same dialog
box again, though, the box displays the last values that you entered. (This
is similar to having a command history.) If you want to use the same value,
just press TAB or ↓ to move to the next parameter.

� You can edit what you type (or values that remain from a previous entry)
in the same way that you can edit text on the command line. See Section
5.1 for more information on editing text on the command line.

When you’ve entered a value for the final parameter, point and click on <OK>
to save your changes, or <CANCEL> to discard your changes; the debugger
closes the dialog box and executes the command with the parameter values
you supplied.

Selecting parameters in a dialog box

More complex dialog boxes, such as those associated with BTT commands,
allow you to:

� Enter text. Entering text in a more complex dialog box is the same as en-
tering text on the command line. Refer to the discussion above, Entering
text in a dialog box, for more information.

� Choose from a list of predefined options. There are two types of prede-
fined options in a dialog box. The first type of option allows you to enable
one or more predefined options. The second type of option is mutually ex-
clusive; therefore, you can enable only one at a time.

Valid options (of the opened dialog box) are listed for you so that all you
have to do is point and click to make your selections.

� Close the dialog box. The more complex dialog boxes do not close auto-
matically. They allow you the option of saving or discarding any changes
you made to your parameter choices. All you have to do to close the dialog
box is point and click on the appropriate option, either OK, CANCEL, or
DELETE.

 Using Dialog Boxes

5-13 Entering and Using Commands

Figure 5–4 shows you the components of a complex dialog box used with the
BTT.

Figure 5–4. The Components of a Dialog Box
BP/Event Action

Address qualifiers

Data qualifiers

Cycle

Jump to [N/A]

 (*)O ne point () Two points () I n range ()O utside range

addr1=[0x0000].
addr2=[N/A]
 mask [0x0000].

 (*)On e point ()Two points ()I n range ()Out s ide range

data1=[0x00].
data2=[N/A]
 mask [0x00].

ex tern [0x00].
 mask [0x00].

 [X] M R [X] M W [X] IA Q
<<OK>> <Cancel> <De l ete>

predefined options

text entry areas

mutually exclusive
options

closing options

When you display a dialog box for the first time during a debugging session,
nothing is enabled. When you bring up the same dialog box again, though,
your previous selections are remembered. (This is similar to having a com-
mand history.)

As Figure 5–4 shows, options are preceded by either square brackets or
parentheses; mutually exclusive options are only preceded by parentheses.
Enabling options preceded by square brackets is like turning a switch on and
off. When the option is enabled, the debugger displays an X inside the brackets
preceding the option. You can enable as many of these options as you want:

[X] Option 1 [] Option 2 [X] Option 3

[] Option 4 [X] Option 5 [X] Option 6

[X] Option 7 [] Option 8 [] Option 9

Using Dialog Boxes

 5-14

Mutually exclusive options, however, are enabled when the debugger displays
an asterisk inside the parentheses preceding your selection. The following ex-
ample illustrates this:

(*) Option 1

() Option 2

() Option 3

Notice that only one option is enabled at a time. There are several ways to en-
able both types of options:

1) Point the cursor at the option you want to enable.

 2) Click the left mouse button. This enables the event and displays an X next
to the option (or an asterisk next to a mutually exclusive option).

Repeat these two steps to disable an option. When the X (or asterisk) is no
longer displayed, that option has been disabled.

Keyboard Method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press and release the key that corresponds to the highlighted letter or
number of the option you want to enable. The debugger displays an X (or
asterisk) next to the option, indicating that selection is enabled.

Repeat these two steps to disable an option. When the X (or asterisk) is no
longer displayed, that option has been disabled.

 Using Dialog Boxes

5-15 Entering and Using Commands

Keyboard Method 2

TAB 1) Press the TAB key to move throughout the dialog box until your cursor
points to the option you want to enable.

↓ ↑ 2) Use the arrow keys to move up and down or left and right.

When you enable a mutually exclusive option, moving the arrow keys alone
will place an asterisk inside the parentheses, indicating that the option is en-
abled. However, to enable an option preceded by square brackets, you must:

SPACE Press the SPACE bar. The debugger displays an X next to your selection, thus
enabling that particular option.

or

F9 Press the F9 key. The debugger displays an X next to your selection, thus en-
abling that particular option.

Repeat these steps to disable a option.

Closing a dialog box

The more complex dialog boxes do not close automatically; the debugger ex-
pects input from you. When you close a dialog box, you can:

� Save the changes you made

� Discard any of the changes you made

Note:

The default option, <<OK>>, is highlighted; clicking on this option saves your
changes and closes the dialog box.

There are several ways to close a dialog box:

1) Point the cursor at <<OK>> to close the dialog box and save your
changes. Or you can opt to discard your changes by pointing the cursor
at <<CANCEL>>.

2) Click the left mouse button. This executes your choice and closes the dia-
log box.

or

Using Dialog Boxes / Entering Commands From a Batch File

 5-16

Keyboard Method 1

ALT 1) Press the ALT key; don’t release it.

X 2) Press and release the O key to save your changes. Press and release
the A key to discard your changes. Both of these actions execute your
choice and close the dialog box.

Keyboard Method 2

TAB 1) Press the TAB key to move through the dialog box until your cursor is in
the <<OK>> or <<CANCEL>> field.

← → 2) Use the arrow keys to switch between <<OK>> and <<CANCEL>>.

3) Press the key to accept your selection. This executes your choice and
closes the dialog box.

5.4 Entering Commands From a Batch File

You can place debugger commands in a batch file and execute the file from
within the debugger environment. This is useful, for example, for setting up a
memory map that contains several MA commands followed by a MAP com-
mand that enables memory mapping.

take Use the TAKE command to tell the debugger to read and execute commands
from a batch file. A batch file can call another batch file; they can be nested
in this manner up to 10 deep. To halt the debugger’s execution of a batch file,
press ESC .

The format for the TAKE command is:

take batch filename [, suppress echo flag]

� The batch filename parameter identifies the file that contains commands.

� If you supply path information with the filename, the debugger looks
for the file only in the specified directory.

� If you don’t supply path information with the filename, the debugger
looks for the file in the current directory.

� If the debugger can’t find the file in the current directory, it looks in any
directories that you identified with the D_DIR environment variable.
You can set D_DIR within the DOS environment; the command for do-
ing this is:

SET D_DIR=pathname; pathname

 Entering Commands From a Batch File

5-17 Entering and Using Commands

This allows you to name several directories that the debugger can search.
If you often use the same directories, it may be convenient to set D_DIR in
your autoexec.bat file. You can also set D_DIR from within the debugger
by using the SYSTEM command (see Section 5.6, Entering Operating-
System Commands, page 5-23).

� By default, the debugger echoes the commands in the COMMAND win-
dow display area and updates the display as it reads commands from the
batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but
supply a nonzero value, then the debugger behaves in the default
manner.

� If you would like to suppress the echoing and updating, use the value 0
for the suppress echo flag parameter.

Echoing strings in a batch file

When executing a batch file, you can display a string to the COMMAND win-
dow by using the ECHO command. The syntax for the command is:

echo string

This displays the string in the display area of the COMMAND window.

For example, you may want to document what is happening during the execu-
tion of a certain batch file. To do this, you could use the following line in your
batch file to indicate that you are creating a new memory map for your device:

echo Creating new memory map

(Notice that the string should not be in quotes.)

When you execute the batch file, the following message appears:

.

.
Creating new memory map
.
.

Note that any leading blanks in your string are removed when the ECHO com-
mand is executed.

Entering Commands From a Batch File

 5-18

Controlling command execution in a batch file

In batch files, you can control the flow of debugger commands. You can
choose to conditionally execute debugger commands or set up a looping situa-
tion by using IF/ELSE/ENDIF or LOOP/ENDLOOP, respectively.

� To conditionally execute debugger commands in a batch file, use the
IF/ELSE/ENDIF commands. The syntax is:

if Boolean expression
debugger command
debugger command
.
.
[else
debugger command
debugger command
.
.]
endif

The debugger includes some predefined constants for use with IF. These
constants evaluate to 0 (false) or 1 (true). Table 5–1 shows the constants
and their corresponding tools.

Table 5–1.Predefined Constants for Use With Conditional Commands

Constant Debugger Tool

$$XDS22$$ emulator

$$ABD$$ application board

If the Boolean expression evaluates to true (1), the debugger executes all
commands between the IF and ELSE or ENDIF. Note that the ELSE por-
tion of the command is optional. (See Chapter 14 for more information
about expressions and expression analysis.)

One way you can use these predefined constants is to create an initializa-
tion batch file that works for any debugger tool. This is useful if you are us-
ing, for example, both the emulator and the application board. To do this,
you can set up the following batch file:

 Entering Commands From a Batch File

5-19 Entering and Using Commands

if $$XDS22$$
echo Invoking initialization batch file for emulator.
use \xds370
take init.cmd
.
.
.
endif

if $$ABD$$
echo Invoking batch file for application board.
use \abd370
take init.cmd
.
.
.
endif
.
.
.

In this example, the debugger will execute only the initialization com-
mands that apply to the debugger tool that you invoke.

� To set up a looping situation to execute debugger commands in a batch
file, use the LOOP/ENDLOOP commands. The syntax is:

loop expression
debugger command
debugger command
.
.
endloop

These looping commands evaluate in the same method as in the run
conditional command expression. (See Chapter 14 for more information
about expressions and expression analysis.)

� If you use an expression that is not Boolean, the debugger evaluates
the expression as a loop count. For example, if you wanted to execute
a sequence of debugger commands ten times, you would use the fol-
lowing:

loop 10
runb
.
.
.
endloop

The debugger treats the 10 as a counter and executes the debugger
commands ten times.

Entering Commands From a Batch File / Defining Your Own Command Strings

 5-20

� If you use a Boolean expression, the debugger executes the com-
mands repeatedly as long as the expression is true. This type of ex-
pression has one of the following operators as the highest precedence
operator in the expression:

> >= <
<= == !=
&& || !

For example, if you want to continuously trace some register values,
you can set up a looping expression like the following:

loop !0
step
? PC
? SP
endloop

The IF/ELSE/ENDIF and LOOP/ENDLOOP commands work with the follow-
ing conditions:

� You can use conditional and looping commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest conditional and looping commands within the same batch
file.

5.5 Defining Your Own Command Strings

The debugger provides a shorthand method of entering often-used com-
mands or command sequences. This process is called aliasing. Aliasing en-
ables you to define an alias name for the command(s) and then enter the alias
name as if it were a debugger command.

To do this, use the ALIAS command. The syntax for this command is:

alias [alias name [, “command string”]]

 Defining Your Own Command Strings

5-21 Entering and Using Commands

The primary purpose of the ALIAS command is to associate the alias name
with the debugger command you’ve supplied as the command string. Howev-
er, the ALIAS command is versatile and can be used in several ways:

� Aliasing several commands. The command string can contain more
than one debugger command—just separate the commands with semi-
colons.

For example, suppose you always began a debugging session by loading
the same object file, displaying the same C source file, and running to a
certain point in the code. You could define an alias to do all these tasks at
once:

alias init,”load test.out;file source.c;go main”

Now you could enter init instead of the three commands listed within the
quote marks.

� Supplying parameters to the command string. The command string
can define parameters that you’ll supply later. To do this, use a percent
sign and a number (%1) to represent the parameter that will be filled in lat-
er. The numbers should be consecutive (%1, %2, %3) unless you plan to
reuse the same parameter value for multiple commands.

For example, suppose that every time you filled an area of memory, you
also wanted to display that block in the MEMORY window:

alias mfil,”fill %1, %2, %3;mem %1”

Then you could enter:

mfil 0x014,0x18,0x11

The first value (0x014) would be substituted for the first FILL parameter
and the MEM parameter (%1). The second and third values would be
substituted for the second and third FILL parameters (%2 and %3).

� Listing all aliases. To display a list of all the defined aliases, enter the
ALIAS command with no parameters. The debugger will list the aliases
and their definitions in the COMMAND window.

For example, assume that the init and mfil aliases had been defined as
shown in the previous two examples. If you entered:

alias

you’d see:

Alias Command
–––
INIT ––> load test.out;file source.c;go main
MFIL ––> fill %1,%2,%3;mem %1

Defining Your Own Command Strings

 5-22

� Finding the definition of an alias. If you know an alias name but are not
sure of its current definition, enter the ALIAS command with just an alias
name. The debugger will display the definition in the COMMAND window.

For example, if you had defined the init alias as shown in the first example
above, you could enter:

alias init

Then you’d see:

”INIT” aliased as ”load test.out; file source.c;go main”

� Nesting alias definitions. You can include a defined alias name in the
command string of another alias definition. This is especially useful when
the command string would be longer than the debugger command line.

� Redefining an alias. To redefine an alias, re-enter the ALIAS command
with the same alias name and a new command string.

� Deleting aliases. To get rid of a single alias, use the UNALIAS command:

unalias alias name

To delete all aliases, enter the UNALIAS command with an asterisk
instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

Note:

� Alias definitions are lost when you exit the debugger. If you want to reuse
aliases, define them in a batch file.

� Individual commands within a command string are limited to an expand-
ed length of 132 characters. The expanded length of the command
includes the length of any substituted parameter values.

 Entering Operating-Sytem Commands

5-23 Entering and Using Commands

5.6 Entering Operating-System Commands

The debugger provides a simple method of entering DOS commands without
explicitly exiting the debugger environment. To do this, use the SYSTEM com-
mand. The format for this command is:

system [DOS command [, flag]]

The SYSTEM command behaves in one of two ways, depending on whether
or not you supply an operating-system command as a parameter:

� If you enter the SYSTEM command with a DOS command as a parameter,
then you stay within the debugger environment.

� If you enter the SYSTEM command without parameters, the debugger
opens a system shell. This means that the debugger will blank the debug-
ger display and temporarily exit to the operating-system prompt.

Use the first method when you have only one command to enter; use the
second method when you have several commands to enter.

Entering a single command from the debugger command line

If you need to enter only a single DOS command, supply it as a parameter to
the SYSTEM command. For example, if you want to copy a file from another
directory into the current directory, you might enter:

system ”copy a:\backup\sample.c sample.c”

If the DOS command produces a display of some sort (such as a message),
the debugger will blank the upper portion of the debugger display to show the
information. In this situation, you can use the flag parameter to tell the debug-
ger whether or not it should hesitate after displaying the results of the DOS
command. Flag may be a 0 or a 1:

0 The debugger immediately returns to the debugger environment after
the last item of information is displayed.

1 The debugger does not return to the debugger environment until you
press . (This is the default.)

Entering Operating-System Commands

 5-24

In the example above, the debugger opens a system shell to display the follow-
ing message:

1 File(s) copied
Type Carriage Return To Return To Debugger

The message displays until you press .

If you want the debugger to display the message and then return immediately
to the debugger environment, you can enter the command in this way:

system ”copy a:\backup\sample.c sample.c”,0

Entering several commands from a system shell

If you need to enter several commands, enter the SYSTEM command without
parameters. The debugger will open a system shell and display the DOS
prompt. At this point, you can enter any DOS command.

When you are finished entering commands and are ready to return to the
debugger environment, enter:

exit

Note:

Available memory may limit the operating-system commands that you can
enter from a system shell. For example, you would not be able to invoke
another version of the debugger.

Additional system commands

The debugger also provides separate commands for changing directories and
for listing the contents of a directory.

cd Use the CHDIR (CD) command to change the current working directory. The
format for this command is:

chdir directory name
or cd directory name

This changes the current directory to the specified directory name. You can
use relative pathnames as part of the directory name. Note that this command
can affect any command whose parameter is a filename (such as the FILE,
LOAD, and TAKE commands).

 Entering Operating-System Commands

5-25 Chapter Title—Attribute Reference

dir Use the DIR command to list the contents of a directory. The format for this
command is:

dir [directory name]

This command displays a directory listing in the display area of the COMMAND
window. If you use the optional directory name parameter, the debugger
displays a list of the specified directory’s contents. If you don’t use this
parameter, the debugger lists the contents of the current directory.

You can use wildcards as part of the directory name.

 5-26

6-1 Chapter Title—Attribute Reference

Defining a Memory Map

Before you begin a debugging session, you must supply the debugger with a
memory map. The memory map tells the debugger which areas of memory it
can and can’t access. Note that the commands described in this chapter can
be entered using the Memory pulldown menu.

Topic Page

6.1 The Memory Map: What It Is and Why You Must Define It 6-2
Defining the memory map in a batch file 6-2
Potential memory map problems 6-3

6.2 A Sample Memory Map 6-4

6.3 Identifying Useable Memory Ranges 6-5
Restrictions on usable memory ranges 6-6

6.4 Enabling Memory Mapping 6-7

6.5 Checking the Memory Map 6-7

6.6 Modifying the Memory Map During a Debugging Session 6-8
Returning to the original memory map 6-9

6.7 Using Multiple Memory Maps for Multiple Target Systems 6-10

Chapter 6

The Memory Map: What It Is and Why You Must Define It

 6-2

6.1 The Memory Map: What It Is and Why You Must Define It

A memory map tells the debugger which areas of memory it can and can’t
access. Memory maps vary, depending on the application. Typically, the map
matches the MEMORY definition in your linker command file.

A special default initialization batch file included with the debugger package
defines a memory map for your version of the debugger. This memory map
may be sufficient when you first begin using the debugger. However, the de-
bugger provides a complete set of memory-mapping commands that let you
modify the default memory map or define a new memory map.

You can define the memory map interactively by entering the memory-map-
ping commands while you’re using the debugger. This can be inconvenient be-
cause, in most cases, you’ll set up one memory map before you begin debug-
ging and will use this map for all of your debugging sessions. The easiest
method for defining a memory map is to put the memory-mapping commands
in a batch file.

Defining the memory map in a batch file

There are two methods for defining the memory map in a batch file:

� You can redefine the memory map in the initialization batch file.

� You can define a memory map in a separate batch file of your own.

When you invoke the debugger, it follows these steps to find the batch file that
defines your memory map:

1) When you invoke the debugger, it checks to see if you’ve used the –t de-
bugger option. The –t option allows you to specify a batch file other than
the initialization batch file shipped with the debugger. If it finds the –t op-
tion, the debugger reads and executes the specified file.

2) If you don’t use the –t option, the debugger looks for a file called init.cmd.
If the debugger finds this file, it reads and executes the commands.

 The Memory Map: What It Is and Why You Must Define It

6-3 Chapter Title—Attribute Reference

Potential memory map problems

The following are potential problems you may experience if the memory map
isn’t correctly defined and enabled:

� Accessing invalid memory addresses. If you don’t supply a batch file
containing memory-map commands, then the debugger is initially unable
to access any target memory locations. Invalid memory addresses and
their contents are highlighted in the data-display windows. (On color moni-
tors, invalid memory locations, by default, are displayed in red.)

� Accessing an undefined or protected area. When memory mapping is
enabled, the debugger checks each of its memory accesses against the
provided memory map. If you attempt to access an undefined or protected
area, the debugger displays an error message.

A Sample Memory Map

 6-4

6.2 A Sample Memory Map

Because you must define a memory map before you can run any programs,
it’s convenient to define the memory map in the initialization batch file.
Figure 6–1 (a) shows a sample of the memory map commands defined in an
initialization batch file. If you are using the XDS/22, you can use the file as is,
edit it, or create your own memory map batch file. The files shipped with the
application board are similar to that of the XDS/22.

The MA commands define valid memory ranges and identify the read/write
characteristics of the memory ranges. The MAP command enables mapping
(note that by default, mapping is enabled when you invoke the debugger).
Figure 6–1 (b) illustrates the memory map defined by the default batch file.

Figure 6–1. Sample Memory Map for Use With an Emulator

(a) Memory map commands (b) Memory map defined by a sample batch file

ma 0, 0x100, iram
ma 0x100, 0x100, eram
ma 0x1010, 0x10, iram
ma 0x1020, 0x10, iram
ma 0x1030, 0x10, siper
ma 0x1040, 0x10, tiper
ma 0x1050, 0x10, siper
ma 0x1060, 0x10, tiper
ma 0x1070, 0x10, iram
ma 0x2000, 0x1000, eram
ma 0x4000, 0x4000, erom

0000 – 00FFh

0100 – 01FFh

1010 – 101Fh

1020 – 102Fh

1030 – 103Fh

1040 – 104Fh

1050 – 105Fh

1060 – 106FH

1070 – 107Fh

2000 – 3FFFh

4000 – 7FFFh

internal RAM

emulator RAM

internal RAM

internal RAM

serial internal peripheral frame

timer internal peripheral frame

serial internal peripheral frame

timer internal peripheral frame

internal RAM

emulator RAM

emulator ROM

 Identifying Usable Memory Ranges

6-5 Defining a Memory Map

6.3 Identifying Usable Memory Ranges

ma The debugger’s MA command identifies valid ranges of target memory. The
syntax of the MA command is:

ma address, length, type

� The address parameter defines the starting address of a range. This pa-
rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

A new memory map must not overlap an existing entry. If you define a
range that overlaps an existing range, the debugger ignores the new
range and displays this error message in the COMMAND window display
area:

Conflicting map range

� The length parameter defines the length of the range. This parameter can
be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. You can identify three basic kinds of memory:

� Internal memory accesses memory locations that are internal to the
’370 device inside the emulator.

� External memory accesses memory locations on the target system.
An example of this might be a target system with memory expansion
capabilities, in which the expanded memory resides on the target sys-
tem and is external to the emulator.

� Emulator memory accesses memory locations only inside the emu-
lator, not inside the ’370 device. For example, if you are using a ROM-
less device without a target system, you can emulate the external
memory inside the emulator.

To identify this kind of memory, type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the
type parameter

read-only emulator memory R, ROM, EROM

read-only external memory XROM

read-only internal memory IROM

read/write emulator memory RW, RAM, ERAM

read/write external memory XRAM

Identifying Usable Memory Ranges

 6-6

To identify this kind of memory,
Use this keyword as the
type parameter

read/write internal memory IRAM

read/write serial peripheral frame in emulator
memory

SERW, SEPER

read/write serial peripheral frame in internal
memory

SIRW, SIPER

read/write timer peripheral frame in emulator
memory

TERW, TEPER

read/write timer peripheral frame in internal
memory

TIRW, TIPER

inaccessible memory PROTECT

EPROM control frame EPCTL

program EPROM read-only emulator memory PEPROM

data EPROM read-only emulator memory DEPROM

custom EPROM read-only emulator memory CEPROM

program EEPROM read-only emulator
memory

PEEPROM

data EEPROM read-only emulator memory DEEPROM

custom EEPROM read-only emulator memory CEEPROM

Restrictions on usable memory ranges

The following restrictions apply to identifying usable memory ranges:

� You should always start the map for a peripheral frame or an EEPROM
control frame on an address ending in 0 and give it a length that is a
multiple of 16.

� You must define an EPROM control frame in order to define a type
EEPROM/EPROM.

� You can define only one EPROM control frame (it must have a length of
0x10).

� You can define only one data EEPROM or EPROM, one program
EEPROM or EPROM, or one custom EEPROM or EPROM (for a maxi-
mum of three types). For example, if you have already defined a type
DEPROM, you cannot define a type DEEPROM.

 Enabling Memory Mapping / Checking the Memory Map

6-7 Defining a Memory Map

6.4 Enabling Memory Mapping

map By default, mapping is enabled when you invoke the debugger. In some in-
stances, you may want to explicitly enable or disable memory. You can use the
MAP command to do this; the syntax for this command is:

map on
or map off

Disabling memory mapping can cause bus fault problems in the target system
because the debugger may attempt to access nonexistent memory.

Note:

When memory mapping is enabled, you cannot access memory locations
that are not defined by an MA command.

If you attempt to access memory in these situations, the debugger displays
this message in the COMMAND window display area:

Error in expression

6.5 Checking the Memory Map

ml If you want to see which memory ranges are defined, use the ML command.
The syntax for this command is:

ml

The ML command lists the starting address, the ending address, the read/write
characteristics, and the type of memory for each defined memory range. For
example, if you’re using the sample memory map for the emulator (shown in
Figure 6–1 (b)) and you enter the ML command, the debugger displays:

Memory range Attributes
0000 – 00ff INT READ WRITE
0100 – 01ff EMU READ WRITE
1010 – 101f INT READ WRITE
1020 – 102f INT READ WRITE
1030 – 103f SERIAL INT READ WRITE
1040 – 104f TIMER INT READ WRITE
1050 – 105f SERIAL INT READ WRITE
1060 – 106f TIMER INT READ WRITE
1070 – 107f INT READ WRITE
2000 – Efff EMU READ WRITE
4000 – 7fff EMU READ

Modifying the Memory Map During a Debugging Session

 6-8

6.6 Modifying the Memory Map During a Debugging Session

If you need to modify the memory map during a debugging session, use these
commands.

md To delete a range of memory from the memory map, use the MD (memory de-
lete) command. The syntax for this command is:

md address

The address parameter identifies the starting address of the range of memory.
If you supply an address that is not the starting address of a range, the debug-
ger displays this error message in the COMMAND window display area:

Specified map not found

Note:

When you remove an EEPROM/EPROM control frame, any defined
EEPROMs/EPROMs are also removed.

mr If you want to delete all defined memory ranges from the memory map, use
the MR (memory reset) command. The syntax for this command is:

mr

This resets the debugger memory map.

ma If you want to add a memory range to the memory map, use the MA (memory
add) command. The syntax for this command is:

ma address, length, type

The MA command is described in detail on page 6-5.

 Modifying the Memory Map During a Debugging Session

6-9 Defining a Memory Map

Returning to the original memory map

If you modify the memory map, you may want to go back to the original memory
map without quitting and reinvoking the debugger. You can do this by resetting
the memory map and then using the TAKE command to read in your original
memory map from a batch file.

Suppose, for example, that you had set up your memory map in a batch file
named mem.map. You could enter these commands to go back to this map:

mr Reset the memory map
take mem.map Reread the default memory map

The MR command resets the memory map. (Note that you could put the MR
command in the batch file, preceding the commands that define the memory
map.) The TAKE command tells the debugger to execute commands from the
specified batch file.

Using Multiple Memory Maps for Multiple Target Systems

 6-10

6.7 Using Multiple Memory Maps for Multiple Target Systems

If you’re debugging multiple applications, you may need a memory map for
each target system. Here’s the simplest method for handling this situation.

Step 1: Let the initialization batch file define the memory map for one of your
applications.

Step 2: Create a separate batch file that defines the memory map for the ad-
ditional target system. The filename is unimportant, but for the pur-
poses of this example, assume that the file is named filename.x. The
general format of this file’s contents should be:

mr Reset the memory map
MA commands Define the new memory map
map on Enable mapping

(Of course, you can include any other appropriate commands in this
batch file.)

Step 3: Invoke the debugger as usual.

Step 4: The debugger reads initialization batch file as usual. Before you be-
gin debugging, read in the commands from the new batch file:

take filename.x

This redefines the memory map for the current debugging session.

7-1 Chapter Title—Attribute Reference

Loading, Displaying, and
Running Code

The main purpose of a debugging system is to allow you to load and run your
programs in a test environment. This chapter tells you how to load your pro-
grams into the debugging environment, run them on the target system, and
view the associated source code.

Topic Page
7.1 Code-Display Windows: 7-2

Viewing Assembly Language Code, C Code, or Both
Selecting a debugging mode 7-3

7.2 Displaying Your Source Programs (or Other Text Files) 7-4
Displaying assembly language code 7-4
Modifying assembly language code 7-5
Additional information about modifying assembly language code 7-7
Displaying C code 7-8
Displaying other files 7-9

7.3 Loading Object Code 7-10
Loading code while invoking the debugger 7-10
Loading code after invoking the debugger 7-10

7.4 Where the Debugger Looks for Source Files 7-11
7.5 Running Your Programs 7-12

Defining the starting point for program execution 7-12
Running code 7-13
Single-stepping through code 7-14
Running code while connected to a target 7-16
Running code conditionally 7-17
Running code continuously 7-18

7.6 Halting Program Execution 7-19
7.7 Benchmarking 7-20

Chapter 7

Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

 7-2

7.1 Code-Display Windows:
Viewing Assembly Language Code, C Code, or Both

The debugger has three code-display windows:

� The DISASSEMBLY window displays the reverse assembly of program
memory contents.

� The FILE window displays any text file; its main purpose is to display C
source files.

� The CALLS window identifies the current function (when C code is run-
ning).

You can view code in several different ways. The debugger has three different
code displays that are associated with the three debugging modes. The de-
bugger’s selection of the appropriate display is based on two factors:

� The mode you select, and

� Whether your program is currently executing assembly language code or
C code.

Here’s a summary of the modes and displays; for a complete description of the
three debugging modes, refer to Section 4.1, Debugging Modes and Default
Displays (page 4-2).

Use this mode To view
The debugger uses these
code-display windows

assembly mode assembly language code only
(even if your program is
executing C code)

DISASSEMBLY

auto mode assembly language code
(when that’s what your
program is running)

DISASSEMBLY

auto mode C code only
(when that’s what your
program is running)

FILE
CALLS

mixed mode both assembly language and
C code

DISASSEMBLY
FILE
CALLS

You can switch freely between the modes. If you choose auto mode, then the
debugger displays C code or assembly language code, depending on the type
of code that is currently executing.

 Code-Display Windows: Viewing Assembly Language Code, C Code, or Both

7-3 Loading, Displaying, and Running Code

Selecting a debugging mode

When you first invoke the debugger, it automatically comes up in auto mode.
You can then choose assembly or mixed mode. There are several ways to do
this.

The Mode pulldown menu provides an easy method for
switching modes. There are several ways to use the
pulldown menus; here’s one method.

1) Point to the menu name.

2) Press the left mouse button; do not release the button. Move the mouse
down the menu until your choice is highlighted.

3) Release the mouse button.

For more information about the pulldown menus, refer to Section 5.2, Using
the Pulldown Menus, on page 5-7.

F3 Pressing this key causes the debugger to switch modes in this order:

auto assembly mixed

Enter any of these commands to switch to the desired debugging mode:

c Changes from the current mode to auto mode.

asm Changes from the current mode to assembly mode.

mix Changes from the current mode to mixed mode.

If you are already in the desired mode when you enter a mode command, then
the command has no effect.

Mode

C

A

Mixed

sm

 (auto)

Displaying Your Source Programs

 7-4

7.2 Displaying Your Source Programs (or Other Text Files)

The debugger displays two types of code:

� It displays assembly language code in the DISASSEMBLY window in
auto, assembly, or mixed mode.

� It displays C code in the FILE window in auto and mixed modes.

The DISASSEMBLY and FILE windows are primarily intended for displaying
code that the PC points to. By default, the FILE window displays the C source
for the current function (if any), and the DISASSEMBLY window shows the cur-
rent disassembly.

Sometimes it’s useful to display other files or different parts of the same file;
for example, you may want to set a breakpoint at an undisplayed line. The
DISASSEMBLY and FILE windows are not large enough to show the entire
contents of most assembly language and C files. You can scroll through the
windows. You can also tell the debugger to display specific portions of the
disassembly or C source.

Displaying assembly language code

The assembly language code in the DISASSEMBLY window is the reverse
assembly of memory contents. (This code doesn’t come from any of your text
files or from the intermediate assembly files produced by the compiler.)

MEMORY

DISASSEMBLY

addresses memory contents
(object code)

disassembly of object
code in memory

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe

7185 88 c_int00: MOVW #02883h,R021
7189 98 MOVW R021.R01F
718c 52 MOV #022h,B
718e fd LDSP
718f 8e CALL 7199h
7192 8e CALL main
7195 8e CALL exit

When you invoke the debugger, it comes up in auto mode. If you load an object
file when you invoke the debugger, then the DISASSEMBLY window displays
the reverse assembly of the object file that’s loaded into memory. If you don’t
load an object file, the DISASSEMBLY window shows the reverse assembly
of whatever happens to be in memory.

 Displaying Your Source Programs

7-5 Loading, Displaying, and Running Code

In assembly and mixed modes, you can use these commands to display a dif-
ferent portion of code in the DISASSEMBLY window.

dasm Use the DASM command to display code beginning at a specific point. The
syntax for this command is:

dasm address
or dasm label name

This command modifies the display so that address or label name is displayed
within the DISASSEMBLY window. The debugger continues to display this
portion of the code until you run a program and halt it.

addr Use the ADDR command to display assembly language code beginning at a
specific point. The syntax for this command is:

addr address
or addr label name

In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at label name as the first line of code in the DISAS-
SEMBLY window. In mixed mode, ADDR affects both the DISASSEMBLY and
FILE windows.

To display assembly language code beginning with a local label inside a partic-
ular module, you would enter:

addr file name.label name

For example, assume you have a label called loop that is defined locally inside
multiple modules. To display the code corresponding to loop in the file
example.asm, you would enter:

addr example.loop

Modifying assembly language code

You can modify the code in the disassembly window on a statement-by-state-
ment basis. The method for doing this is called patch assembly. Patch
assembly provides a simple way to temporarily correct minor problems by
allowing you to change individual statements and instruction words.

You can patch-assemble code by using a command or by using the mouse.

patch Use the PATCH command to identify the address of the statement you want
to change and the new statement you want to use at that address. The format
for this command is:

patch address, assembly language statement

Displaying Your Source Programs

 7-6

For patch assembly, use the right mouse button instead of the left. (Clicking
the left mouse button sets a software breakpoint.)

1) Point to the statement that you want to modify.

2) Click the right button. The debugger will open a dialog box so that you can
enter the new statement. The address field will already be filled in; clicking
on the statement defines the address. The statement field will already be
filled in with the current statement at that address (this is useful when only
minor edits are necessary).

Patch assembly may, at times, cause undesirable side effects:

� Patching a multiple-word instruction with an instruction of lesser length will
leave “garbage” or an unwanted new instruction in the remaining old in-
struction fragment. This fragment must be patched with either a valid in-
struction or a NOP, or else unpredictable results may occur when you are
running code.

� Substituting a larger instruction for a smaller one will partially or entirely
overwrite the following instruction; you will lose the instruction and may be
left with another fragment.

If you want to insert a large amount of new code or if you want to skip over a
section of code, you can use a different patch assembly technique:

� To insert a large section of new code, patch a branch instruction to go to
an area of memory not currently in use. Using the patch assembler, add
new code to this area of memory, and branch back to the statement follow-
ing the initial branch.

� To skip over a portion of code, patch a branch instruction to go beyond that
section of code.

Effects of Patch Assembly

The patch assembler changes only the disassembled assembly
language code—it does not change your source code. After
determining the correct solution to problems in the disassembly,
edit your source file, reassemble it, and reload the new object file
into the debugger.

 Displaying Your Source Programs

7-7 Loading, Displaying, and Running Code

Additional information about modifying assembly language code

When you use patch assembly to modify code in the disassembly window,
keep these things in mind:

� Directives. You cannot use directives (such as .global or .word).

� Expressions. You can use constants, but you cannot use arithmetic
expressions. For example, an expression like 12 + 33 is not valid in patch
assembly, but a constant such as 12 is allowed.

� Labels. You cannot define labels. For example, a statement such as the
following is not allowed:

LOOP: BR LOOP

However, an instruction can refer to a label as long as it is defined in a
COFF file that is already loaded.

� Constants. You can use hexadecimal, octal, decimal, and binary
constants. The syntax to input constants is the same as that for the ’370
assembler. (Refer to the TMS370 Family Assembly Language Tools
User’s Guide.)

� Error messages. The error messages for the patch assembler are the
same as the corresponding ’370 assembler error messages. Refer to the
TMS370 Family Assembly Language Tools User’s Guide for a detailed list
of these messages.

Displaying Your Source Programs

 7-8

Displaying C code

Unlike assembly language code, C code isn’t reconstructed from memory con-
tents—the C code that you view is your original C source. You can display C
code explicitly or implicitly:

� You can force the debugger to show C source by entering a FILE, FUNC,
or ADDR command.

� In auto and mixed modes, the debugger automatically opens a FILE win-
dow if you’re currently running C code.

These commands are valid in C and mixed modes.

file Use the FILE command to display the contents of any text file. The syntax for
this command is:

file filename

This uses the FILE window to display the contents of filename. The debugger
continues to display this file until you run a program and halt in a C function.
Although this command is most useful for viewing C code, you can use the
FILE command for displaying any text file. You can view only one text file at
a time. You can also access this command from the Load pulldown menu.

(Note that displaying a file doesn’t load that file’s object code. If you want to
be able to run the program, you must load the file’s associated object code as
described in Section 7.3 on page 7-10.)

func Use the FUNC command to display a specific C function. The syntax for this
command is:

func function name
or func address

FUNC modifies the display so that function name or address is displayed with-
in the window. If you supply an address instead of a function name, the FILE
window displays the function containing address and places the cursor at that
line.

Note that FUNC and FILE work similarly, but when you use FUNC, you don’t
need to identify the name of the file that contains the function.

 Displaying Your Source Programs

7-9 Loading, Displaying, and Running Code

addr Use the ADDR command to display C code beginning at a specific point. The
syntax for this command is:

addr address
or addr function name

In a C display, ADDR works like the FUNC command, positioning the code
starting at address or at function name as the first line of code in the FILE win-
dow. In mixed mode, ADDR affects both the FILE and DISASSEMBLY win-
dows.

Whenever the CALLS window is open, you can use the mouse or function keys
to display a specific C function. This is similar to the FUNC or ADDR command
but applies only to the functions listed in the CALLS window.

1) In the CALLS window, point to the name of C function.

2) Click the left mouse button.

(If the CALLS window is active, you can also use the arrow keys and F9 to
display the function; see the CALLS window discussion on page 4-9 for de-
tails.)

Displaying other text files

The DISASSEMBLY window always displays the reverse assembly of memory
contents, regardless of what is in memory.

The FILE window is primarily for displaying C code, but you can use the FILE
command to display any text file within the FILE window. You may, for example,
wish to examine system files such as autoexec.bat. You can also view your
original assembly language source files in the FILE window.

You are restricted to displaying files that are 65,518 bytes long or less.

Loading Object Code

 7-10

7.3 Loading Object Code
In order to debug a program, you must load the program’s object code into
memory. You can do this as you’re invoking the debugger, or you can do it after
you’ve invoked the debugger. (Note that you create an object file by compiling,
assembling, and linking your source files; see Section 1.4, Preparing Your Pro-
gram for Debugging, on page 1-11.)

Loading code while invoking the debugger

You can load an object file when you invoke the debugger (this has the same
effect as using the debugger’s LOAD command). To do this, enter:

Emulator: Emulator using Windows: Application board:

xds370 object filename xds370w object filename abd370 object filename

If you want to load a file’s symbol table only, use the –s option (this has the
same effect as using the debugger’s SLOAD command). To do this, enter:

Emulator: Application board:

xds370 –s object filename abd370 –s object filename

Loading code after invoking the debugger

After you invoke the debugger, you can use one of three commands to load
object code and/or the symbol table associated with an object file. Use these
commands as described below, or use them from the Load pulldown menu.

load Use the LOAD command to load both an object file and its associated symbol
table. In effect, the LOAD command performs both a RELOAD and an SLOAD.
The format for this command is:

load object filename

If you don’t supply an extension, the debugger will look for filename.out.

reload Use the RELOAD command to load only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when memory has
been corrupted. The format for this command is:

reload object filename

If you enter the RELOAD command without specifying a filename, the debug-
ger reloads the file that you loaded last.

sload Use the SLOAD command to load only a symbol table. The format for this com-
mand is:

sload object filename

SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point.

 Where the Debugger Looks for Source Files

7-11 Loading, Displaying, and Running Code

7.4 Where the Debugger Looks for Source Files

Some commands (FILE, LOAD, RELOAD, and SLOAD) expect a filename as
a parameter. If the filename includes path information, the debugger uses the
file from the specified directory and does not search for the file in any other
directory. If you don’t supply path information, though, the debugger must
search for the file. The debugger first looks for these files in the current
directory. You may, however, have your files in several different directories.

� If you’re using LOAD, RELOAD, or SLOAD, you have only two choices for
supplying the path information:

� Specify the path as part of the filename, or

cd � Use the CD command to change the current directory from within the
debugger. The format for this command is:

cd directory name

� If you’re using the FILE command, you have several options:

� Within the DOS or Windows environment, you can name additional
directories with the D_SRC environment variable. The format for do-
ing this is:

SET D_SRC=pathname; pathname

This allows you to name several directories that the debugger can
search. If you use the same directories often, it may be convenient to
set the D_SRC environment variable in your autoexec.bat or
initdb.bat file. If you do this, then the list of directories is always
available when you’re using the debugger.

� When you invoke the debugger, you can use the – i option to name
additional source directories for the debugger to search. The format
for this is:

xds370 –i pathname [–i pathname ...]

You can specify multiple pathnames by using several –i options (one
pathname per option). The list of source directories that you create
with –i options is valid until you quit the debugger.

use � Within the debugger environment, you can use the USE command to
name additional source directories. The format for this command is:

use directory name

You can specify only one directory at a time.

In all cases, you can use relative pathnames such as ..\csource or ..\..\code.
The debugger can recognize a cumulative total of 20 paths specified with
D_SRC, –i, and USE.

Running Your Programs

 7-12

7.5 Running Your Programs
To debug your programs, you must execute them on one of the two ’370 de-
bugging tools (emulator or application board). The debugger provides two ba-
sic types of commands to help you run your code:

� Run commands run your code on the target system without updating the
display until you explicitly halt execution.

There are several ways to halt execution:

� Set a breakpoint.
� When you issue a run command, define a specific stopping point.
� Press ESC .
� Press the left mouse button.

� Single-step commands execute assembly language or C code, one
statement at time, and update the display after each execution.

Defining the starting point for program execution

All run and single-step commands begin executing from the current PC (pro-
gram counter). When you load an object file, the PC is automatically set to the
starting point for program execution. You can easily identify the current PC by

� Finding its entry in the CPU window

or
� Finding the appropriately highlighted line in the FILE or DISASSEMBLY

window. You can do this by executing one of these commands:

dasm PC
or addr PC
Sometimes you may want to modify the PC to point to a different position in
your program. There are two ways to do this:

rest � If you executed some code and would like to rerun the program from the
original program entry point, use the RESTART (REST) command. The
format for this command is:

restart
or rest

Note that you can also access this command from the Load pulldown
menu.

?/eval � You can directly modify the PC’s contents with one of these commands:

?PC=new value
or eval pc = new value

After halting execution, you can continue from the current PC by reissuing any
of the run or single-step commands.

 Running Your Programs

7-13 Loading, Displaying, and Running Code

Running code

The debugger supports several run commands.

run The RUN command is the basic command for running an entire program. The
format for this command is:

run [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press ESC or the left mouse button.

� If you supply a logical or relational expression, this becomes a conditional
run (see page 7-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, then updates the display.

go Use the GO command to execute code up to a specific point in your program.
The format for this command is:

go [address]

If you don’t supply an address parameter, then GO acts like a RUN command
without an expression parameter.

ret The RETURN (RET) command executes the code in the current C function
and halts when execution returns to its caller. The format for this command is:

return
or ret

Breakpoints do not affect this command, but you can halt execution by press-
ing ESC or the left mouse button.

runb Use the RUNB (run benchmark) command to execute a specific section of
code and count the number of clock cycles consumed by the execution. The
format for this command is:

runb

Using the RUNB command to benchmark code is a multistep process, de-
scribed later in this chapter (Section 7.7, Benchmarking, on page 7-20).

XDS/22
emulator

only

Running Your Programs

 7-14

rrun Use the RRUN (reset and run) command to reset the target system and begin
program execution. This command is useful for verifying the initialization of the
reset vector in your program. The format for this command is:

rrun [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 7-17).

F5 Pressing this key runs code from the current PC. This is similar to entering a
RUN command without an expression parameter.

Single-stepping through code

Single-step execution is similar to running a program that has a breakpoint set
on each line. The debugger executes one statement, updates the display, and
halts execution. (You can supply a parameter that tells the debugger to
single-step more than one statement; the debugger updates the display after
each statement.) You can single-step through assembly language code or C
code.

The debugger supports several commands for single-stepping through a pro-
gram. Command execution may vary, depending on whether you’re
single-stepping through C code or assembly language code.

Each of the single-step commands has an optional expression parameter that
works like this:

� If you don’t supply an expression, the program executes a single state-
ment then halts.

� If you supply a logical or relational expression, this becomes a conditional
single-step execution (see page 7-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger single-steps count C or assem-
bly language statements (depending on the type of code you’re in).

 Running Your Programs

7-15 Loading, Displaying, and Running Code

step Use the STEP command to single-step through assembly language or C code.
The format for this command is:

step [expression]

If you’re in C code, the debugger executes one C statement at a time. In as-
sembly or mixed mode, the debugger executes one assembly language state-
ment at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug
option). When function execution completes, single-step execution returns to
the caller. If the function wasn’t compiled with the debug option, the debugger
executes the function but doesn’t show single-step execution of the function.

cstep The CSTEP command is similar to STEP, but CSTEP always single-steps in
terms of a C statement. If you’re in C code, STEP and CSTEP behave identi-
cally. In assembly language code, however, CSTEP executes all assembly
language statements associated with one C statement before updating the
display. The format for this command is:

cstep [expression]

next
cnext

The NEXT and CNEXT commands are similar to the STEP and CSTEP com-
mands. The only difference is that NEXT/CNEXT never show single-step ex-
ecution of called functions—they always step to the next consecutive state-
ment. The formats for these commands are:

next [expression]
cnext [expression]

You can also single-step through programs by using function keys.

F8 Acts as a STEP command.

F10 Acts as a NEXT command.

Running Your Programs

 7-16

The debugger allows you to execute several single-step commands from the
selections on the menu bar.

To execute a STEP,

1) Point to Step=F8 in the menu bar.

2) Press and release the left mouse button.

To execute a NEXT,

1) Point to Next=F10 in the menu bar.

2) Press and release the left mouse button.

Running code while connected to a target

reset The RESET command resets the target system. The format for this command
is:

reset

wrun Use the WRUN (wait and run) command to wait for reset and run. The emulator
will wait for a target system to ascert a reset, then it will run your program. The
format for this command is:

wrun [expression]

The command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 7-17).

 Running Your Programs

7-17 Chapter Title—Attribute Reference

Running code conditionally

The RUN, RRUN, WRUN, STEP, CSTEP, NEXT and CNEXT commands all
have an optional expression parameter that can be a relational or logical ex-
pression. This type of expression has one of the following operators as the
highest precedence operator in the expression:

> > = <
< = = = ! =
&& | | !

When you use this type of expression with these commands, the command
becomes a conditional run. The debugger executes the command repeatedly
for as long as the expression evaluates to true.

You must use breakpoints with conditional runs; each time the debugger en-
counters a breakpoint, the expression is evaluated. Each time the debugger
evaluates the conditional expression, it updates the screen. The debugger ap-
plies this algorithm:

top:
if (expression = = 0) go to end;
run or single-step (until breakpoint, ESC , or mouse button halts execution)
if (halted by breakpoint, not by ESC or mouse button) go to top

end:

Generally, you should set the breakpoints on statements that are related in
some way to the expression. For example, if you’re watching a particular vari-
able in a WATCH window, you may want to set breakpoints on statements that
affect that variable and use that variable in the expression.

Running Your Programs

 7-18

Running code continuously

runf Use the RUNF command to run the BTT independently from the CPU. The for-
mat for this command is:

runf

When you enter RUNF, the BTT and CPU begin execution simultaneously.
With the CPU running, you can stop the BTT and perform operations such as
dumping the contents of the trace buffer, updating the screen, and reconfigur-
ing the BTT. To stop the BTT, press ESC . Otherwise, you must wait for the BTT
or CPU to stop on their own. While both the BTT and CPU are running, you
do not have access to the command line.

After you have finished operations on the BTT, you can restart it by entering
the RUNF command again.

rrunf Use the RRUNF command to reset the target system and begin execution of
the BTT independently from the CPU. The format for this command is:

rrunf

wrunf Use the WRUNF command to wait for the target system to reset and then begin
execution of the BTT independently from the CPU. The format for this com-
mand is:

wrunf

You can use the RRUNF and WRUNF commands to begin execution of the
BTT and CPU initially. However, after you have halted the BTT by pressing
ESC , you must restart the BTT by using the RUNF command.

halt Use the HALT command to halt the CPU. The format for this command is:

halt

When you invoke the debugger, it automatically executes a HALT command.
Thus, if you enter a RUNF, quit the debugger, and later reinvoke the debugger,
you will be running the debugger in its normal mode of operation. When you
invoke the debugger, use the –s option to preserve the current PC and memory
contents.

XDS/22
emulator

only

 Halting Program Execution

7-19 Loading, Displaying, and Running Code

7.6 Halting Program Execution

Whenever you’re running or single-stepping code, program execution halts
automatically if the debugger encounters a breakpoint or if it reaches a particu-
lar point where you told it to stop (by supplying a count or an address). If you’d
like to explicitly halt program execution, there are two ways to accomplish this:

Click the left mouse button.

ESC Press the escape key.

After halting execution, you can continue program execution from the current
PC by reissuing any of the run or single-step commands.

Benchmarking

 7-20

7.7 Benchmarking

The debugger allows you to keep track of the number of CPU clock cycles con-
sumed by a particular section of code. The debugger maintains the count in
a pseudoregister named CLK. This process is referred to as benchmarking.

Notes:

� The RUNB command will reconfigure the BTT setup; therefore, the pre-
vious setup is overwritten.

� The value in CLK is valid only after using a RUNB command that is termi-
nated by a software breakpoint. (The maximum value for CLK is 65,535.)

� When programming in C, do not use a variable named CLK.

Benchmarking code is a multiple-step process:

Step 1: Set the PC value at the statement that marks the beginning of the
section of code you’d like to benchmark. (You can do this either by
editing the PC value at the command line, or by setting a software
breakpoint at the statement you’d like to benchmark and running to
it.)

Step 2: Set a software breakpoint at the statement that marks the end of the
section of code you’d like to benchmark.

Step 3: Now enter the RUNB command:

runb

When the processor halts at the second breakpoint, the value of CLK is valid.
To display it, use the ? command or enter it into the WATCH window with the
WA command. This value is valid until you enter another RUN command.

XDS/22
emulator

only

8-1 Chapter Title—Attribute Reference

Managing Data

The debugger allows you to examine and modify many different types of data
related to the target system and to your program. You can display and modify
the values of:

� Individual memory locations or a range of memory

� ’370 CPU registers

� Variables, including scalar types (ints, chars, etc.) and aggregate types
(arrays, structures, etc.)

This chapter tells you how to display and change data.

Topic Page

8.1 Where Data Is Displayed 8-2
8.2 Basic Commands for Managing Data 8-2
8.3 Basic Methods for Changing Data Values 8-4

Editing data displayed in a window 8-4
Advanced “editing”—using expressions with side effects 8-5

8.4 Managing Data in Memory 8-6
Displaying memory contents 8-6
Displaying memory contents while you’re debugging C 8-8
Saving memory values to a file 8-9
Filling a block of memory 8-9

8.5 Managing Register Data 8-10
Displaying register contents 8-10

8.6 Managing Data in a DISP (Display) Window 8-11
Displaying data in a DISP window 8-11
Closing a DISP window 8-13

8.7 Managing Data in a WATCH Window 8-14
Displaying data in a WATCH window 8-14
Deleting watched values and closing the WATCH window 8-15

8.8 Displaying Data in Alternative Formats 8-16
Changing the default format for specific data types 8-16
Changing the default format with ?, MEM, DISP, and WA 8-18

Chapter 8

Where Data Is Displayed / Basic Commands for Managing Data

 8-2

8.1 Where Data Is Displayed
Four windows are dedicated to displaying the various types of data.

Type of data Window name and purpose

memory locations MEMORY windows
Display the contents of a range of memory,
including the register file and peripheral file

CPU register values CPU window
Displays the contents of ’370 CPU registers

pointer data or selected variables
of an aggregate type

DISP windows
Display the contents of aggregate types and
show the values of individual members

selected variables (scalar types
or individual members of aggre-
gate types) and specific memory
locations or registers

WATCH window
Displays selected data

This group of windows is referred to as data-display windows .

8.2 Basic Commands for Managing Data
The debugger provides special-purpose commands for displaying and modify-
ing data in dedicated windows. The debugger also supports several
general-purpose commands that you can use to display or modify any type of
data.

whatis If you want to know the type of a variable, use the WHATIS command. The syn-
tax for this command is:

whatis symbol

This lists symbol’s data type in the COMMAND window display area. The sym-
bol can be any variable (local, global, or static), a function name, structure tag,
typedef name, or enumeration constant.

Command Result displayed in the COMMAND window

whatis giant struct zzz giant[100];

whatis xxx struct xxx {
int a;
int b;
int c;
int f1 : 2;
int f2 : 4;
struct xxx *f3;
int f4[10];

}

 Basic Commands for Managing Data

8-3 Managing Data

? The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The basic syntax for this
command is:

? expression

The expression can be any C expression, including an expression with side
effects. However, you cannot use a string constant or function call in the ex-
pression.

If the result of expression is scalar, then the debugger displays the result as
a decimal value in the COMMAND window. If expression is a structure or array,
? displays the entire contents of the structure or array; you can halt long listings
by pressing ESC .

Here are some examples that use the ? command:

Command Result displayed in the COMMAND window

? giant giant[0].a 43
giant[0].b –79
giant[0].c 19
etc.

? j 41

? j=0x5a 90

? i –1

? i,x 0xff

The DISP command (described in detail on page 8-11) behaves like the ? com-
mand when its expression parameter does not identify an aggregate type.

eval The EVAL (evaluate expression) command behaves like the ? command but
does not show the result in the COMMAND window display area. The syntax
for this command is:

eval expression
or e expression

EVAL is useful for assigning values to registers or memory locations in a batch
file (where it’s not necessary to display the result).

Basic Methods for Changing Data Values

 8-4

8.3 Basic Methods for Changing Data Values

The debugger provides you with a great deal of flexibility in modifying various
types of data. You can use the debugger’s overwrite editing capability, which
allows you to change a value simply by typing over its displayed value. You can
also use the data-management commands for more complex editing.

Editing data displayed in a window

Use overwrite editing to modify data in a data-display window; you can edit:

� Registers displayed in the CPU window.
� Memory contents displayed in the MEMORY window.
� Elements displayed in a DISP window.
� Values displayed in the WATCH window.

There are two similar methods for overwriting displayed data.

1) Point to the data item that you want to modify.

2) Click the left button. The debugger highlights the selected field. (Note that
the window containing this field becomes active when you press the
mouse button.)

ESC 3) Type the new information. If you make a mistake or change your mind,
press ESC or move the mouse outside the field and press/release the left
button; this resets the field to its original value.

4) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

1) Select the window that contains the field you’d like to modify; make this the
active window. (Use the mouse, the WIN command, or F6 . For more de-
tail, see Section 4.4, The Active Window, on page 4-21.)

2) Use arrow keys to move the cursor to the field you’d like to edit.

↑ Moves up 1 field at a time.

↓ Moves down 1 field at a time.

← Moves left 1 field at a time.

→ Moves right 1 field at a time.

 Basic Methods for Changing Data Values

8-5 Managing Data

F9 3) When the field you’d like to edit is highlighted, press F9 . The debugger
highlights the field that the cursor is pointing to.

ESC 4) Type the new information. If you make a mistake or change your mind,
press ESC ; this resets the field to its original value.

5) When you finish typing the new information, press or any arrow key.
This replaces the original value with the new value.

Advanced “editing”— using expressions with side effects

Using the overwrite editing feature to modify data is straightforward. However,
there are additional data-management methods that take advantage of the
fact that C expressions are accepted as parameters by most debugger com-
mands, and that C expressions can have side effects. When an expression
has a side effect, it means that the value of some variable in the expression
changes as the result of evaluating the expression.

This means that you can coerce many commands into changing values for
you. Specifically, it’s most helpful to use ? and EVAL to change data as well
as display it. For example, if you want see what’s in register A, you can enter:

? A

However, you can also use this type of command to modify A’s contents. Here
are some examples of how you might do this:

? A++ Side effect: increments the contents of A by 1
eval ––A Side effect: decrements the contents of A by 1
? A = 8 Side effect: sets A to 8
eval A/=2 Side effect: divides contents of A by 2

Note that not all expressions have side effects. For example, if you enter
? A+4 , the debugger displays the result of adding 4 to the contents of A but
does not modify A’s contents. Expressions that have side effects must contain
an assignment operator or an operator that implies an assignment. Operators
that can cause a side effect are:

= += –= *= /=

%= &= ^= |= <<=

>>= ++ – –

Managing Data in Memory

 8-6

8.4 Managing Data in Memory

In mixed and assembly modes, the debugger maintains a MEMORY window
that displays the contents of memory. For details concerning the MEMORY
window, see the MEMORY windows discussion (page 4-14).

MEMORY

addresses

data

7185 88 28 83 21 98 21 1f 52 22 fd 8e 71
7191 99 8e 70 00 8e 71 ce fa 88 72 3a 0f
719d 00 20 f4 ea 03 0f d0 0d f4 ea 02 0f
71a9 d0 0c 70 04 0f 00 0a 9a 0f 9b 0d 70
71b5 01 0d 70 01 0f 70 ff 0b 03 f1 f4 ea
71c1 01 0f d0 0b 9a 0f d0 0a 14 0b 06 d2
71cd f9 8e 72 18 70 03 21 12 17 f4 eb fe
71d9 21 12 18 f4 eb ff 21 12 19 9b 21 8a

The debugger has commands that show the data values at a specific location
or that display a different range of memory in the MEMORY window. The
debugger allows you to change the values at individual locations; refer to Sec-
tion 8.3 (page 8-4) for more information.

Displaying memory contents

The main way to observe memory contents is to view the display in a
MEMORY window. Four MEMORY windows are available: the default window
is labeled MEMORY, and the three additional windows are called MEMORY1,
MEMORY2, and MEMORY3. Notice the default window does not have an ex-
tension number in its name; this is because MEMORY1, MEMORY2, and
MEMORY3 are pop-up windows that can be opened and closed throughout
your debugging session. Having four windows allows you to view four different
memory ranges.

The amount of memory that you can display is limited by the size of the individ-
ual MEMORY windows (which is limited only by the screen size). During a de-
bugging session, you may need to display different areas of memory within a
window. The debugger provides two methods for doing this.

 Managing Data in Memory

8-7 Managing Data

mem If you want to display a different memory range in the MEMORY window, use
the MEM command. The syntax for this command is:

mem expression [, display format]

To view different memory locations in an additional MEMORY window, use the
MEM command with the appropriate extension number on the end. For exam-
ple:

To do this. . . Enter this. . .

View the block of memory starting at address
0x8000 in the MEMORY1 window

mem1 0x8000

View the same block of memory (starting at ad-
dress 0x8000) but in the MEMORY2 window

mem2 0x8000

Note:

If you want to view a different block of memory explicitly in the default
MEMORY window, you can use the aliased command, MEM0. This works
exactly the same as the MEM command. To use this command, enter:

mem0 address

For more information, see the MEMORY windows discussion on page 4-14.

The expression you type in represents the address of the first entry in the
MEMORY window. The end of the range is defined by the size of the window:
to show more memory locations, make the window larger; to show fewer loca-
tions, make the window smaller. (See Resizing a window, page 4-24, for more
information.)

Expression can be an absolute address, a symbolic address, or any C expres-
sion. Here are several examples.

� Absolute address. Suppose that you want to display memory, beginning
from the very first address. You might enter this command:

mem 0x0000

Hint: MEMORY window addresses are shown in hexadecimal format. If
you want to specify a hex address, be sure to prefix the address number
with 0x; otherwise, the debugger treats the number as a decimal address.

Managing Data in Memory

 8-8

� Symbolic address. You can use any defined C symbol. For example, if
your program defined a symbol named SYM, you could enter this com-
mand:

mem &SYM

Hint: Prefix the symbol with the & operator to use the address of the sym-
bol.

� C expression . If you use a C expression as a parameter, the debugger
evaluates the expression and uses the result as a memory address.

mem SP – A+ label

You can also change the display of any data-display window—including the
MEMORY window—by scrolling through the window’s contents. See the
Scrolling through a window’s contents discussion (page 4-29) for more details.

Displaying memory contents while you’re debugging C

If you’re debugging C code in auto mode, you won’t see a MEMORY win-
dow—the debugger doesn’t show the MEMORY window in the C-only display.
However, there are several ways to display memory in this situation.

Hint: If you want to use the contents of an address as a parameter, be sure
to prefix the address with the C indirection operator (*).

� If you have only a temporary interest in the contents of a specific memory
location, you can use the ? command to display the value at this address.
For example, if you want to know the contents of memory location 26
(hex), you could enter:

? *0x26

The debugger displays the memory value in the COMMAND window dis-
play area.

� If you want the opportunity to observe a specific memory location over a
longer period of time, you can display it in a WATCH window. Use the WA
command to do this:

wa *0x26

� You can also use the DISP command to display memory contents. The
DISP window shows memory in an array format with the specified address
as “member” [0]. In this situation, you can also use casting to display
memory contents in a different numeric format:

disp *(float *)0x26

 Managing Data in Memory

8-9 Managing Data

Saving memory values to a file

ms Sometimes it’s useful to save a block of memory values to a file. You can use
the MS (memory save) command to do this; the files are saved in COFF for-
mat. (For more information about COFF, refer to the TMS370 Family Assembly
Language Tools User’s Guide.) The syntax for the MS command is:

ms address, length filename

� The address parameter identifies the first address in the block.

� The length parameter defines the length of the block in bytes. This param-
eter can be any C expression.

� The filename is a system file.

If you don’t supply an extension, the debugger adds an .obj extension.

For example, to save the values in data memory locations 0x0–0x10 to a file
named memsave, enter:

ms 0x0,1,0x10,memsave

To reload memory values that were saved in a file, use the LOAD command.
For example, to reload the values that were stored in memsave, enter:

load memsave.obj

Filling a block of memory

fill Sometimes it’s useful to be able to fill an entire block of memory at once. You
can do this by using the FILL command. The syntax for this command is:

fill address, length, data

� The address parameter identifies the first address in the block.
� The length parameter defines the number of words to fill.
� The data parameter is the value that is placed in each word in the block.

For example, to fill locations 0x8000 to 0x8003 with the value 0x12, enter:

fill 0x8000,0x4,0x12

If you want to check to see that memory has been filled as you have asked,
you can enter:

mem 0x8000

This changes the MEMORY window display to show the block of memory
beginning at address 0x8000.

Note that the FILL command can also be executed from the Memory pulldown
menu.

Managing Register Data

 8-10

8.5 Managing Register Data

In mixed and assembly modes, the debugger maintains a CPU window that
displays the contents of individual registers. For details concerning the CPU
window, see the CPU window discussion (page 4-17).

CPU

register
name register

contents

PC 7185
A 87
B 00
ST 40
SP 22

The debugger provides commands that allow you to display and modify the
contents of specific registers. Remember, you can use the data-management
commands or the debugger’s overwrite editing capability to modify the con-
tents of any register displayed in the CPU or WATCH window. Refer to Section
8.3 (page 8-4) for more information.

Displaying register contents

The main way to observe register contents is to view the display in the CPU
window. However, you may not be interested in all of the registers: if you’re in-
terested in only two registers, you might want to make the CPU window small
and use the extra screen space for the DISASSEMBLY or FILE display. In this
type of situation, there are several ways to observe the contents of the selected
registers.

� If you have only a temporary interest in the contents of a register, you can
use the ? command to display the register’s contents. For example, if you
want to know the contents of the SP, enter:
? SP

The debugger displays the SP’s current contents in the COMMAND win-
dow display area.

� If you want the opportunity to observe a register over a longer period of
time, you can display it in a WATCH window. Use the WA command to do
this. For example, if you want to observe the status register, you could en-
ter:
WA ST,Status Reg

This adds the ST to the WATCH window and labels it as Status Reg .
The register’s contents are continuously updated, just as if you were ob-
serving the register in the CPU window.

When you’re debugging C in auto mode, these methods are also useful be-
cause the debugger doesn’t show the CPU window in the C-only display.

 Managing Data in a DISP Window

8-11 Managing Data

8.6 Managing Data in a DISP (Display) Window

The main purpose of the DISP window is to display the values of members of
complex, aggregate data types such as arrays and structures. The debugger
shows DISP windows only when you specifically request to see DISP windows
with the DISP command (described below). Note that you can have up to 120
DISP windows open at once. For additional details about DISP windows, see
the DISP window discussion (page 4-18).

DISP: str

a 84

b 86

c 172

f1 1

f2 7

f3 0x18

f4 [...]

structure
members

member
values

This member is an array, and
you can display its contents in

a second DISP window

DISP: str.f4

[0] 44

[1] 17

[2] 55

[3] 35

[4] 13

[5] 18

[6] 35

[7] 37

[8] 13

[9] 13

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in a
DISP window. Refer to Section 8.3 (page 8-4), for more information.

Displaying data in a DISP window

disp To open a DISP window, use the DISP command. The basic syntax for this
command is:

disp expression [, display format]

If the expression is not an array, structure, or pointer (of the form *pointer
name), the DISP command behaves like the ? command. However, if expres-
sion is one of these types, the debugger opens a DISP window to display the
values of the members.

Managing Data in a DISP Window

 8-12

If a DISP window contains a long list of members, you can use PAGE DOWN ,
PAGE UP , or arrow keys to scroll through the window. If the window contains an

array of structures, you can use CONTROL PAGE DOWN and CONTROL PAGE UP to
scroll through the array.

Once you open a DISP window, you may find that a displayed member is
another one of these types. This is how you identify the members that are ar-
rays, structures, or pointers:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x0000

You can display the additional data (the data pointed to or the members of the
array or structure) in additional DISP windows (these are referred to as chil-
dren). There are three ways to do this.

Use the DISP command again; this time, expression must identify the member
that has additional data. For example, if the first expression identifies a struc-
ture named str and one of str’s members is an array named f4, you can display
the contents of the array by entering this command:

disp str.f4

This opens a new DISP window that shows the contents of the array. If str has
a member named f3 that is a pointer, you could enter:

disp *str.f3

This opens a window to display what str.f3 points to.

Here’s another method of displaying the additional data:

1) Point to the member in the DISP window.

2) Now click the left button.

Here’s the third method:

↑ ↓ 1) Use the arrow keys to move the cursor up and down in the list of members.

F9 2) When the cursor is on the desired field, press F9 .

When the debugger opens a second DISP window, the new window may at
first be displayed on top of the original DISP window; if so, you can move the
windows so that you can see both at once. If the new windows also have mem-
bers that are pointers or aggregate types, you can continue to open new DISP
windows.

 Managing Data in a DISP Window

8-13 Managing Data

Closing a DISP window

Closing a DISP window is a simple, two-step process.

Step 1: Make the DISP window that you want to close active (see Section
4.4, The Active Window, on page 4-21).

Step 2: Press F4 .

Note that you can close a window and all of its children by closing the original
window.

Note:

The debugger automatically closes all DISP windows when you execute a
LOAD or SLOAD command.

Managing Data in a WATCH Window

 8-14

8.7 Managing Data in a WATCH Window

The debugger doesn’t maintain a dedicated window that tells you about the
status of all the symbols defined in your program. Such a window might be so
large that it wouldn’t be useful. Instead, the debugger allows you to create a
WATCH window that shows you how program execution affects specific ex-
pressions, variables, registers, or memory locations.

WATCH

1: A 0x10

2: X+X 4

3: PC 0x0040

watch index

label current value

The debugger displays a WATCH window only when you specifically request
a WATCH window with the WA command (described below). Note that there
is only one WATCH window. For additional details concerning the WATCH win-
dow, see the WATCH window discussion (page 4-19).

Remember, you can use the data-management commands or the debugger’s
overwrite editing capability to modify the contents of any value displayed in the
WATCH window. Refer to Section 8.3 (page 8-4), for more information.

Note:

All of the watch commands described can also be accessed
from the Watch pulldown menu. For more information about
using the the pulldown menus, refer to Section 5.2, Using the
Menu Bar and the Pulldown Menus (page 5-7).

Displaying data in the WATCH window

The debugger has one command that you can use to add items to the WATCH
window.

wa To open the WATCH window, use the WA (watch add) command. The basic
syntax is:

wa expression [,[label], display format]

When you first execute WA, the debugger opens the WATCH window. After
that, executing WA adds additional values to the WATCH window.

Add
Delete
Reset

Watch

 Managing Data in a WATCH Window

8-15 Managing Data

The expression parameter can be any C expression, including an expression
that has side effects (such as i++). In an assembly language program, you can
use a symbol name as the expression parameter. To watch the contents of a
symbol name, precede it with an asterisk:

wa *expression [,[label], display format]

If you want to watch a symbol that is local to a particular module, you must in-
clude the module name in the expression. For example, to watch the contents
of symbol_name, a local symbol to the module sample.asm, you would enter:

wa *sample.symbol_name [,[label] , display format]

Note:

To watch a symbol that is local to a particular module, give an extension of
.c or .asm to the module name.

It’s most useful to watch an expression whose value will change over time;
constant expressions provide no useful function in the watch window.

The label parameter is optional. When used, it provides a label for the watched
entry. If you don’t use a label, the debugger displays the expression in the label
field.

Deleting watched values and closing the WATCH window

The debugger supports two commands for deleting items from the WATCH
window.

wr If you’d like to close the WATCH window and delete all of the items in a single
step, use the WR (watch reset) command. The syntax is:

wr

wd If you’d like to delete a specific item from the WATCH window, use the WD
(watch delete) command. The syntax is:

wd index number

Whenever you add an item to the WATCH window, the debugger assigns it an
index number. (The illustration of the WATCH window on page 8-14 points to
these watch indexes.) The WD command’s index number parameter must cor-
respond to one of the watch indexes in the WATCH window.

Managing Data in a WATCH Window / Displaying Data in Alternatve Formats

 8-16

Note that deleting an item (depending on where it is in the list) causes the re-
maining index numbers to be reassigned. Deleting the last remaining item in
the WATCH window closes the WATCH window.

Note:

The debugger automatically closes the WATCH window when you execute
a LOAD or SLOAD command.

8.8 Displaying Data in Alternative Formats

By default, all data is displayed in its natural format. This means that:

� Integer values are displayed as decimal numbers.
� Floating-point values are displayed in floating-point format.
� Pointers are displayed as hexadecimal addresses (with a 0x prefix).
� Enumerated types are displayed symbolically.

However, any data displayed in the COMMAND, MEMORY, WATCH, or DISP
window can be displayed in a variety of formats.

Changing the default format for specific data types

To display specific types of data in a different format, use the SETF command.
The syntax for this command is:

setf [data type, display format]

The display format parameter identifies the new display format for any data of
type data type. The following is a list of available data formats:

Display Format Parameter Display Format Parameter

Default for the data type * Hexadecimal x

ASCII character (bytes) c Octal o

Decimal d Valid address p

Exponential floating point e ASCII string s

Decimal floating point f Unsigned decimal u

Only a subset of the display formats applies to each data type. Table 8–1 lists
the C data types that can be used for the data type parameter, and shows valid
combinations of data types and display formats.

 Displaying Data in Alternatve Formats

8-17 Managing Data

Table 8–1.Data Types for Displaying Debugger Data

Valid Display Formats

Data Type c d o x e f p s u Default Display Format

char √ √ √ √ √ ASCII (c)

uchar √ √ √ √ √ Unsigned (u)

short √ √ √ √ √ Decimal (d)

ushort √ √ √ √ √ Unsigned (u)

int √ √ √ √ √ Decimal (d)

uint √ √ √ √ √ Unsigned (u)

long √ √ √ √ √ Decimal (d)

ulong √ √ √ √ √ Unsigned (u)

float √ √ Exponential floating point (e)

double √ √ Exponential floating point (e)

ptr √ √ √ √ Address (p)

Here are some examples:

� To display all data of type short as unsigned decimals, enter:

setf short, u

� To return all data of type short to its default display format, enter:

setf short, *

� To list the current display formats for each data type, enter the SETF
command with no parameters:

setf

You’ll see a display that looks something like this:

Display Format Defaults
Type char: ASCII
Type unsigned char: Unsigned decimal
Type int: Decimal
Type unsigned int: Unsigned decimal
Type short: Decimal
Type unsigned short: Unsigned decimal
Type long: Decimal
Type unsigned long: Unsigned decimal
Type float: Exponential floating point
Type double: Exponential floating point
Type pointer: Hexadecimal

� To reset all data types back to their default display formats, enter:

setf *

Displaying Data in Alternatve Formats

 8-18

Changing the default format with ?, MEM, DISP, and WA

You can also use the ?, MEM, DISP, and WA commands to show data in alter-
native display formats. (The ? and DISP commands can use alternative
formats only for scalar types, arrays of scalar types, and individual members
of aggregate types.)

Each of these commands has an optional display format parameter that works
in the same way as the display format parameter of the SETF command.

When you don’t use a display format parameter, data is shown in its natural
format (unless you have changed the format for the data type with SETF).

Here are some examples:

� To watch the PC in decimal, enter:

wa pc,,d

� To display memory contents in octal, enter:

mem 0x0,o

� To display an array of integers as characters, enter:

disp ai,c

The valid combinations of data types and display formats listed for SETF also
apply to the data displayed with DISP, ?, WA, and MEM. For example, if you
want to use display format e or f, the data that you are displaying must be of
type float or type double. However, there is one exception: you cannot use the
s display format parameter with the MEM command.

9-1 Chapter Title—Attribute Reference

Using Software Breakpoints

This chapter describes the simple processes of setting and clearing software
breakpoints and of obtaining a listing of all the breakpoints that are set.

During the debugging process, you may want to halt execution temporarily so
that you can examine the contents of selected variables, registers, and
memory locations before continuing with program execution. You can do this
by setting software breakpoints at critical points in your code. You can set
these breakpoints in assembly language code and in C code. A software
breakpoint halts any program execution, whether you’re running or
single-stepping through code.

Topic Page

9.1 Setting a Software Breakpoint 9-2

9.2 Clearing a Software Breakpoint 9-4

9.3 Finding the Software Breakpoints That Are Set 9-5

Chapter 9

Setting a Software Breakpoint

 9-2

9.1 Setting a Software Breakpoint

When you set a software breakpoint, the debugger highlights the breakpointed
line in two ways:

� It prefixes the statement with the > character.

� It shows the line in a bolder or brighter font. (You can use screen-customi-
zation commands to change this highlighting method.)

If you set a breakpoint in the disassembly, the debugger also highlights the
associated C statement. If you set a breakpoint in the C source, the debugger
also highlights the associated statement in the disassembly. (If more than one
assembly language statement is associated with a C statement, the debugger
highlights the first of the associated assembly language statements.)

DISASSEMBLY

7028 8e MOV A,Z(ROLF)
702C 8e > CALL meminit
702f fa CLR A

FILE: sample.c
00044
00045 > meminit();
00046 for (i=0; i < 0x70;i++)
00047 {
00048 call(i);

A breakpoint is set at
this C statement;

notice how the line is
highlighted.

A breakpoint is also
set at the associated

assembly language
statement (it’s

highlighted, too).

Notes:

� After execution is halted by a breakpoint, you can continue program
execution by reissuing any of the run or single-step commands.

� Up to 200 software breakpoints can be set.

� During program execution, the debugger executes a NOP statement
after encountering each software breakpoint. Because it takes seven
clock cycles to execute a NOP statement, the ’370 device timers and
the corresponding prescalar are incremented by seven.

 Setting a Software Breakpoint

9-3 Summary of Commands and Special Keys

There are several ways to set a software breakpoint:

1) Make the FILE or DISASSEMBLY window the active window.

2) Point to the line of assembly language code or C code where you’d like to
set a breakpoint.

3) Click the left button.

Repeating this action clears the breakpoint.

1) Make the FILE or DISASSEMBLY window the active window.

↑ ↓ 2) Use the arrow keys to move the cursor to the line of code where you’d like
to set a breakpoint.

F9 3) Press the F9 key.

Repeating this action clears the breakpoint.

ba If you know the address where you’d like to set a software breakpoint, you can
use the BA command. This command is useful because it doesn’t require you
to search through code to find the desired line. The syntax for the BA command
is:

ba address

This command sets a breakpoint at address. This parameter can be an abso-
lute address, any C expression, the name of a C function, or the name of an
assembly language label. You cannot set multiple breakpoints at the same
statement.

Clearing a Software Breakpoint

 9-4

9.2 Clearing a Software Breakpoint

There are several ways to clear a software breakpoint. If you clear a breakpoint
from an assembly language statement, the breakpoint is also cleared from any
associated C statement; if you clear a breakpoint from a C statement, the
breakpoint is also cleared from the associated statement in the disassembly.

1) Point to a breakpointed assembly language or C statement.

2) Click the left button.

↑ ↓ 1) Use the arrow keys or the DASM command to move the cursor to a break-
pointed assembly language or C statement.

F9 2) Press the F9 key.

br If you want to clear all the software breakpoints that are set, use the BR
command. This command is useful because it doesn’t require you to search
through code to find the desired line. The syntax for the BR command is:

br

bd If you’d like to clear one specific software breakpoint and you know the address
of this breakpoint, you can use the BD command. The syntax for the BD
command is:

bd address

This command clears the breakpoint at address. This parameter can be an ab-
solute address, any C expression, the name of a C function, or the name of
an assembly language label. If no breakpoint is set at address, the debugger
ignores the command.

 Finding the Software Breakpoints That Are Set

9-5 Using Breakpoints

9.3 Finding the Software Breakpoints That Are Set

bl Sometimes you may need to know where software breakpoints are set. For
example, the BD command’s address parameter must correspond to the ad-
dress of a breakpoint that is set. The BL command provides an easy way to
get a complete listing of all the software breakpoints that are currently set in
your program. The syntax for this command is:

bl

The BL command displays a table of software breakpoints in the COMMAND
window display area. BL lists all the software breakpoints that are set, in the
order in which you set them. Here’s an example of this type of list:

 Address Symbolic Information
4000
7000 in main, at line 45, ”c:\370tools\sample.c”
5000

The address is the memory address of the breakpoint. The symbolic informa-
tion identifies the function, line number, and filename of the breakpointed C
statement:

� If the breakpoint was set in assembly language code, you’ll see only an
address unless the statement defines a symbol.

� If the breakpoint was set in C code, you’ll see the address together with
symbolic information.

 9-6

10-1 Chapter Title—Attribute Reference

Customizing the Debugger Display

The debugger display is completely configurable; you can create the interface
that is best suited for your use. Besides being able to size and position individu-
al windows, you can change the appearance of many of the display features,
such as window borders, the way the current statement is highlighted, etc. In
addition, if you’re using a color display, you can change the colors of any area
on the screen. Once you’ve customized the display to your liking, you can save
the custom configuration for use in future debugging sessions.

Topic Page

10.1 Changing the Colors of the Debugger Display 10-2
Area names: common display areas 10-3
Area names: window borders 10-4
Area names: COMMAND window 10-4
Area names: DISASSEMBLY and FILE windows 10-5
Area names: data-display windows 10-6
Area names: menu bar and pulldown menus 10-7

10.2 Changing the Border Styles of the Windows 10-8

10.3 Saving and Using Custom Displays 10-9
Changing the default display for monochrome monitors 10-9
Saving a custom display 10-9
Loading a custom display 10-10
Invoking the debugger with a custom display 10-10
Returning to the default display 10-10

10.4 Changing the Prompt 10-11

Chapter 10

Changing the Colors of the Debugger Display

 10-2

10.1 Changing the Colors of the Debugger Display

You can use the debugger with a color or a monochrome display; the com-
mands described in this section are most useful if you have a color display. If
you are using a monochrome display, these commands change the shades on
your display. For example, if you are using a black-and-white display, these
commands change the shades of gray that are used.

color
scolor

You can use the COLOR or SCOLOR command to change the colors of areas
in the debugger display. The format for these commands is:

color area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]
scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

These commands are similar. However, SCOLOR updates the screen imme-
diately, and COLOR doesn’t update the screen (the new colors/attributes take
effect as soon as the debugger executes another command that updates the
screen). Typically, you might use the COLOR command several times, fol-
lowed by an SCOLOR command to put all of the changes into effect at once.

The area name parameter identifies the areas of the display that are affected.
The attributes identify how the areas are affected. Table 10–1 lists the valid
values for the attribute parameters.

Table 10–1. Colors and Other Attributes for the COLOR and SCOLOR Commands

(a) Colors

black blue green cyan

red magenta brown white

(b) Other attribute

bright

The first two attribute parameters usually specify the foreground and back-
ground colors for the area. If you do not supply a background color, the debug-
ger uses black as the background.

Table 10–2 lists valid values for the area name parameters. This is a long list;
the subsections following the table further identify these areas.

 Changing the Colors of the Debugger Display

10-3 Customizing the Debugger Display

Table 10–2. Summary of Area Names for the COLOR and SCOLOR Commands

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

Note: Listing order is left to right, top to bottom.

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify either parameter. If you supply ambiguous
attribute names, the debugger interprets the names in this order: black, blue,
bright, blink. If you supply ambiguous area names, the debugger interprets
them in the order that they’re listed in Table 10–2 (left to right, top to bottom).

The remainder of this section identifies these areas.

Area names: common display areas

blanks

CPU

background

PC 7185
A 87 B 00
ST 40 SP 22

Area identification Parameter name

Screen background (behind all windows) background

Window background (inside windows) blanks

Changing the Colors of the Debugger Display

 10-4

Area names: window borders

COMMAND

>>>

(C) Copyright 1990, 1992 Texas

TMS370 Silicon Revision B

’370 XDS v2.06 BTT v1.4

Loading sample.out

Done

win_hiborder

WATCH

1: A0 0x00001802

2: X+X 4

3: PC 0x00400064

win_border

win_resize

an inactive
window

an active
window

Area identification Parameter name

Window border for any window that isn’t active win_border

The reversed “L” in the lower right corner of a resizable
window

win_resize

Window border of the active window win_hiborder

Area names: COMMAND window

COMMAND

>>> go main

cmd_echo

cmd_inputcmd_prompt cmd_cursor

Done

file sample.c

wa eee

Name ”eee” not found
error_msg

Area identification Parameter name

Echoed commands in display area cmd_echo

Errors shown in display area error_msg

Command-line prompt cmd_prompt

Text that you enter on the command line cmd_input

Command-line cursor cmd_cursor

 Changing the Colors of the Debugger Display

10-5 Customizing the Debugger Display

Area names: DISASSEMBLY and FILE windows

DISASSEMBLY

asm_data

FILE: t1.c

asm_clabel

asm_label file_brk

file_line

file_text

file_pc

file_pc_brk

00024 extern call();

00025 extern meminit():

00026 main()

00027 {

*eof

asm_cdata

file_eof

7000 70 main INCW #4,R021
7003 b9 POP A
7004 f4 MOV A,–2(R021)
7008 b9 POP A
7009 f4 > MOV A,–3(R021)
700d 12 MOV R01E,A
700f f4 MOV A,–1(R021)

Area identification Parameter name

Object code in DISASSEMBLY window that is associated
with current C statement

asm_cdata

Object code in DISASSEMBLY window asm_data

Addresses in DISASSEMBLY window asm_label

Addresses in DISASSEMBLY window that are associated
with current C statement

asm_clabel

Line numbers in FILE window file_line

End-of-file marker in FILE window file_eof

Text in FILE or DISASSEMBLY window file_text

Breakpointed text in FILE or DISASSEMBLY window file_brk

Current PC in FILE or DISASSEMBLY window file_pc

Breakpoint at current PC in FILE or DISASSEMBLY win-
dow

file_pc_brk

Changing the Colors of the Debugger Display

 10-6

Area names: data-display windows

field_textfield_label

field_edit field_error

field_hilite
MEMORY

0000 00 22 de fb ff bf 20 7e 7f df 00 00
000c 28 81 72 44 00 00 00 00 00 00 00 00
0018 00 00 00 00 00 00 28 83 28 83 00 71
0024 95 00 00 00 00 00 00 00 00 00 00 00
0030 00 00 00 00 00 00 00 00 00 00 00 00
003c 00 00 00 00 00 00 00 00 00 00 00 00

Area identification Parameter name

Label of a window field (includes register names in CPU
window, addresses in MEMORY window, index numbers
and labels in WATCH window, member names in DISP
window)

field_label

Text of a window field (includes data values for all
data-display windows) and of most command output mes-
sages in command window

field_text

Text of a highlighted field field_hilite

Text of a field that has an error (such as an invalid
memory location)

field_error

Text of a field being edited (includes data values for all
data-display windows)

field_edit

 Changing the Colors of the Debugger Display

10-7 Customizing the Debugger Display

Area names: menu bar and pulldown menus

menu_bar

menu_border

Load Break Watch
Add
Delete
Reset

Memory Color Mode

menu_entrymenu_cmd

menu_hilite
menu_hicmd

Area identification Parameter name

Top line of display screen; background to main menu
choices

menu_bar

Border of any pulldown menu menu_border

Text of a menu entry menu_entry

Invocation key for a menu or menu entry menu_cmd

Text for current (selected) menu entry menu_hilite

Invocation key for current (selected) menu entry menu_hicmd

Changing the Border Styles of the Windows

 10-8

10.2 Changing the Border Styles of the Windows

In addition to changing the colors of areas in the display, the debugger allows
you to modify the border styles of the windows.

border Use the BORDER command to change window border styles. The format for
this command is:

border [active window style] [, [inactive window style] [, resize style]]

This command can change the border styles of the active window, the inactive
windows, and any window that is being resized. The debugger supports nine
border styles. Each parameter for the BORDER command must be one of the
numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides and bottom

3 Solid 1/4-tone top, double-lined sides and bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top and bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Here are some examples of the BORDER command. Note that you can skip
parameters, if desired.

border 6,7,8 Change style of active, inactive, and resize windows
border 1,,2 Change style of active and resize windows
border ,3 Change style of inactive window

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

 Saving and Using Custom Displays

10-9 Customizing the Debugger Display

10.3 Saving and Using Custom Displays

The debugger allows you to save and use as many custom configurations as
you like.

When you invoke the debugger, it looks for a screen configuration file called
init.clr. The screen configuration file defines how various areas of the display
will appear. If the debugger doesn’t find this file, it uses the default screen con-
figuration.

The debugger supports two commands for saving and restoring custom
screen configurations into files. The filenames that you use for restoring con-
figurations must correspond to the filenames that you used for saving configu-
rations. Note that these are binary files, not text files, so you can’t edit the files
with a text editor.

Changing the default display for monochrome monitors

The default display is most useful with color monitors. The debugger highlights
changed values, messages, and other information with color; this may not be
particularly helpful if you are using a monochrome monitor.

Saving a custom display

ssave Once you’ve customized the debugger display to your liking, you can use the
SSAVE command to save the current screen configuration to a file. The format
for this command is:

ssave [filename]

This saves the screen resolution, border styles, colors, window positions, win-
dow sizes, and (on PCs) video mode (EGA, VGA, CGA, etc.) for all debugging
modes.

The filename parameter names the new screen configuration file. You can
include path information (including relative pathnames); if you don’t specify
path information, the debugger places the file in the current directory. If you
don’t supply a filename, the debugger saves the current configuration into a
file named init.clr.

Note that you can execute this command as the Save selection on the Color
pulldown menu.

Saving and Using Custom Displays

 10-10

Loading a custom display

sconfig You can use the SCONFIG command to restore the display to a particular con-
figuration. The format for this command is:

sconfig [filename]

This restores the screen resolution, colors, window positions, window sizes,
border styles, and (on PCs) video mode (EGA, CGA, MDA, etc.) saved in file-
name. Screen resolution and video mode are restored either by changing the
mode (on video cards with switchable modes) or by resizing the debugger
screen (on other hosts).

If you don’t supply a filename, the debugger looks for init.clr. The debugger
searches for the file in the current directory and then in directories named with
the D_DIR environment variable.

Invoking the debugger with a custom display

If you set up the screen in a way that you like and always want to invoke the
debugger with this screen configuration, you have two choices for accomplish-
ing this:

� Save the configuration in init.clr.

� Add a line to the initialization batch file that the debugger executes at invo-
cation time (init.cmd). This line should use the SCONFIG command to
load the custom configuration.

Returning to the default display

If you saved a custom configuration into init.clr but don’t want the debugger to
come up in that configuration, then rename the file or delete it. If you are in the
debugger, have changed the configuration, and would like to revert to the de-
fault, just execute the SCONFIG command without a filename.

 Changing the Prompt

10-11 Customizing the Debugger Display

10.4 Changing the Prompt

prompt The debugger enables you to change the command-line prompt by using the
PROMPT command. The format of this command is:

prompt new prompt

The new prompt can be any string of characters, excluding semicolons and
commas. (If you type a semicolon or a comma, it terminates the prompt string.)

Note that the SSAVE command doesn’t save the command-line prompt as part
of a custom configuration. The SCONFIG command doesn’t change the com-
mand-line prompt. If you change the prompt, it stays changed until you change
it again, even if you use SCONFIG to load a different screen configuration.

If you always want to use a different prompt, you can add a PROMPT
statement to the initialization batch file that the debugger executes at
invocation time (init.cmd).

You can also execute this command as the Prompt selection on the Color pull-
down menu.

 10-12

 Running Title—Attribute Reference

11-1 Chapter Title—Attribute Reference

Using Hardware Breakpoint, Trace,
 and Timing Features

This chapter tells you how to use the features of the BTT (breakpoint/trace/
timing) board. The BTT is a separate board that is included as part of your
XDS/22 emulation system. The BTT monitors the CPU; when a preselected
pattern of bus activity is detected, the BTT performs an action such as execut-
ing a hardware breakpoint or storing information in the trace buffer.

Unlike most debugger features, many BTT features are accessed not with
commands but only with a detailed set of menus and dialog boxes.

Topic Page

11.1 Running a BTT Session 11-2
11.2 Accessing Essential BTT Features 11-4
11.3 Defining Conditions for an Action 11-6

Defining a jump 11-7
Defining address qualifiers 11-8
Defining data qualifiers 11-9
Defining external-signal qualifiers 11-9
Masking qualifiers 11-10
Defining cycle qualifiers 11-10

11.4 Limits on the Number of Actions per State 11-11
11.5 Jumping to Another State 11-13
11.6 Using Hardware Breakpoints and Events 11-14

Basic breakpointing 11-15
Sequencing before a breakpoint 11-16
Collecting traces, then breakpointing 11-16

11.7 Collecting Trace Samples 11-17
Trace modes 11-17

11.8 Using the BTT Timers 11-18
Collecting timing statistics 11-18
Limiting program run time 11-19

11.9 Viewing Trace Buffer and Timing Information 11-20
Interpreting trace buffer information 11-20
Viewing selected trace samples 11-22
Storing trace buffer contents to a file 11-23
Interpreting point and range timer statistics 11-24

11.10 Reusing a BTT Setup 11-24

Chapter 11

Running a BTT Session

 11-2

11.1 Running a BTT Session

To use the BTT, you will need to decide which types of actions you would like
the BTT to perform and under what conditions you want these actions to be
performed. Once you have defined actions and made any necessary global
changes, you can run your program. If you are collecting traces or timing
information, you can view the collected information.

Step 1: Define actions for up to four states. The BTT monitors the ’370
device, watching for selected types of bus activity. The BTT can look
for four different combinations of bus activity. These combinations
are referred to as states and are labeled as state 0 through state 3.
Each state can define one or more of the following actions:

� Breakpoint/event. The BTT can perform a hardware break-
point, which halts both the CPU and the BTT, or decrement one
of several counters.

� Trace. The BTT can store a trace sample (a collection of
information about address and bus contents, memory cycles,
timing, and opcodes) in the trace buffer.

� Jump. The BTT can jump to one of the other three states.

� Start or stop the point or range timer. The BTT can use the
point or range timer to perform timing analysis.

You can define actions for as many of the four states as you need to
use. The BTT uses the states sequentially, beginning with state 0.

An action can take place only when certain conditions (which you
define for individual actions) take place. The matching of bus activity
to the conditions that you defined is called qualifying . The condi-
tions that you can define to qualify an action include:

� Address accesses. Actions can be qualified when a specific
address is accessed, when an address is accessed inside of a
range, or when an address is accessed outside of a range.

� Data accesses . Actions can be qualified when a specific data
value is accessed, when a value is accessed inside of a range
of values, or when an address is accessed outside of a range of
values.

� Memory cycles. Actions can be qualified on reads, writes,
instruction acquisitions, or any combination of these memory
cycles.

 Running a BTT Session

11-3 Chapter Title—Attribute Reference

� External signals. The BTT has an external-signal probe that
can be connected to a maximum of eight external signals.
Actions can be qualified on the logic levels on these lines.

Conditions can be combined; for example, you could define a condi-
tion that would tell the BTT to look for a write of a certain value to any
address within a range.

For more information about these topics, see Section 11.2, Acces-
sing Essential BTT Features, page 11-4, and Section 11.3, Defining
Conditions for an Action, page 11-6.

Step 2: Enter appropriate global settings. You can change certain
aspects of basic BTT-board operation through the global settings.
Note that the default global settings are sufficient for many applica-
tions, so you may not find it necessary to change the global settings.

These components are controlled through global settings:

� The delay counter defines how many additional trace samples
should be collected before a breakpoint is executed.

� The max trace defines the maximum number of trace samples
to collect.

� The end state defines the last state in a sequence of states.

� The loop counter defines how many times the BTT will se-
quence through states before executing a breakpoint.

� The time-out timer defines how long your program can run.

Step 3: Run your program. Once you have defined actions for as many
states as you wish, you should run your program. Use any of the run
commands—RUN, STEP, etc. Whenever program execution
causes bus activity to match any conditions that you have defined,
the BTT will perform the appropriate action. Your program will contin-
ue running until you explicitly halt it, until it reaches a software break-
point, until it has run for length of time defined by the time-out timer,
or until a hardware breakpoint is qualified.

Step 4: View the trace buffer and timing information. If you are collecting
trace samples or are using the point or range timer, you can view the
trace buffer and/or the timing statistics through the INSPECT
window. For more information about this topic, see Section 11.9,
Viewing Trace Buffer and Timing Information, page 11-20.

Accessing Essential BTT Features

 11-4

11.2 Accessing Essential BTT Features
Many of the basic tasks that you will need to carry out—viewing information
about specific states, adding an action to a state, deleting an action from a
state, and accessing global settings—can be accomplished through a single
dialog box called the BTT Setup dialog box.

To open the BTT Setup dialog box, select Setup from the BTT menu. This
opens a dialog box like the one shown in Figure 11–1.

Figure 11–1. The BTT Setup Dialog Box

BTT Setup

State Mode Trace Mode

State 0 << Next state>> < Cl Ear state> < Add action...>

Action: BP/event Action: Trace
addr = 7050 addr = 7000
data = IGNORE ...7FFF
 cycles ALL data = IGNORE
 extern IGNORE cycles ALL

 extern IGNORE

 () Add r ess only (*) Nor mal Event co unt [1].
 (*) address and data () TRIX

<Load...> < Store...> < Globals...> < OK> <Cancel>

Current state

Descriptions of
actions defined
for the current state

You can use the BTT Setup dialog box to perform these tasks:

� View information about states. The BTT Setup dialog box shows which
state is current and which actions are defined for that state. For example,
in Figure 11–1, state 0 is the current state; a BP/event (breakpoint/event)
and a trace are defined as actions for state 0.

� Select the current state. Figure 11–1 shows settings for state 0. To get
to state 1, click on <Next state>. Clicking again on <Next state> will take
you to state 2, then state 3, and back to state 0 again.

� Reset the current state. If you want to clear out all actions for a particular
state, make it the current state, then click on <Clear state>. This deletes
all actions defined for the current state.

� Add an action to the current state. To add an action to the current state,
click on <Add action...>. The debugger will display a menu so that you can
select the type of action you want to add. When you select an action from
the menu, the debugger will display another dialog box (referred to as an
action dialog box) where you can define the conditions that will qualify the
action. For more information, see Section 11.3, Defining Conditions for an
Action, on page 11-6.

 Accessing Essential BTT Features

11-5 Chapter Title—Attribute Reference

� Edit an existing action. To make changes to the conditions that you have
defined for an existing action, click on the action description. The debug-
ger will display the associated action dialog box. Make your changes, then
click on <OK>.

� Delete an action from the current state. Deleting an action is similar to
editing an action. Click on the action you want to delete. The debugger will
display the associated action dialog box; click on <Delete>. This deletes
the action from the current state.

� Select the state mode. The state mode helps to define the types of condi-
tions that can apply to actions. You can choose to qualify actions on
address accesses only or on a combination of address and data accesses.
To do this, click on the appropriate field in the State Mode box. By default,
you can qualify an action on a combination of both address and data
accesses. Note that address-and-data state mode can limit the number of
actions that you can define for a state; for more information, see Section
11.4, Limits on the Number of Actions per State, on page 11-11.

� Select the trace mode. The trace mode helps to define what types of
memory cycles will be stored in the trace buffer. For more information
about tracing and the trace mode, refer to Section 11.7, Collecting Trace
Samples, on page 11-17.

� Set the event counter. The event counter is used with several global
components to determine when a hardware breakpoint should occur. If
you leave the event counter at its default setting (1), a hardware break-
point can occur as soon as a BP/event is qualified. For more information
about breakpoints and the event counter, refer to Section 11.6, Using
Hardware Breakpoints and Events, on page 11-14.

� Load/store a setup. You can easily save your BTT configuration and use
it again for another session. For more information, refer to Section 11.10,
Reusing a BTT Setup, on page 11-24.

� Alter basic board operation. You can change certain aspects of basic
BTT-board operation through the global settings. The global settings are
described throughout this chapter—for example, the time-out timer is
described with the timing analysis information.

� Confirm or suspend the BTT setup and close the dialog box. When
you have satisfactorily completed all of your selections for each state, click
on <OK>. If at any time you want to discard all of your selections for the
action, click on <Cancel>.

Defining Conditions for an Action

 11-6

11.3 Defining Conditions for an Action

To add an action to a state, bring up the BTT Setup dialog box and click on
<Add action...>. You’ll see a Select action menu like the one in Figure 11–2.

Figure 11–2. The Select Action Menu
Select action

<<Bp/Event...>> 2
 < Trace...> 2
 < Jump...> 1
 < RangeTimer...> 1
 < PointTimer...> 2

<Cancel>

This menu contains two types of information:

� It contains fields that allow you to choose whether you want to define
conditions for a hardware breakpoint/event, a trace sample, a jump to a
new state, or timing analysis.

� It shows you the number of specific actions that can be defined for the
state. (The number of actions you can define depends on which state
mode you’ve chosen and on the number and type of actions that are
already defined for a state. For more information, see Section 11.4, Limits
on the Number of Actions Per State, on page 11-11.)

When you choose one of the items in the menu, you’ll see a dialog box similar
to the one shown in Figure 11–3.

Figure 11–3. The Dialog Box for Defining Conditions

BP/Event action

Address qualifiers

Data qualifiers

Cycle

Jump to [N/A]

 (*)O ne point () Two points () I n range ()O utside range

addr1=[0x0000].
addr2=[N/A]
 mask [0x0000].

 (*)On e point ()Two points ()I n range ()Out s ide range

data1=[0x00].
data2=[N/A]
 mask [0x00].

ex tern [0x00].
 mask [0x00].

 [X] M R [X] M W [X] IA Q
<<OK>> <Cancel> <De l ete>

 Defining Conditions for an Action

11-7 Chapter Title—Attribute Reference

This dialog box is used for qualifying all actions, with minor variations. For
example, the dialog box in Figure 11–3 is labeled BP/Event action; if you select
a different action, the label changes to show the action you selected. (For this
reason, this type of dialog box is referred to as an action dialog box.)

Some of the fields in an action dialog box may not apply to each action, even
though they are shown in each version of the dialog box. When this is the case,
the field is lowlighted (grayed out) and the debugger prevents you from acces-
sing the field (you can’t click on the field, tab to it, etc.).

Like menus and other dialog boxes, the action dialog box has highlighted char-
acters that enable you to select a field by pressing ALT and the highlighted
character key. Some fields in the action dialog box do not have highlighted
characters. To select them without using the mouse, use ALT with the
appropriate key to select the nearest field, then use TAB or → to reach the
field you want to edit.

When you are finished defining the conditions for an action, click on <OK>.
This adds the action to the current state. If you want to delete an action from
the current state, click on <Delete>. Clicking on <Cancel> adds the action to
the state without saving the conditions that you defined.

Defining a jump

When you select Jump from the Select action menu, the label at the top of the
action dialog box changes from:

Jump to [N/A]

to:

Jump to [0...]

This happens so that you can select another state to jump to when the condi-
tions for the jump (defined by the address, data, and cycle qualifiers) are met.

Defining Conditions for an Action

 11-8

Defining address qualifiers

You can qualify any action based on the contents of the address bus. Address
conditions are defined in this portion of the action dialog box:

Address qualifiers
(*)O ne point () Two points () I n range ()O utside range

addr1=[0x0000].
addr2=[N/A]
 mask [0x0000]. .

You can use addresses in four ways:

� Qualify on a single address. When you select One point as the address
qualifier, you can enter a single address to be used as part of the condition
for the action. You enter the address in the addr1 field; the addr2 field will
be lowlighted because you can’t access it when you select One point.

This is the default setting.

� Qualify on one of two separate addresses. When you select Two
points , the action can take place when either of the addresses is
accessed. You enter the first address in the addr1 field and the second
address in the addr2 field. The contents of the addr2 field will change from
N/A to 0x0000 so that you can enter an address. (To get to the second
address field, use the mouse or press the TAB key.)

� Qualify on an address within a range. Select In range to define an inclu-
sive range. The action can take place when any address in the range is
accessed. Enter the beginning address in the addr1 field and the ending
address in the addr2 field.

� Qualify on an address outside of a range. Select Outside range to
define an exclusive range. The action can take place when:

� An address is accessed that is lower than the address defined by
addr1, or

� An address is accessed that is higher than the address defined in the
addr2 field.

To get to the addr2 field, use the mouse, press TAB , or press → .

Additionally, you can mask addresses, which means that specific address bits
will be ignored; refer to Masking qualifiers, page 11-10.

 Defining Conditions for an Action

11-9 Using Hardware Breakpoint, Trace, and Timing Features

Defining data qualifiers

The options for defining data qualifiers are similar to the options for defining
address qualifiers—you can define conditions on a single data point, a pair of
points, an exclusive range, or an inclusive range. Data qualifiers are defined
in this portion of the dialog box:

Data qualifiers
(*)On e point ()Two points ()I n range ()Out s ide range

data1=[0x00].
data2=[N/A]
 mask [0x00].

Whether or not you can use data qualifiers as part of the condition depends
on whether you select address-only or address-and-data state mode. (For
more information about state modes, see Section 11.4, Limits on the Number
of Actions per State, on page 11-11.) If you select address-only state mode,
you can use address qualifiers but not data qualifiers; if you select address-
and-data state mode, then you can use data qualifiers with or without address
qualifiers.

To get to the data2 field, use the mouse, press TAB , or press → .

Data values can be masked so that specific bits within the value are ignored;
see Masking qualifiers on page 11-10.

Defining external-signal qualifiers

The BTT has an external-signal probe that can be connected to eight external
signals. You can qualify actions based on the logic levels on these signal lines.
The external-signal qualifier is defined in this portion of the dialog box:

ex tern [0x00].
 mask [0x00]. . . .

The extern field defines the pattern of activity that you want to use for qualifying
the action. A 1 indicates that you are qualifying a high level on a signal, and
a 0 indicates that you are qualifying a low level on a signal. For more informa-
tion about using the external probes, refer to the installation instructions.

The external-signal value can be masked so that specific signal bits are
ignored; see Masking qualifiers on page 11-10.

Defining Conditions for an Action

 11-10

Masking qualifiers

Masking is a method of indicating don’t-care bits in an address, data, or
external-signal value. Address qualifiers use a 16-bit mask; data and external-
signal qualifiers use an 8-bit mask. A 0 bit in a mask causes the corresponding
bit in the address, data, or external-signal qualifier to be ignored.

In the dialog boxes, the qualifier and mask values initially come up as 0s. As
soon as you enter an address, data, or external-signal qualifier, the associated
mask value immediately changes to 0xFFFF (for addresses) or 0xFF (for data
and the external signals). This is the same as a binary value of all 1s; because
there are no don’t-care bits, the mask is essentially prevented from affecting
the qualifier value. (To get to the mask field, use the mouse, press TAB , or
press → .)

If you want to ignore bits in a qualifier value, enter a new mask value. For exam-
ple, suppose you want to qualify some action on any address that ends in 80h.
To do this, specify a mask value of 0x00FF and any address whose last two
digits are 0x80 (12810):

Address value: 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 (0xA980)

Mask value: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 (0x00FF)

Qualifying addresses: X X X X X X X X 1 0 0 0 0 0 0 0 (0xXX80)

The eight MSBs of this mask value are 0s, which ensures that the eight MSBs
of any address will be ignored. The eight LSBs of the mask value are 1s, ensur-
ing that the only addresses that can qualify the action are those whose eight
LSBs match those of the address that you supplied.

Defining cycle qualifiers

You can qualify an action on a specific memory cycle. Cycle qualifiers are
defined in this part of the dialog box:

Cycle

[X] M R [X] M W [X] IA Q

You can choose one or more of the following cycles:

� Memory read. To qualify an action on a memory read, select MR.

� Memory write. To qualify an action on a memory write, select MW.

� Instruction acquisition. To qualify an action on an instruction acquisition,
select IAQ.

By default, all three memory cycles are enabled as part of the condition for the
action.

 Limits on the Number of Actions per State

11-11 Using Hardware Breakpoint, Trace, and Timing Features

11.4 Limits on the Number of Actions per State

You can define more than one action per state. For example, you may want
to trace accesses within a certain range of memory, then breakpoint when an
address outside of the range is accessed. Such a combination (tracing and
breakpointing) can be associated with a single state. However, the BTT limits
the total number of actions that you can define per state. The basic limits
depend on which state mode you’ve selected:

� Address only—four actions maximum. In address-only state mode,
you can qualify actions by using address values but not data values.
Because you’re not using data values, some of the BTT resources are
freed. As a result, you can define a maximum of four actions for the state.

� Address and data—two actions maximum. In address-and-data state
mode, you can qualify actions by using both address and data values. This
uses more of the BTT resources. As a result, you can define a maximum
of two actions for the state.

The state mode is defined in this part of the BTT Setup dialog box:

() Add r ess only
(*) address and data

State Mode

Each state has its own state mode; for example, state 0 could use address-
only state mode, and state 1 could use address-and-data state mode.

Limitations apply not only to the number of actions, but to the type and com-
bination of actions. For example, in address-only state mode, although you
may be able to select four actions, you can’t select four Jump actions—you can
select only two.

Figure 11–4 (a) shows the initial Select action menu for address-only state
mode, listing the number of actions that can currently be defined for the state.
Figure 11–4 (b) shows how the number of available actions changes after a
BP/event is defined.

Figure 11–4. How the Select Action Menu Changes After Actions Are Defined

(a) Initial menu (address only) (b) Menu after a BP/event is defined

Select action
<<Bp/Event...>> 4
 < Trace...> 4
 < Jump...> 2
 < RangeTimer...> 2
 < PointTimer...> 2

<Cancel>

Select action
<<Bp/Event...>> 3
 < Trace...> 3
 < Jump...> 2
 < RangeTimer...> 1
 < PointTimer...> 2

<Cancel>

Limits on the Number of Actions per State

 11-12

Table 11–1 summarizes the limit on the number and combination of actions.
For example, the first several lines in Table 11–1 (a) show that in address-only
state mode, you could, for a single state, define four BP/events, or three BP/
events and one trace, or three BP/events and one jump, etc.

Table 11–1. Number of Actions Allowed per State

(a) Address-only state mode (b) Address-and-data state mode

BP/
Event Trace Jump

Point
Timer

Range
Timer

BP/
Event Trace Jump

Point
Timer

Range
Timer

4 2

3 1 1 1

3 1 1 1

3 1 1 1

2 2 2

2 2 1 1

2 1 1

2 2 2

2 1 1

2 1 1

2 1 1

1 3

1 2 1

1 2 1

1 1 2

1 1 1

1 2 1

1 1 1

1 1 2

1 1 1

4

2 1

2

 Jumping to Another State

11-13 Using Hardware Breakpoint, Trace, and Timing Features

11.5 Jumping to Another State

One of the BTT actions that you can define is a jump to another state. To define
a jump action, choose Jump from the Select action menu. (To display the
Select action menu, click on <Add action...> in the BTT Setup dialog box.) In
the action dialog box for the jump, you can define the conditions for qualifying
the jump; you can also define which state the debugger should jump to when
the jump is qualified.

This is useful when you need a special method for handling an exception. For
example, suppose that you are running your program and collecting traces.
During the trace, your program calls an error routine. You may want to trace
the error routine differently, then return to the other trace when the error routine
completes. To do this, you could:

1) Set up one state to collect the main trace samples.

2) If the error routine is called, jump to a second state.

3) While the error routine is executing, collect trace samples related to the
routine.

4) When the error routine completes, jump back to the previous state and
continue collecting trace samples under the original conditions.

Using Hardware Breakpoints and Events

 11-14

11.6 Using Hardware Breakpoints and Events

To define a BP/event, choose BP/event from the Select action menu. (To
display the Select action menu, click on <Add action...> in the BTT Setup
dialog box.) This enables you to define a set of conditions that can cause a
hardware breakpoint. A hardware breakpoint halts both the CPU and the BTT.

Note:

In many cases, you will want a breakpoint to occur as soon as the BP/event
conditions are met. In this case, once you have defined the conditions, you
are finished—it is not necessary for you to read the remainder of this section.

In some cases, you may want to do something more complex—for example,
you may want the BP/event to occur several times before the breakpoint
occurs, or you may want to collect a certain number of traces after the BP/
event is detected. For these cases, you can use the following components,
which interact to define the point at which a hardware breakpoint occurs:

� The event counter counts the number of times BP/event conditions are
met for a state. The default value of the event counter is 1; its maximum
value is 0FFFFh (65,53510). You can define the event counter value in this
part of the BTT Setup dialog box:

Event co unt [1].

Each state has its own event counter. If a state defines more than one BP/
event, the event counter counts the number of times any of the state’s BP/
event conditions are met.

Note that if you set the event counter to 0, you disable the BP/event feature
for that state.

� The end state defines the last state in a sequence of states. The default
end state is state 0. The end state is a global setting.

� The loop counter defines the number of times the BTT should sequence
through the states before a breakpoint can occur. The default value of the
loop counter is 1; its maximum value is 0FFFFh (65,53510). The loop
counter is a global setting.

� The delay counter defines the number of trace samples that are taken
after a breakpoint occurs. (The CPU and BTT are not halted by the break-
point until the trace samples are collected.) The default value of the delay
counter is 0; its maximum value is 07FFh (204710). The delay counter is
a global setting.

 Using Hardware Breakpoints and Events

11-15 Using Hardware Breakpoint, Trace, and Timing Features

To access global settings, click on <Globals> in the BTT Setup dialog box;
you’ll see the Globals dialog box shown in Figure 11–5.

Figure 11–5. The Global Settings Dialog Box
Globals

Delay count [0].
Max trace [0].
End state [0].
Loop count [1].
Time out [0000.000 000 000]

<<OK>> <Cancel>

Figure 11–6 shows how the event counter, end state, loop counter, and delay
counter can interact. Figure 11–6 shows three levels of complexity; a hard-
ware breakpoint could occur at any of these three levels, depending on what
you want to accomplish. You can set up complex state sequencing and trace
collection, or you can set up a simple hardware breakpoint.

Figure 11–6. Sequence of Events That Determine When a Breakpoint Can Occur

1) Each time the BP/event conditions are met, the event counter is
decremented.

2) When the event counter reaches 0, the BTT moves to the next sequen-
tial state. This continues for each state in the sequence until the end
state is reached.

3) When the end state’s event counter reaches 0, the loop counter is
decremented.

4) The BTT then goes back to state 0 and continues sequencing through
the states in this manner until the loop counter reaches 0.

5) When the loop counter reaches 0, the delay counter is decremented
each time trace conditions are met (as defined for the end state).

6) When the delay counter reaches 0, the hardware breakpoint (defined
by the end state) occurs.

Basic breakpointing

If you want a hardware breakpoint to occur without having to sequence
through several states, follow these steps:

1) Make sure you are in state 0.

2) Define the BP/event conditions.

Using Hardware Breakpoints and Events

 11-16

3) If you want the hardware breakpoint to occur as soon as the BP/event
conditions are met, leave state 0’s event counter in the default setting (1).
If you would like the breakpoint to occur after the conditions have been met
several times, set the event counter to the number of times you want the
event to occur before breakpointing.

4) Leave the end state, the loop counter, and the delay counter at their default
settings (end state=state 0, loop counter=1, delay counter=0).

Because the current state and the end state are the same, and the loop and
delay counters are at their default settings, no decrementing or sequencing
occurs. This allows the breakpoint to occur immediately (or as soon as a
certain number of events occur, if you’re using the event counter).

Sequencing before a breakpoint

Sometimes it’s useful to repeat the actions performed in a series of states. For
example, this would be a good way to use the point or range timer to collect
the average time for a situation such as subroutine execution. To sequence
through states, follow these steps:

1) Decide how many times you want to sequence through states; assign this
value to the loop counter.

2) Select an end state (the beginning state for any sequence is always state
0; you can use any of the four states as the end state).

3) If you are using the point or range timer, define the starting and stopping
conditions for them in the appropriate state.

4) Define the BP/event conditions in the selected end state.

5) Leave the delay counter at its default setting.

Collecting traces, then breakpointing

You can use the delay counter to collect traces in combination with a hardware
breakpoint. When the BP/event conditions are met for the end state, the BTT
will collect a number of traces before taking the breakpoint. The end state must
define conditions for a trace action; the delay counter defines how many trace
samples will be collected before the breakpoint is taken.

This is useful for determining what happens following a particular event. You
can define the BP/event for the event in question, then gather trace samples;
after the trace samples are collected and the breakpoint is taken, you can
examine the trace buffer.

 Collecting Trace Samples

11-17 Using Hardware Breakpoint, Trace, and Timing Features

11.7 Collecting Trace Samples
A trace sample is a snapshot of the processor status, taken synchronously with
the ’370 clock. This snapshot shows the information on the address and data
buses, cycle information, timing information, and the reverse assembly of
associated code (when appropriate).

To collect trace samples, choose Trace from the Select action menu. (To
display the Select action menu, click on <Add action...> in the BTT Setup
dialog box.) The debugger will display an action dialog box where you can
define a set of conditions that will cause bus cycle information to be stored in
the trace buffer.

The trace buffer is a circular buffer that can hold up to 2047 trace samples,
numbered 0–2046. By default, if more than 2047 trace samples meet the trace
conditions, they will continue to be written to the trace buffer, overwriting exist-
ing samples beginning with sample 0.

You can change this behavior by using a max trace value. Max trace is a global
setting. (To access the global settings, click on <Globals> in the BTT Setup
dialog box.) The default value for max trace is 0, which enables the overwrite
behavior. If you choose a nonzero max-trace value, the BTT will halt after it
collects max trace number of samples. This prevents overwriting of the trace
buffer. The maximum value for max trace is 2047.

Trace modes

In addition to defining whether a memory read, memory write, or instruction
acquisition cycle can be collected as a trace sample, you can use the trace
mode to define whether cycles that are associated with a qualified trace
sample can also be collected. There are two trace modes, normal mode and
TRIX (trace instruction extended) mode, which are defined in this part of the
BTT Setup dialog box:

Trace Mode
(*) Nor mal
() TRIX

The trace mode defines which cycles can be stored in the trace buffer:

� Qualified cycles only. When you select normal mode , only trace sam-
ples that meet the conditions you’ve defined will be stored in the trace buff-
er. Normal mode is the default trace mode.

� Qualified IAQ cycles plus associated reads and writes. When you
select TRIX mode , if an instruction opcode qualifies as a trace sample,
then all reads and writes associated with that instruction are also stored
in the trace buffer. (Note that the first byte of an instruction must qualify,
or no associated cycles can qualify.)

Using the BTT Timers

 11-18

11.8 Using the BTT Timers

The BTT has three types of timers:

� The point timer is an action that can be used for collecting timing statis-
tics.

� The range timer is an action that can be used for collecting timing statis-
tics.

� The time-out timer is a global setting that limits the amount of time that
your program can run.

Collecting timing statistics

The point timer or range timer can be defined by selecting Point Timer or
Range Timer from the Select action menu. (To display the Select action menu,
click on <Add action...> in the BTT Setup dialog box.)

The point and range timers operate similarly, tracking the amount of time that
elapses from the point at which one condition occurs to the point at which a
second condition occurs. The difference between these timers involves the
types of conditions that can cause the timers to start and stop:

� The point timer starts and stops on address values. Other options—data
values, memory cycle types, etc.—can also be used to qualify starting and
stopping, but they are shared; the only condition that varies is the address.

When you select Point Timer from the Select action menu, the debugger
displays a dialog box where you can define the conditions for starting and
stopping the timer. You must define two address values; the addr1 field
defines the starting address, and the addr2 field defines the stopping
address.

� The range timer starts and stops on independent sets of conditions.

When you select Range Timer from the Select action menu, the debugger
displays a dialog box where you can define the conditions for starting the
range timer; when you finish defining the conditions and click on <OK>, the
debugger displays a second dialog box where you can define the condi-
tions for stopping the range timer. Because you must select separate start-
ing and stopping conditions, the range timer counts as two actions for a
state.

You can define a total of two timer actions per state—one point timer and one
range timer action, two point timer actions, or two range timer actions.

 Using the BTT Timers

11-19 Using Hardware Breakpoint, Trace, and Timing Features

The timers track in a cumulative manner; they can be started and stopped
many times. When a timer is started for the first time, it begins counting from
0. If a timer restarts, instead of starting from 0, it adds to the previous count
so that it tracks the total time for the BTT session.

Timing information is reported along with trace information in the INSPECT
window. The information is listed for timers that are labeled as timer 1 and timer
2. The numbers refer to which timer action you defined first; the INSPECT
window will report the first timer action you defined for a state as timer 1 statis-
tics and the second timer action that you defined for the same state as timer
2 statistics. For example, if you defined two point timer actions in state 0, the
first one would be reported as timer 1, and the second would be reported as
timer 2. The action dialog box will tell you if you’re defining timer 1 or timer 2
by displaying the phrase Timer #1 or Timer #2 in the upper right corner of the
box.

If you move to another state and define more timer actions, again, the first timer
you define for the state will be reported as timer 1 and the second as timer 2.
These statistics are not reported independently—they are combined with the
timer statistics that are already being collected for timer 1 and timer 2. The
timing statistics shown in the INSPECT window will be accumulated statistics
for timer 1 and timer 2. Unless you are dealing with a special case, you may
want to restrict your timer definitions to a single state.

For more information, see Interpreting point and range timer statistics on page
11-24.

Limiting program run time

You can use the time-out timer to define a time limit for running your program.

The time-out timer is one of the global settings. (To access the global settings,
click on <Globals> in the BTT Setup dialog box.) The time-out value is defined
in seconds, milliseconds, microseconds, and nanoseconds:

0000.000 000 000

seconds
milliseconds

microseconds
nanoseconds

The default setting is 0, which allows your program to run without a time limit.
Any setting other than 0 will cause your program to halt after it has run for the
specified time.

Viewing Trace Buffer and Timing Information

 11-20

11.9 Viewing Trace Buffer and Timing Information

To view the trace buffer, enter the INSP command or select Inspect from the
BTT pulldown menu. The debugger will open the INSPECT window, which
looks like the window shown in Figure 11–7.

Figure 11–7. An Example of the INSPECT Window

Inspect
INDX ST h m s ms us ns EXTERNAL CYCLE ADDR DATA REVERSE ASM
0000 0 0:00:00.000 000 400 11111111 IAQ 7003 8C BR 7000h
0001 0 0:00:00.000 000 800 11111111 MR 7004 70
0002 0 0:00:00.000 001 200 11111111 MR 7005 00
0003 0L 0:00:00.000 002 200 11111111 IAQ 7000 42 MOV R07,R08
0004 0 0:00:00.000 002 600 11111111 MR 7001 07
0005 0 0:00:00.000 002 800 11111111 MR 0007 00

T1 0:00:00.000 000 000 AVG1 0:00:00.000 000 000 T2 0:00:00.000 000 000

trace buffer

point & range timer
statistics

The INSPECT window shows trace buffer information as well as point and
range timer statistics.

Interpreting trace buffer information

The trace-buffer portion of the INSPECT window shows the following informa-
tion:

� INDX field. This field shows the trace sample’s number in the buffer. (The
trace buffer can hold up to 2047 samples.)

� ST field. This field shows which state the BTT was in when the sample was
collected. Additionally, next to the state number, you will see an E if the
trace sample also met BP/event conditions or an L if the trace sample was
the last event and caused a breakpoint to occur.

� h to ns fields. The next several fields show timing information about the
trace sample relative to the previous sample. The timing information is for-
matted in hours, minutes, seconds, microseconds, and nanoseconds.

By default, the time shown is the total amount of time that has passed from
the start of tracing to the time a trace sample was collected. However, the
INSPECT window can report the time in three ways. To select another
method, choose Format from the BTT menu. You’ll see a dialog box like
the one in Figure 11–8.

 Viewing Trace Buffer and Timing Information

11-21 Using Hardware Breakpoint, Trace, and Timing Features

Figure 11–8. Selecting the Trace Sample Timing Format

Format Time Stamp
(*) Absolute () Delta () Mark

<<OK>> <Cancel>

Your choices for formatting the timing information are:

� Total time. The Absolute setting is the default, showing the total
amount of time that has passed from the start of tracing to the time the
trace sample was collected.

� Difference between samples. Select the Delta setting to show the
time difference between any trace sample and the sample that
precedes it.

� Difference from a specific sample. Select the Mark setting to show
the time difference between any trace sample and a specific sample
within the trace buffer; the specific sample is selected by the position
of the cursor within the INSPECT window. (For methods of locating a
particular sample, see Viewing selected trace samples on page
11-22.) Samples collected before the selected sample show a nega-
tive time difference; samples collected after the selected sample show
a positive time difference.

� EXTERNAL field. This field shows the values on the external probes at
the time the trace sample was collected. A 1 indicates a high signal, and
a 0 indicates a low signal.

� CYCLE field. This field shows what type of memory cycle took place when
the trace sample was collected. You will see one of three codes in this field:

MR The trace sample was collected during a memory-read cycle.

MW The trace sample was collected during a memory-write cycle.

IAQ The trace sample was collected during an instruction-acquisition
cycle.

� ADDR field. This field shows the value that was on the address bus when
the trace sample was collected.

� DATA field. This field shows the value that was on the data bus when the
trace sample was collected.

� REVERSE ASM field. This field shows the assembly language instruction
associated with the trace sample.

Viewing Trace Buffer and Timing Information

 11-22

Viewing selected trace samples

There are several ways to move around in the INSPECT window. You can
scroll through the INSPECT window just as you can scroll through any other
window. You can also look for a specific trace sample, either by its position
within the trace buffer or by its conditions.

To look for a trace sample by its position, select Position from the BTT menu;
you’ll see a dialog box like the one in Figure 11–9. Fill in the index number of
a specific trace sample, or click on <Bottom> to go to the end of the trace buffer.

Figure 11–9. Locating a Trace Sample by Its Index Number

BTT Position

Sample Number [0] < Bottom>.

 << OK>> < Cancel>

To look for a trace sample that meets specific conditions, select Lookup from
the BTT menu; you’ll see a dialog box like the one in Figure 11–10.

Figure 11–10.Locating a Trace Sample by Its Conditions

Locate

Address qualifiers

Data qualifiers

Cycle

Flag : (*)None ()Event ()Last

 (*)O ne point () Two points () I n range ()O utside range

addr1=[0x0000].
addr2=[N/A]
 mask [0x0000].

 (*)On e point ()Two points ()I n range ()Out s ide range

data1=[0x00].
data2=[N/A]
 mask [0x00].

ex tern [0x00].
 mask [0x00].

 [X] M R [X] M W [X] IA Q
<<OK>> <Cancel>

Supply information in this dialog box in the same way that you would if you
were defining an action; the debugger will look for a trace sample that defines
the conditions you supply. Use the Flag field to indicate whether you are
searching for a specific type of event. Your choices are:

 Viewing Trace Buffer and Timing Information

11-23 Using Hardware Breakpoint, Trace, and Timing Features

� No event. Select None if you want to look for a trace sample that was not
an event. None is the default selection.

� Simple event. Select Event if you want to look for a trace sample that also
met BP/event conditions.

� Last event and breakpoint. Select Last if you want to look for a trace
sample that was the last event and that caused a hardware breakpoint to
occur.

Storing trace buffer contents to a file

It can be useful to collect several sets of trace samples and compare the
results. The easiest way to do this is to save the contents of the trace buffer
before you begin to collect more samples. To do this, select Save from the BTT
menu. You’ll see a dialog box like the one in Figure 11–11.

Figure 11–11.Saving the Trace Buffer

Save trace buffer

File name [].
Start [0....] to End [299...]

<<OK>> <Cancel>

The dialog box asks you for the name of the file where you’d like to store the
trace buffer contents. The dialog box also asks you which trace samples
should be stored; the Start field specifies the first sample, and the End field
specifies the last. By default, all samples are stored.

When you examine the file, the information will be in the same format in which
it was displayed in the INSPECT window.

You can also use the TSAVE command to save the contents of the trace buffer.
The syntax for this command is:

tsave filename

where filename names the file that contains the saved information.

Viewing Trace Buffer and Timing Information / Reusing a BTT Setup

 11-24

Interpreting point and range timer statistics

The INSPECT window shows statistics for two timers, labeled timer 1 and
timer 2. These timers correspond to point or range timer actions. The timer
action you defined first for a state is represented as timer 1, and the timer
action you defined second for the same state is represented as timer 2. For
more information about point and range timer actions, see Collecting timing
statistics on page 11-18.

The INSPECT window shows the total times for both timers. It also shows the
average for timer 1. (The average is the total time divided by the number of
times the timer was started.)

11.10 Reusing a BTT Setup

You can save the current BTT setup—all of the global settings and all of the
actions you’ve defined for each of the states—so that you can use the setup
again. To do this, click on <Store> in the BTT Setup dialog box. You’ll see a
dialog box like the one in Figure 11–12. This dialog box asks for the name of
the file where you’d like to save the information.

Figure 11–12.Saving the Current BTT Setup

Store BTT

File name [].

<<OK>> <Cancel>

When you want to reuse a saved BTT setup, open the BTT Setup dialog box
and click on <Load>. You’ll see a dialog box like the one in Figure 11–13. This
dialog box asks for for the name of the file that contains the saved setup.

Figure 11–13.Loading a Saved BTT Setup

Load BTT

File name [].

<<OK>> <Cancel>

You can also use the BTT command to load a saved setup. The syntax for this
command is:

BTT filename

where filename names the file that contains the saved setup.

12-1 Chapter Title—Attribute Reference

Profiling Code Execution

The profiling environment is a special debugger environment in which you can
collect execution statistics for your code. Only the XDS/22 emulation system
using MicroSoft Windows supports the profiling environment.The profiling en-
vironment is separate from the basic debugging environment; the only way to
switch between the two environments is by exiting and then reinvoking the
debugger.

This chapter describes the general profiling process as well as the differences
between the basic debugging environment and the profiling environment.

Topic Page

12.1 An Overview of the Profiling Process 12-2
A profiling strategy 12-3

12.2 Entering the Profiling Environment 12-4
Restrictions of the profiling environment 12-4
Using pulldown menus in the profiling environment 12-5

12.3 Defining Areas for Profiling 12-6
Marking an area 12-6
Disabling an area 12-8
Re-enabling an area 12-11
Unmarking an area 12-12

12.4 Defining the Stopping Point 12-14

12.5 Running a Profiling Session 12-16

12.6 Viewing Profile Data 12-18
Viewing different profile data 12-18
Data accuracy 12-20
Sorting profile data 12-20
Viewing different profile areas 12-20
Interpreting session data 12-21
Viewing code associated with a profile area 12-22

12.7 Saving Profile Data to a File 12-23

Chapter 12

An Overview of the Profiling Process

 12-2

12.1 An Overview of the Profiling Process

Profiling consists of five simple steps:

Enter the profiling environment. See Entering the Profiling Envi-
ronment, page 12-4.

Identify the areas of code where
you’d like to collect statistics.

See Defining Areas for Profiling,
page 12-6.

Identify the profiling session
stopping points.

See Defining a Stopping Point,
page 12-14.

Step 2

Step 3

Step 1

Begin profiling. See Running a Profiling Ses-
sion, page 12-16.

Step 4

View the profile data. See Viewing Profile Data, page
12-18.

Step 5

Note:

When you compile a program that will be profiled, you must use the –g and
the –as options. The –g option includes symbolic debugging information; the
–as option ensures that you will be able to include ranges as profile areas.

 An Overview of the Profiling Process

12-3 Chapter Title—Attribute Reference

A profiling strategy

The profiling environment provides a method for collecting execution statistics
about specific areas in your code. This gives you immediate feedback on your
application’s performance.Here’s a suggestion for a basic approach to opti-
mizing the performance of your program.

1) Mark all the functions in your program as profile areas.

2) Run a profiling session; find the busiest functions.

3) Unmark all the functions.

4) Mark the individual lines in the busy functions and run another profiling
session.

Entering the Profiling Environment

 12-4

12.2 Entering the Profiling Environment
To enter the profiling environment, invoke the debugger with the –profile
option. At the system command line, enter:

xds370w –profile

Use any additional debugger options that you desire (–b, –p, etc.).

Restrictions of the profiling environment

In addition to the special features supported by the profiling environment,
several restrictions apply to the profiling environment:

� You’ll always be in mixed mode.

� COMMAND, DISASSEMBLY, FILE, and PROFILE are the only windows
available; additional windows, such as the WATCH window, cannot be
opened.

� Breakpoints cannot be set. (However, you can use a similar feature called
stopping points in marking sections of code for profiling.)

� The profiling environment supports only a subset of the debugger
commands. Table 12–1 lists the debugger commands that can and can’t
be used in the profiling environment.

Table 12–1.Debugger Commands That Can/Can’t be Used in the Profiling Environment

Can be used Can’t be used

?
ALIAS
CD
CLS
DASM
DIR
DLOG
ECHO
EVAL
FILE
FUNC
IF/ELSE/
ENDIF
LOAD
LOOP/
ENDLOOP
MA
MAP
MD
ML

MOVE
MR
PROMPT
QUIT
RELOAD
RESET
RESTART
RRUN
SCONFIG
SIZE
SLOAD
SYSTEM
TAKE
UNALIAS
USE
VERSION
WIN
WRUN
ZOOM

ADDR
ASM
BA
BD
BL
BORDER
BR
BTT
C
CALLS
CNEXT
COLOR
CSTEP
DISP
FILL
GO
HALT
INSP
MEM
MIX

MS
NEXT
PATCH
RETURN
RRUNF
RUN
RUNB
RUNF
SCOLOR
SETF
SOUND
SSAVE
STEP
TSAVE
WA
WD
WHATIS
WR
WRUNF

Be sure you don’t use any of the “can’t be used” commands in your initial-
ization batch file.

 Entering the Profiling Environment

12-5 Profiling Code Execution

Using pulldown menus in the profiling environment

The debugger displays a different menu bar in the profiling environment:

Load mAp Mark Enable Disable Unmark View Stop–points Profile

The Load and mAp menus correspond to the Load and Map menus available
in the basic debugger environment. The other entries provide access to profil-
ing commands and features.

The profiling environment’s pulldown menus operate similarly to the basic
debugger pulldown menus. However, several of the menus have additional
submenus. A submenu is indicated by a > character following a menu item. For
example, here’s one of the submenus for the Mark menu:

Mark

C level >
Asm level > Line areas >

Range areas >
Function areas >

Explicitly
in one Function

C level >
Line areas >

in one Function

Chapter 5, Entering and Using Commands, shows which debugger
commands are associated with the menu items in the basic debugger pull-
down menus. Because the profiling environment supports over 100 profile-
specific commands, it’s not practical to show the commands associated with
the menu choices. Here’s a tip to help you with the profiling commands: the
highlighted menu letters form the name of the corresponding debugger com-
mand. For example, if you prefer the function-key approach to using menus,
the highlighted letters in Mark→ C level→Line areas→in one Function show
that you could press ALT M , C , L , F . This also shows that the correspond-
ing debugger command is MCLF.

Defining Areas for Profiling

 12-6

12.3 Defining Areas for Profiling

Within the profiling environment, you can collect statistics on three types of
areas:

� Individual lines in C or disassembly
� Ranges in C or disassembly
� Functions in C only

To identify any of these areas for profiling, you mark the line, range, or function.
You can disable areas so they won’t affect the profile data. You can re-enable
areas that have been disabled. And, you can unmark areas that you are no
longer interested in.

The mouse provides a means of accomplishing the simplest marking, disab-
ling, enabling, and unmarking tasks. The pulldown menus also support these
tasks; additionally, they provide a means of accomplishing more complex
tasks.

The following subsections explain how to mark, disable, re-enable, and
unmark profile areas by using the mouse or the pulldown menus. The individu-
al commands are summarized in Restrictions of the profiling environment on
page 12-4.

Marking an area

Marking an area qualifies it for profiling so that the debugger can collect timing
statistics about the area.

Below are directions for using the mouse to mark a line area, a range area, or
a function area. Remember, to display C code, use the FILE or FUNC com-
mand; to display disassembly, use the DASM command.

Note:

� Marking an area in C does not mark the associated code in disassembly.

� Areas can be nested; for example, you can mark a line within a marked
range. The debugger will report statistics for both the line and the func-
tion.

� Ranges cannot overlap and they cannot span function boundaries.

 Defining Areas for Profiling

12-7 Chapter Title—Attribute Reference

Marking a line. These instructions apply to both C and disassembly.

1) Point to the line you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with a blinking >>.

3) Click the left mouse button again.

The beginning of the line will be highlighted with Le> (line enabled).

Marking a range. These instructions apply to both C and disassembly.

1) Point to the first line of the range you want to mark.

2) Click the left mouse button.

The beginning of the line will be highlighted with a blinking >>.

3) Point to the last line of the range.

4) Click the left mouse button again.

The beginning of the line will be highlighted with Re> (range enabled),
marking the beginning of the range. The last line will be highlighted with
<<, marking the end of the range.

Marking a function. These instructions apply to C only.

1) Point to the marked line.

2) Click the left mouse button.

The beginning of the line will be highlighted with Fe> (function enabled).

Defining Areas for Profiling

 12-8

Table 12–2 lists the menu selections for marking areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 12–2.Menu Selections for Marking Areas

To mark this area
C only:
Mark→C level

Disassembly only:
Mark→Asm level

Lines

� By line number†

� All lines in a function

→Line areas
→Explicitly
→in one Function

→Line areas
→Explicitly
→in one Function

Ranges

� By line numbers†

→Range areas
→Explicitly

→Range areas
→Explicitly

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

† C areas are identified by line number; disassembly areas are identified by address.

Disabling an area

At times, it is useful to identify areas that must not impact profile statistics. To
do this, you should disable the appropriate area. Disabling effectively sub-
tracts the timing information of the disabled area from all profile areas that in-
clude or call the disabled area. Areas must be marked before they can be dis-
abled.

For example, if you have marked a function that calls a standard C function
such as malloc(), you may not want malloc() to affect the statistics for the call-
ing function. You could mark the line that calls malloc(), and then disable the
line. This way, the profile statistics for the function would not include the statis-
tics for malloc().

Note:

If you disable an area after you’ve already collected statistics on it, that infor-
mation will be lost.

 Defining Areas for Profiling

12-9 Chapter Title—Attribute Reference

The simplest way to disable an area is to use the mouse, as described below.

Disabling a line area:

1) Point to the marked line.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Ld> (line disabled).

Disabling a range area:

1) Point to the marked line.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Rd> (range disabled).

Disabling a function area:

1) Point to the marked statement that defines the function.

2) Click the left mouse button once.

The beginning of the line will be highlighted with Fd> (function disabled).

Defining Areas for Profiling

 12-10

Table 12–3 lists the menu selections for disabling areas. The highlighted areas
show the keys that you can use if you prefer to use the function-key method
of selecting menu choices.

Table 12–3.Menu Selections for Disabling Areas

To disable this area
C only:
Disable→C level

Disassembly only:
Disable→Asm level

C and disassembly:
Disable→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.

 Defining Areas for Profiling

12-11 Chapter Title—Attribute Reference

Re-enabling a disabled area

When an area has been disabled and you would like to profile it once again,
you must enable the area. To use the mouse, just point to the line, the function,
or the first line of a range, and click the left mouse button; the range will once
again be highlighted in the same way as a marked area.

In addition to using the mouse, the debugger supports an entire set of
commands for enabling areas. These commands are easiest to enter by using
the Enable menu. Table 12–4 lists these menu selections.

Table 12–4.Menu Selections for Enabling Areas

To enable this area
C only:
Enable→C level

Disassembly only:
Enable→Asm level

C and disassembly:
Enable→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Defining Areas for Profiling

 12-12

Unmarking an area

If you want to stop collecting information about a specific area, unmark it. You
can use the mouse (described below.

Unmarking a line area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a range area:

1) Point to the marked line.

2) Click the right mouse button once.

The line will no longer be highlighted.

Unmarking a function area:

1) Point to the marked statement that defines the function.

2) Click the right mouse button once.

The line will no longer be highlighted.

Table 12–5 lists the selections on the Unmark menu.

 Defining Areas for Profiling

12-13 Chapter Title—Attribute Reference

Table 12–5.Menu Selections for Unmarking Areas

To unmark this area
C only:
Unmark→C level

Disassembly only:
Unmark→Asm level

C and disassembly:
Unmark→Both levels

Lines

� By line number†

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges

� By line numbers†

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

→All areas
→in one Function
→in one Module
→Globally

† C areas are identified by line number; disassembly areas are identified by address.

Defining a Stopping Point

 12-14

12.4 Defining a Stopping Point

Before you run a profiling session, you must identify the point where the debug-
ger should stop collecting statistics. By default, C programs contain an exit la-
bel, and this is defined as the default stopping point when you load your pro-
gram. (You can delete exit as a stopping point, if you wish.) If your program
does not contain an exit label, or if you prefer to stop at a different point, you
can define another stopping point. You can set multiple stopping points; the
debugger will stop at the first one it finds.

Each stopping point is highlighted in the FILE or DISASSEMBLY window with
a * character at the beginning of the line. Even though no statistics can be
gathered for areas following a stopping point, the areas will be listed in the
PROFILE window.

You can use the mouse or commands to add or delete a stopping point; you
can also use commands to list or reset all the stopping points.

Note:

You cannot set a stopping point on a statement that has already been defined
as a part of a profile area.

To set a stopping point:

1) Point to the statement that you want to add as a stopping point.

2) Click the right mouse button.

To remove a stopping point:

1) Point to the statement marking the stopping point that you want to delete.

2) Click the right mouse button.

 Defining a Stopping Point

12-15 Chapter Title—Attribute Reference

The debugger supports several commands for adding, deleting, resetting, and
listing stopping points (described below); all of these commands can also be
entered from the Stop-points menu.

sa To add a stopping point, use the SA (stop add) command. The syntax for this
command is:

sa address

This adds address as a stopping point. The address parameter can be a label,
a function name, or a memory address.

sd To delete a stopping point, use the SD (stop delete) command. The syntax for
this command is:

sd address

This deletes address as a stopping point. As for SA, the address can be a label,
a function name, or a memory address.

sr To delete all the stopping points at once, use the SR (stop reset) command.
The syntax for this command is:

sr

This deletes all stopping points, including the default exit (if it exists).

sl To see a list of all the stopping points that are currently set, use the SL (stop
list) command. The syntax for this command is:

sl

Running a Profiling Session

 12-16

12.5 Running a Profiling Session

Once you have defined profile areas and a stopping point, you can run a profil-
ing session. You can run two types of profiling sessions:

� A full profile collects a full set of statistics for the defined profile areas.

� A quick profile collects a subset of the available statistics (it doesn’t
collect exclusive or exclusive max data, which are described in Section
12.6). This reduces overhead because the debugger doesn’t have to track
entering/exiting subroutines within an area.

The debugger supports commands for running both types of sessions. In addi-
tion, the debugger supports a command that helps you to resume a profiling
session. All of these commands can also be entered from the Profile menu.

pf To run a full profiling session, use the PF (profile full) command. The syntax
for this command is:

pf starting point [, update rate]

pq To run a quick profiling session, use the PQ (profile quick) command. The
syntax for this command is:

pq starting point [, update rate]

The debugger will collect statistics on the defined areas between the starting
point and the stopping point. The starting point parameter can be a label, a
function name, or a memory address. There is no default starting point.

The update rate is an optional parameter that determines how often the statis-
tics listed in the PROFILE window will be updated. The update rate parameter
can have one of these values:

0 An update rate of 0 means that the statistics listed in the PROFILE
window are not updated until the profiling session is halted. A
“spinning wheel” character will be shown at the beginning of the
PROFILE window label line to indicate that a profiling session is in
progress. 0 is the default value.

≥1 If a number greater than or equal to 1 is supplied, the statistics in the
PROFILE window are updated during the profiling session. If a value
of 1 is supplied, the data will be updated as often as possible. When
larger numbers are supplied, the data is updated less often.

<0 If a negative number is supplied, the statistics listed in the PROFILE
window are not updated until the profiling session is halted. The “spin-
ning wheel” character is not displayed.

 Running a Profiling Session

12-17 Chapter Title—Attribute Reference

No matter which update rate you choose, you can force the PROFILE window
to be updated during a profiling session by pointing to the window header and
clicking a mouse button.

After you enter a PF or PQ command, your program is restarted and run up
to the defined starting point. Profiling begins when the starting point is reached
and continues until a stopping point is reached or until you halt the profiling
session by pressing ESC .

pr Use the PR command to resume a profiling session that has halted. The syntax
for this command is:

pr [clear data [, update rate]]

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

0 The profiler will continue to collect data, adding it to the existing
data for the profiled areas, and to use the previous internal profile
stacks. 0 is the default value.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Viewing Profile Data

 12-18

12.6 Viewing Profile Data

The statistics collected during a profiling session are displayed in the PRO-
FILE window. Figure 12–1 shows an example of this window.

Figure 12–1. An Example of the PROFILE Window

PROFILE
 Area Name Count Inclusive Incl–Max Exclusive Excl–Max

AR 00f00001–00f00008 1 65 65 19 19

CL <sample>#58 1 50 50 7 7

CR <sample>#59–64 1 87 87 44 44

CF call() 24 1623 99 1089 55

AL meminit 1 3 3 3 3

AL 00f00059 disabled

profile
areas

profile data

The example in Figure 12–1 shows the PROFILE window with some default
conditions:

� Column headings show the labels for the default set of profile data,
including Count, Inclusive, Incl-Max, Exclusive, and Excl-Max.

� The data is sorted on the address of the first line in each area.

� All marked areas are listed, including disabled areas.

You can modify the PROFILE window to display selected profile areas or
different data; you can also sort the data differently. The following subsections
explain how to do these things.

Note:

To reset the PROFILE display back to its default characteristics, use
View→Reset.

Viewing different profile data

By default, the PROFILE window shows a set of statistics labelled as Count,
Inclusive, Incl-Max, Exclusive, and Excl-Max. Another field that is not included
as part of the default statistics, Address, can also be displayed. Table 12–6
describes the statistic that each field represents.

 Viewing Profile Data

12-19 Chapter Title—Attribute Reference

Table 12–6.Types of Data Shown in the PROFILE Window

Label Profile data

Count The number of times a profile area is entered during a session.

Inclusive The total execution time (cycle count) of a profile area, including the execution time
of any subroutines called from within the profile area.

Incl-Max
(inclusive maximum)

The maximum inclusive time for one iteration of a profile area.

If the profiled code contains no flow control (such as conditional processing), inclu-
sive-maximum will equal the inclusive timing divided by the count.

Exclusive The total execution time (cycle count) of a profile area, excluding the execution time
of any subroutines called from within the profile area.

In general, the exclusive data provides the best statistics for comparing the execution
time of one profile area to another area.

Excl-Max
(exclusive maximum)

The maximum exclusive time for one iteration of a profile area.

Address The memory address of the line. If the area is a function or range, the Address field
shows the memory address of the first line in the area.

In addition to viewing this data in the default manner, you can view each of
these statistics individually. The benefit of viewing them individually is that in
addition to a cycle count, you are also supplied with a percentage indication
and a histogram.

In order to view the fields individually, you can use the mouse—just point to the
header line in the PROFILE window and click a mouse button. You can also
use the View→Data menu to select the field you’d like to display. When you
use the left mouse button to click on the header, fields are displayed individual-
ly in the order listed below on the left. (Use the right mouse button to go in the
opposite direction.) On the right are the corresponding menu selections.

Count

Inclusive

Incl-max

Exclusive

Excl-max

Address

Default

View→Data →Count

→Inclusive

→Inclusive Max

→Exclusive

→Exclusive Max

→Address

→All

One advantage of using the mouse is that you can change the display while
you’re profiling.

Viewing Profile Data

 12-20

Data accuracy

During a profiling session, the debugger sets many internal breakpoints and
issues a series of RUNB commands. As a result, the processor is momentarily
halted when entering and exiting profiling areas. This stopping and starting
can affect the cycle count information so that it varies from session to session.
This method of profiling is referred to as intrusive profiling.

Treat the data as relative, not absolute. The percentages and histograms are
relevant only to the cycle count from the starting point to the stopping
point—not to overall performance. Even though the cycle counts may change
if you profiled the same area twice, the relationship of that area to other profiled
areas should not change.

Sorting profile data

By default, the data displayed in the PROFILE window is sorted on the memory
addresses of the displayed areas. The area with the least significant address
is listed first, followed by the area with the most significant address, etc. When
you view fields individually, the data is automatically sorted from highest cycle
count to lowest (instead of by address).

You can sort the data on any of the data fields by using the View→Sort menu.
For example, to sort all the data based on the values of the Inclusive field, use
View→Sort→Inclusive; the areas will be redisplayed with the area with the
highest Count field displayed first and the area with the lowest area displayed
last. This applies even when you are viewing individual fields.

Viewing different profile areas

By default, all marked areas are listed in the PROFILE window. You can modify
the window to display selected areas. To do this, use the selections on the
View→Filter pulldown menu; these selections are summarized in Table 12–7.

 Viewing Profile Data

12-21 Chapter Title—Attribute Reference

Table 12–7.Menu Selections for Displaying Areas in the PROFILE Window

To view these areas
C only:
View→Filter→C level

Disassembly only:
View→Filter→Asm level

C and disassembly:
View→Filter→Both levels

Lines

� By line number

� All lines in a function

� All lines in a module

� All lines everywhere

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
→Explicitly
→in one Function
→in one Module
→Globally

→Line areas
not applicable
→in one Function
→in one Module
→Globally

Ranges

� By line numbers

� All ranges in a function

� All ranges in a module

� All ranges everywhere

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
→Explicitly
→in one Function
→in one Module
→Globally

→Range areas
not applicable
→in one Function
→in one Module
→Globally

Functions

� By function name

� All functions in a module

� All functions everywhere

→Function areas
→Explicitly
→in one Module
→Globally

not applicable

→Function areas
not applicable
→in one Module
→Globally

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

→Range areas
→in one Function
→in one Module
→Globally

→Range areas
→in one Function
→in one Module
→Globally

→Range areas
→in one Function
→in one Module
→Globally

Interpreting session data

General information about a profiling session is displayed in the COMMAND
window display area during and after the session. This information identifies
the starting and stopping points. It also lists statistics for three important areas:

� Run cycles shows the number of execution cycles consumed by the
program from the starting point to the stopping point.

� Profile cycles equals the run cycles minus the cycles consumed by
disabled areas.

Viewing Profile Data

 12-22

� Hits show the number of internal breakpoints encountered during the pro-
filing session.

Viewing code associated with a profile area

You can view the code associated with a displayed profile area. The debugger
will update the display so that the associated C or disassembly statements are
shown in the FILE or DISASSEMBLY windows.

Use the mouse to select the profile area in the PROFILE window and display
the associated code:

1) Point to the appropriate area name in the PROFILE window.

2) Click the right mouse button.

The area name and the associated C or disassembly statement will be
highlighted. To view the code associated with another area, point-and-click
again.

If you are attempting to show disassembly, you may have to make several
attempts because program memory can only be accessed when the target is
not running.

 Saving Profile Data to a File

12-23 Chapter Title—Attribute Reference

12.7 Saving Profile Data to a File

You may want to run several profiling sessions during a debugging session.
Whenever you start a new profiling session,the results of the previous session
are lost. However, you can save the results of the current profiling session to
a system file.There are two ways that you can do this:

vac To save the contents of the PROFILE window to a system file, use the VAC
(view save current) command. The syntax for this command is:

vac filename

This saves only the current view; if, for example, you are viewing only the
Count field, then only that information will be saved.

vaa To save all data for the currently displayed areas, use the VAA (view save all)
command. The syntax for this command is:

vaa filename

This saves all views of the data—including the individual count, inclusive,
etc.— views with the percentage indications and histograms.

Both commands write profile data to filename. The filename can include path
information. There is no default filename. If filename already exists, the
command will overwrite the file with the new data.

Note that if the PROFILE window displays only a subset of the areas that are
marked for profiling, data is saved only for those areas that are displayed. (For
VAC, the currently displayed data will be saved for the displayed areas. For
VAA, all data will be saved for the displayed areas.) If some areas are hidden
and you want to save all the data, be sure to select View→Reset before saving
the data to a file.

The file contents are in ASCII and are formatted in exactly the same manner
as they are displayed (or would be displayed) in the PROFILE window. The
general profiling-session information that is displayed in the COMMAND
window is also written to the file.

 12-24

13-1 Summary of Commands and Special Keys

Summary of Commands
 and Special Keys

This chapter summarizes the debugger’s commands and special key se-
quences. It begins with a description of the various categories of debugger
commands and then lists the commands that fall under these categories.

The main portion of this chapter is the alphabetical command reference. Each
debugger command is listed with its syntax, applicable modes, its correspon-
dence to a pulldown menu (if any), and a short description. The chapter ends
with a summary of special keys and their functions in the debugging environ-
ment.

Topic Page

13.1 Functional Summary of Debugger Commands 13-2
Changing modes 13-3
Managing windows 13-3
Performing system tasks 13-3
Displaying and changing data 13-4
Displaying files and loading programs 13-5
Memory mapping 13-5
Customizing the screen 13-5
Running programs 13-6
Managing breakpoints 13-6
Profiling commands 13-7

13.2 How Menu Selections Correspond to Commands 13-8

13.3 Alphabetical Summary of Debugger Commands 13-11

13.4 Summary of Profiling Commands 13-53

13.5 Summary of Special Keys 13-58
Editing text on the command line 13-58
Using the command history 13-58
Switching modes 13-59
Halting or escaping from an action 13-59
Displaying the pulldown menus 13-59
Running code 13-60
Selecting or closing a window 13-60
Moving or sizing a window 13-60
Scrolling through a window’s contents 13-61
Editing data or selecting the active field 13-61

Chapter 13

Functional Summary of Debugger Commands

 13-2

13.1 Functional Summary of Debugger Commands

This section summarizes the debugger commands according to these catego-
ries:

� Changing modes. These commands enable you to switch freely among
the three debugging modes (auto, mixed, and assembly). You can also se-
lect these commands from the Mode pulldown menu.

� Managing windows. These commands enable you to select the active
window and move or resize the active window. You can also perform these
functions with the mouse.

� Performing system tasks. These commands enable you to perform sev-
eral DOS-like functions and provide you with some control over the target
system.

� Displaying and changing data. These commands enable you to display
and evaluate a variety of data items. Some of these commands are also
available on the Watch pulldown menu.

� Displaying files and loading programs. These commands enable you
to change the displays in the FILE and DISASSEMBLY windows and to
load object files into memory. Several of these commands are available
on the Load pulldown menu.

� Memory mapping. These commands enable you to define the areas of
target memory that the debugger can access. These commands are also
available on the Memory pulldown menu.

� Customizing the screen. These commands allow you to customize the
debugger display, then save and later reuse the customized displays.
These commands are also available from the Color pulldown menu.

� Running programs. These commands provide you with a variety of
methods for running your programs in the debugger environment. The ba-
sic run and single-step commands are available on the menu bar.

� Managing breakpoints. These commands provide you with a com-
mand-line method for controlling software breakpoints. These commands
are available through the Break pulldown menu. You can also set/clear
breakpoints interactively.

� Profiling commands. These commands enable you to collect execution
statistics for your code. Commands can be entered from the pulldown me-
nus or on the command line.

 Functional Summary of Debugger Commands

13-3 Summary of Commands and Special Keys

Changing modes

To do this
Use this
command See page

Put the debugger in assembly mode asm 13-13

Put the debugger in auto mode for debugging C code c 13-15

Put the debugger in mixed mode mix 13-29

Managing windows

To do this
Use this
command See page

Make the active window as large as possible zoom 13-52

Open the INSPECT window (XDS/22 only) insp 13-25

Reposition the active window move 13-30

Resize the active window size 13-42

Select the active window win 13-50

Performing system tasks

To do this
Use this
command See page

Associate a beeping sound with the display of error
messages

sound 13-43

Change the current working directory from within the
debugger environment

cd/chdir 13-16

Check the current version of the debugger version 13-48

Clear all displayed information from the COMMAND
window display area

cls 13-16

Conditionally execute debugger commands in a
batch file

if/else/endif 13-25

Define your own command string alias 13-12

Delete an alias definition unalias 13-47

Delete all defined aliases unalias * 13-47

Display a string to the COMMAND window while
executing a batch file

echo 13-22

Enter any operating-system command or exit to a
system shell

system 13-45

Execute commands from a batch file take 13-46

Exit the debugger quit 13-34

Functional Summary of Debugger Commands

 13-4

Performing system tasks (continued)

To do this
Use this
command See page

List the contents of the current directory or any other
directory

dir 13-19

Load a saved BTT setup (XDS/22 only) btt 13-15

Loop debugger commands in a batch file loop/endloop 13-26

Name additional directories that can be searched
when you load source files

use 13-47

Record the information shown in the COMMAND
window display area

dlog 13-21

Reset the target system reset 13-35

Store and save the information shown in the trace
buffer to a file

tsave 13-46

Displaying and changing data

To do this
Use this
command See page

Change the default format for displaying data values setf 13-41

Continuously display the value of a variable, register,
or memory location within the WATCH window

wa 13-49

Delete a data item from the WATCH window wd 13-49

Delete all data items from the WATCH window and
close the WATCH window

wr 13-51

Display a different range of memory in the MEMORY
window

mem 13-29

Display a pop-up MEMORY window mem1,mem2,
mem3

13-29

Display the values in an array or structure or display
the value that a pointer is pointing to

disp 13-20

Evaluate a C expression without displaying the results eval 13-23

Evaluate and display the result of a C expression ? 13-11

Show the type of a data item whatis 13-50

 Functional Summary of Debugger Commands

13-5 Chapter Title—Attribute Reference

Displaying files and loading programs

To do this
Use this
command See page

Display a specific C function func 13-24

Display a text file in the FILE window file 13-23

Display assembly language code at a specific ad-
dress

dasm 13-19

Display C and/or assembly language code at a specif-
ic point

addr 13-12

Load an object file load 13-26

Load only the object-code portion of an object file reload 13-35

Load only the symbol-table portion of an object file sload 13-43

Modify disassembly with the patch assembler patch 13-32

Reopen the CALLS window calls 13-16

Memory mapping

To do this
Use this
command See page

Add an address range to the memory map ma 13-27

Delete an address range from the memory map md 13-28

Enable or disable memory mapping map 13-28

Initialize a block of memory fill 13-23

Reset (delete all ranges) the memory map mr 13-31

Save a block of memory to a system file ms 13-31

Display a list of the current memory map settings ml 13-30

Customizing the screen

To do this
Use this
command See page

Change the border style of any window border 13-14

Change the command-line prompt prompt 13-34

Change the screen colors and update the screen im-
mediately

scolor 13-39

Change the screen colors, but don’t update the
screen immediately

color 13-17

Load and use a previously saved custom screen con-
figuration

sconfig 13-40

Save a custom screen configuration ssave 13-44

Functional Summary of Debugger Commands

 13-6

Running programs

To do this
Use this
command See page

Execute code in a function and return to the function’s
caller

return 13-36

Execute commands from a batch file take 13-46

Halt the CPU after executing a RUNF command halt 13-24

Reset the PC to the program entry point restart 13-35

Reset the target system reset 13-35

Reset the target system and run a program rrun 13-36

Reset the target system and run the BTT and CPU
simultaneously (while controlling the BTT indepen-
dently)

rrunf 13-36

Run a program run 13-37

Run the BTT and CPU simultaneously, while con-
trolling the BTT independently

runf 13-38

Run a program up to a certain point go 13-24

Run a program with benchmarking (count the number
of CPU clock cycles consumed by the executing por-
tion of code)

runb 13-37

Single-step through assembly language or C code step 13-44

Single-step through assembly language or C code,
one C statement at a time

cstep 13-18

Single-step through assembly language or C code
one C statement at a time; step over function calls

cnext 13-17

Single-step through assembly language or C code;
step over function calls

next 13-32

Wait for a hardware reset before running a program wrun 13-51

Wait for a hardware reset before running the BTT
and CPU

wrunf 13-52

Managing breakpoints

To do this
Use this
command See page

Add a breakpoint ba 13-13

Delete a breakpoint bd 13-13

Display a list of all the breakpoints that are set bl 13-14

Reset (delete) all breakpoints br 13-15

 Functional Summary of Debugger Commands

13-7 Chapter Title—Attribute Reference

Profiling commands

All of the profiling commands can be entered from the pulldown menus. In
many cases, using the pulldown menus is the easiest way to use some of these
commands. For this reason and also because there are over 100 profiling
commands, most of these commands are not described individually in this
chapter (as the basic debugger commands are).

Listed below are some of the profiling commands that you might choose to
enter from the command line instead of from a menu; these commands are
also described in the alphabetical command summary. The remaining profiling
commands are summarized in Section 13.4 on page 13-53.

To do this
Use this
command See page

Add a stopping point sa 13-38

Delete a stopping point sd 13-40

Delete all the stopping points sr 13-43

List all the stopping points sl 13-42

Reset the display in the PROFILE window to show
all areas and the default set of data

vr 13-48

Resume a profiling session pr 13-34

Run a full profiling session pf 13-33

Run a quick profiling session pq 13-33

Save all the profile data to a file vaa 13-47

Save currently displayed profile data to a file vac 13-48

How Menu Selections Correspomd to Commands

 13-8

13.2 How Menu Selections Correspond to Commands

The following sample screens illustrate the relationship of the basic debugger
commands to the menu bar and pulldown menus.

Note:

Because the profiling environment supports over 100 profile-specific com-
mands, it’s not practical to show the commands associated with the profile
menu choices.

Program execution commands

Run=F5

Step=F8

Next=F10

RUN command
(without a parameter)

NEXT command
(without a parameter)

STEP command
(without a parameter)

File/Load commands

Load
Load
Reload
Symbols

REstart
ReseT

File
Config

RELOAD command

SLOAD command

RESTART command

RESET command

FILE command

LOAD command

CLOCK command

Breakpoint commands

Break
Add
Delete
Reset
List

BA command

BD command

BR command

BL command

 How Menu Selections Correspomd to Commands

13-9 Summary of Commands and Special Keys

Watch commands

Watch
Add
Delete
Reset

WA command

WD command

WR command

Memory commands

Memory
Add
Delete
Reset
List
Enable

Fill
Save

MA command

MD command

MR command

ML command

MAP command

FILL command

MS command

Screen-configuration commands

Color
Load
Save
Config

Border
Prompt

SCONFIG command

SSAVE command

SCOLOR command

BORDER command

PROMPT command

Running Title—Attribute Reference

 13-10

Mode commands

Mode
C (auto)
Asm
Mixed

C command

ASM command

MIX command

BTT menu and commands

Most of the selections on the BTT pulldown menu do not correspond to specific
debugger commands. The illustration below shows which selections are
associated with commands and lists the functions provided by the remaining
entries.

BTT

Setup

I nspect
Position
Lookup
Format
SAve

Open BTT Setup dialog box

INSP command

Move cursor position in INSPECT window

Find entry in INSPECT window

Choose trace sample timing format

Save trace buffer contents to file

 Alphabetical Summary of Debugger Commands

13-11 Summary of Commands and Special Keys

13.3 Alphabetical Summary of Debugger Commands

There are two debugger environments: the basic debugger environment and
the profiling environment. Some debugger commands can be used in both
environments; some can be used in only one of the environments. Each
command description identifies the applicable environments for the com-
mand.

Commands are not case sensitive; to emphasize this, command names are
shown in both uppercase and lowercase throughout this book.

Evaluate Expression?

Syntax ? expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The ? (evaluate expression) command evaluates an expression and shows
the result in the COMMAND window display area. The expression can be any
C expression, including an expression with side effects. However, you cannot
use a string constant or function call in the expression. If the result of expres-
sion is not an array or structure, then the debugger displays the results in the
COMMAND window. If expression is a structure or array, ? displays the entire
contents of the structure or array; you can halt long listings by pressing ESC .

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Alphabetical Summary of Debugger Commands

 13-12

Display Code at Specified Addressaddr

Syntax addr address
addr function name

Menu selection none

Environments basic debugger profiling

Description Use the ADDR command to display C code or the disassembly at a specific
point.

� In assembly mode, ADDR works like the DASM command, positioning the
code starting at address or at function name as the first line of code in the
DISASSEMBLY window.

� In a C display, ADDR works like the FUNC command, displaying the code
starting at address or at function name in the FILE window.

� In mixed mode, ADDR affects both the DISASSEMBLY and FILE win-
dows.

Note:

ADDR affects the FILE window only if the specified address is in a C function.

Define Custom Command Stringalias

Syntax alias [alias name [, ”command string”]]

Menu selection none

Environments basic debugger profiling

Description The ALIAS command allows you to associate one or more debugger
commands with a single alias name. You can include as many debugger
commands in the command string as you like, as long you separate them with
semicolons and enclose the entire string of commands in quotation marks. You
can also identify debugger-command parameters by a percent sign followed
by a number (%1, %2, etc.). The total number of characters for an individual
command (expanded to include parameter values) is limited to 132.

Previously defined alias names can be included as part of the definition for a
new alias.

To find the current definition of an alias, enter the ALIAS command with the
alias name only. To see a list of all defined aliases, enter the ALIAS command
with no parameters.

 Alphabetical Summary of Debugger Commands

13-13 Summary of Commands and Special Keys

Enter Assembly Modeasm

Syntax asm

Menu selection MoDe→Asm

Environments basic debugger profiling

Description The ASM command changes the current debugging mode to assembly mode.
If you’re already in assembly mode, the ASM command has no effect.

Add Software Breakpointba

Syntax ba address

Menu selection B reak→Add

Environments basic debugger profiling

Description The BA command sets a software breakpoint at a specific address. This com-
mand is useful because it doesn’t require you to search through code to find
the desired line. The address can be an absolute address, any C expression,
the name of a C function, or the name of an assembly language label.

Delete Software Breakpointbd

Syntax bd address

Menu selection B reak→ Delete

Environments basic debugger profiling

Description The BD command clears a software breakpoint at a specific address. The
address can be an absolute address, any C expression, the name of a C func-
tion, or the name of an assembly language label.

Alphabetical Summary of Debugger Commands

 13-14

List Software Breakpointsbl

Syntax bl

Menu selection B reak→List

Environments basic debugger profiling

Description The BL command provides an easy way to get a complete listing of all the soft-
ware breakpoints that are currently set in your program. It displays a table of
breakpoints in the COMMAND window display area. BL lists all the break-
points that are set, in the order in which you set them.

Change Style of Window Borderborder

Syntax border [active window style] [, [inactive window style] [,resize window style]]

Menu selection C olor→Border

Environments basic debugger profiling

Description The BORDER command changes the border style of the active window, the
inactive windows, and any window that you’re resizing. The debugger sup-
ports nine border styles. Each parameter for the BORDER command must be
one of the numbers that identifies these styles:

Index Style

0 Double-lined box

1 Single-lined box

2 Solid 1/2-tone top, double-lined sides/bottom

3 Solid 1/4-tone top, double-lined sides/bottom

4 Solid box, thin border

5 Solid box, heavy sides, thin top/bottom

6 Solid box, heavy borders

7 Solid 1/2-tone box

8 Solid 1/4-tone box

Note that you can execute the BORDER command as the Border selection on
the Color pulldown menu. The debugger displays a dialog box so that you can
enter the parameter values; in the dialog box, active window style is called
foreground, and inactive window style is called background.

 Alphabetical Summary of Debugger Commands

13-15 Summary of Commands and Special Keys

Reset Software Breakpointbr

Syntax br

Menu selection B reak→Reset

Environments basic debugger profiling

Description The BR command clears all software breakpoints that are set.

Load Saved BTT Setup XDS/22 onlybtt

Syntax btt filename

Menu selection none

Environments basic debugger profiling

Description The BTT command loads a BTT setup that was saved by clicking on the
<Save> field in the BTT Setup dialog box.

This restores the saved states and the actions that were defined for them.

Enter Auto Modec

Syntax c

Menu selection MoDe→C (auto)

Environments basic debugger profiling

Description The C command changes from the current debugging mode to auto mode. If
you’re already in auto mode, then the C command has no effect.

Alphabetical Summary of Debugger Commands

 13-16

Open CALLS Windowcalls

Syntax calls

Menu selection none

Environments basic debugger profiling

Description The CALLS command displays the CALLS window. The debugger displays
this window automatically when you are in auto/C or mixed mode. However,
you can close the CALLS window; the CALLS command opens the window up
again.

Change Directorycd, chdir

Syntax cd [directory name]
chdir [directory name]

Menu selection none

Environments basic debugger profiling

Description The CD or CHDIR command changes the current working directory from within
the debugger. You can use relative pathnames as part of the directory name.
If you don’t use a pathname, the CD command displays the name of the current
directory. When it is implemented with the USE command, CD can affect any
other command whose parameter is a filename, such as the FILE, LOAD, and
TAKE commands. You can also use the CD command to change the current
drive. For example,

cd c:
cd d:\csource
cd c:\370tools

Clear Screencls

Syntax cls

Menu selection none

Environments basic debugger profiling

Description The CLS command clears all displayed information from the COMMAND win-
dow display area.

 Alphabetical Summary of Debugger Commands

13-17 Summary of Commands and Special Keys

Single-Step C, Next Statementcnext

Syntax cnext [expression]

Menu selection Next=F10 (in C code)

Environments basic debugger profiling

Description The CNEXT command is similar to the CSTEP command. It runs a program
one C statement at a time, updating the display after executing each state-
ment. If you’re using CNEXT to step through assembly language code, the
debugger won’t update the display until it has executed all assembly language
statements associated with a single C statement. Unlike CSTEP, CNEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (the Running code conditionally discussion, page 7-17,
discusses this in detail).

Change Screen Colorscolor

Syntax color area name, attribute1 [,attribute2 [,attribute3 [,attribute4]]]

Menu selection none

Environments basic debugger profiling

Description The COLOR command changes the color of specified areas of the debugger
display. COLOR doesn’t update the display; the changes take effect when
another command, such as SCOLOR, updates the display. The area name pa-
rameter identifies the area of the display that is affected. The attributes identify
how the area is affected. The first two attribute parameters usually specify the
foreground and background colors for the area. If you do not supply a back-
ground color, the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright blink

Alphabetical Summary of Debugger Commands

 13-18

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need to type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

Single-Step Ccstep

Syntax cstep [expression]

Menu selection Step=F8 (in C code)

Environments basic debugger profiling

Description The CSTEP single-steps through a program one C statement at a time, updat-
ing the display after executing each statement. If you’re using CSTEP to step
through assembly language code, the debugger won’t update the display until
it has executed all assembly language statements associated with a single C
statement.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger ex-
ecutes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (the Running code conditionally discussion, page 7-17,
discusses this in detail).

 Alphabetical Summary of Debugger Commands

13-19 Summary of Commands and Special Keys

Display Disassembly at Specified Addressdasm

Syntax dasm address
dasm function name

Menu selection none

Environments basic debugger profiling

Description The DASM command displays code beginning at a specific point within the
DISASSEMBLY window.

List Directory Contentsdir

Syntax dir [directory name]

Menu selection none

Environments basic debugger profiling

Description The DIR command displays a directory listing in the display area of the COM-
MAND window. If you use the optional directory name parameter, the debug-
ger displays a list of the specified directory’s contents. If you don’t use the pa-
rameter, the debugger lists the contents of the current directory.

Alphabetical Summary of Debugger Commands

 13-20

Open DISP Windowdisp

Syntax disp expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The DISP command opens a DISP window to display the contents of an array,
structure, or pointer expression to a scalar type (of the form *pointer). If the ex-
pression is not one of these types, then DISP acts like a ? command. You can
have up to 120 DISP windows open at the same time.

Once you open a DISP window, you may find that a displayed member is itself
an array, structure, or pointer:

A member that is an array looks like this [. . .]
A member that is a structure looks like this {. . .}
A member that is a pointer looks like an address 0x00000000

You can display the additional data (the data pointed to or the members of the
array or structure) in another DISP window by using the DISP command again,
using the arrow keys to select the field and then pressing F9 , or pointing the
mouse cursor to the field and pressing the left mouse button.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

The display format parameter can be used only when you are displaying a
scalar type, an array of scalar type, or an individual member of an aggregate
type.

You can also use the DISP command with a typecast expression to display
memory contents in any format. Here are some examples:

disp *0
disp *(float *)123
disp *(char *)0x111

This shows memory in the DISP window as an array of locations; the location
that you specify with the expression parameter is member [0], and all other lo-
cations are offset from that location.

 Alphabetical Summary of Debugger Commands

13-21 Summary of Commands and Special Keys

Record COMMAND Window Displaydlog

Syntax dlog filename [,{a | w}]
or
dlog close

Menu selection none

Environments basic debugger profiling

Description The DLOG command allows you to record the information displayed in the
command window into a log file.

� To begin recording the information shown in the COMMAND window dis-
play area, use:

dlog filename

Log files can be executed by using the TAKE command. When you use
DLOG to record the information from the COMMAND window display area
into a log file called filename, the debugger automatically precedes all er-
ror or progress messages and command results with a semicolon to turn
them into comments. This way, you can easily re-execute the commands
in your log file by using the TAKE command.

� To end the recording session, enter:

dlog close

If necessary, you can write over existing log files or append additional informa-
tion to existing files. The optional parameters of the DLOG command control
how existing log files are used:

� Appending to an existing file. Use the a parameter to open an existing
file to which to append the information in the display area.

� Writing over an existing file. Use the w parameter to open an existing
file to write over the current contents of the file. Note that this is the default
action if you specify an existing filename without using either the a or w
options; you will lose the contents of an existing file if you don’t use the ap-
pend (a) option.

Alphabetical Summary of Debugger Commands

 13-22

Echo String to Command Windowecho

Syntax echo string

Menu selection none

Environments basic debugger profiling

Description The ECHO command displays string in the COMMAND window display area.
This command works only in a batch file, and you can’t use quote marks
around the string. Note that any leading blanks in your command string are re-
moved when the ECHO command is executed.

Execute Alternative Debugger Commandselse

Description ELSE provides an alternative list of debugger commands in the
IF/ELSE/ENDIF command sequence. See page 13-25 for more information
about the IF/ELSE/ENDIF commands.

Terminate Conditional Sequenceendif

Description ENDIF identifies the end of the IF/ELSE/ENDIF command sequence. See
page 13-25 for more information about the IF/ELSE/ENDIF commands.

Terminate Looping Sequenceendloop

Description ENDLOOP identifies the end of the LOOP/ENDLOOP command sequence.
See page 13-26 for more information about the LOOP/ENDLOOP commands.

 Alphabetical Summary of Debugger Commands

13-23 Summary of Commands and Special Keys

Evaluate Expressioneval

Syntax eval expression
e expression

Menu selection none

Environments basic debugger profiling

Description The EVAL command evaluates an expression the same way the ? command
does but does not show the result in the COMMAND window display area.
EVAL is useful for assigning values to registers or memory locations in a batch
file (where it’s not necessary to display the result).

Display Text Filefile

Syntax file filename

Menu selection L oad→File

Environments basic debugger profiling

Description The FILE command displays the contents of any text file in the FILE window.
The debugger continues to display this file until you run a program and halt in
a C function. This command is intended primarily for displaying C source code.
You can view only one text file at a time.

You are restricted to displaying files that are 65,518 bytes long or less.

Fill Memoryfill

Syntax fill address, length, data

Menu selection M emory→Fill

Environments basic debugger profiling

Description The FILL command fills a block of memory with a specified value. This
command has three parameters:

� The address parameter identifies the beginning of the block.
� The length parameter defines the number of bytes that will be filled.
� The data is the value that the memory block will be filled with.

Alphabetical Summary of Debugger Commands

 13-24

Display Functionfunc

Syntax func function name
func address

Menu selection none

Environments basic debugger profiling

Description The FUNC command displays a specified C function in the FILE window. You
can identify the function by its name or its address. Note that FUNC works the
same way FILE works, but with FUNC you don’t need to identify the name of
the file that contains the function.

Run to Specified Addressgo

Syntax go [address]

Menu selection none

Environments basic debugger profiling

Description The GO command executes code up to a specific point in your program. If you
don’t supply an address parameter, then GO acts like a RUN command with-
out an expression parameter.

Halt Target System XDS/22 Onlyhalt

Syntax halt

Menu selection none

Environments basic debugger profiling

Description The HALT command halts both the BTT and CPU after you’ve entered a RUNF
command. When you invoke the debugger, it automatically executes a HALT
command. Thus, if you enter a RUNF, quit the debugger, and later reinvoke
the debugger, you will be running the debugger in its normal mode of opera-
tion.

 Alphabetical Summary of Debugger Commands

13-25 Summary of Commands and Special Keys

Conditionally Execute Debugger Commandsif/else/endif

Syntax if Boolean expression
debugger command
debugger command
.
.
[else
debugger command
debugger command
.
.]
endif

Menu selection none

Environments basic debugger profiling

Description These commands allow you to conditionally execute debugger commands in
a batch file. If the Boolean expression evaluates to true (1), the debugger
executes the commands between the IF and the ELSE or ENDIF. Note that the
ELSE portion of the command is optional.

The IF/ELSE/ENDIF conditional commands work with the following provi-
sions:

� You can use IF/ELSE/ENDIF commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

� You can’t nest IF/ELSE/ENDIF commands within the same batch file.

Open INSPECT Window XDS/22 onlyinsp

Syntax insp

Menu selection BTT→Inspect

Environments basic debugger profiling

Description The INSP command opens the INSPECT window, which displays timing statis-
tics and the contents of the trace buffer.

Alphabetical Summary of Debugger Commands

 13-26

Load Executable Object Fileload

Syntax load object filename

Menu selection L oad→ Load

Environments basic debugger profiling

Description The LOAD command loads both an object file and its associated symbol table
into memory. In effect, the LOAD command performs both a RELOAD and an
SLOAD. Note that the LOAD command clears the old symbol table and closes
the WATCH and DISP windows. If you don’t supply an extension, the debugger
looks for filename.out.

Loop Through Debugger Commandsloop/endloop

Syntax loop expression
debugger command
debugger command
.
.
endloop

Menu selection none

Environments basic debugger profiling

Description The LOOP/ENDLOOP commands allow you to set up a looping situation in a
batch file. These looping commands evaluate in the same method as in the run
conditional command expression:

� If you use an expression that is not Boolean, the debugger evaluates the
expression as a loop count.

� If you use a Boolean expression, the debugger executes the command re-
peatedly as long as the expression is true.

The LOOP/ENDLOOP commands work under the following conditions:

� You can use LOOP/ENDLOOP commands only in a batch file.

� You must enter each debugger command on a separate line in the batch
file.

 Alphabetical Summary of Debugger Commands

13-27 Summary of Commands and Special Keys

� You can’t nest LOOP/ENDLOOP commands within the same batch file.

Add Block to Memory Mapma

Syntax ma address, length, type

Menu selection M emory→Add

Environments basic debugger profiling

Description The MA command identifies valid ranges of target memory.
� The address parameter defines the starting address of a range. This pa-

rameter can be an absolute address, any C expression, the name of a C
function, or an assembly language label.

� The length parameter defines the length of the range in bytes. This param-
eter can be any C expression.

� The type parameter identifies the read/write characteristics of the memory
range. The type must be one of these keywords:

To identify this kind of memory,
Use this keyword as the type
parameter

read-only emulator memory R, ROM, EROM

read-only external memory XROM

read-only internal memory IROM

read/write emulator memory RW, RAM, ERAM

read/write external memory XRAM

read/write internal memory IRAM

read/write serial peripheral frame in emulator memory SEPER, SERW

read/write serial peripheral frame in internal memory SIPER, SIRW

read/write timer peripheral frame in emulator memory TEPER, TERW

read/write timer peripheral frame in internal memory TIPER, TIRW

no-access memory PROTECT

EPROM control frame EPCTL

program EPROM read-only emulator memory PEPROM

data EPROM read-only emulator memory DEPROM

custom EPROM read-only emulator memory CEPROM

program EEPROM read-only emulator memory PEEPROM

data EEPROM read-only emulator memory DEEPROM

custom EEPROM read-only emulator memory CEEPROM

Alphabetical Summary of Debugger Commands

 13-28

A new memory map must not overlap an existing entry. If you define a range
that overlaps an existing range, the debugger ignores the new range.

Enable Memory Mappingmap

Syntax map {on | off }

Menu selection M emory→Enable

Environments basic debugger profiling

Description The MAP command enables or disables memory mapping. In some instances,
you may want to explicitly enable or disable memory. Note that disabling
memory mapping can cause bus fault problems in the target because the
debugger may attempt to access nonexistent memory.

Delete Block From Memory Mapmd

Syntax md address

Menu selection M emory→Delete

Environments basic debugger profiling

Description The MD command deletes a range of memory from the debugger’s memory
map. The address parameter identifies the starting address of the range of
memory.

 Alphabetical Summary of Debugger Commands

13-29 Summary of Commands and Special Keys

Modify MEMORY Window Displaymem

Syntax mem [#] expression [, display format]

Menu selection none

Environments basic debugger profiling

Description The MEM command identifies a new starting address for the block of memory
displayed in a MEMORY window. The optional extension number (#) opens a
pop-up MEMORY window allowing you to view a separate block of memory.
The debugger displays the contents of memory at expression in the first data
position in the MEMORY window. The end of the range is defined by the size
of the window. The expression can be an absolute address, a symbolic ad-
dress, or any C expression.

When you use the optional display format parameter, memory will be dis-
played in one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point u Unsigned decimal

f Decimal floating point

Enter Mixed Modemix

Syntax mix

Menu selection MoDe→Mixed

Environments basic debugger profiling

Description The MIX command changes the current debugging mode to mixed mode. If
you’re already in mixed mode, the MIX command has no effect.

Alphabetical Summary of Debugger Commands

 13-30

List Memory Mapml

Syntax ml

Menu selection M emory→List

Environments basic debugger profiling

Description The ML command lists the memory ranges that are defined for the debugger’s
memory map. The ML command lists the starting address, ending address,
and read/write characteristics of each defined memory range.

Move Active Windowmove

Syntax move [X position, Y position [, width, length]]

Menu selection none

Environments basic debugger profiling

Description The MOVE command moves the active window to the specified XY position.
If you choose, you can resize the window while you move it (see the SIZE com-
mand for valid width and length values). You can use the MOVE command in
one of two ways:

� By supplying a specific X position and Y position or
� By omitting the X position and Y position parameters and using function

keys to interactively move the window.

You can move a window by defining a new XY position for the window’s upper
left corner. Valid X and Y positions depend on the screen size and the window
size. X positions are valid if the X position plus the window width in characters
is less than or equal to the screen width in characters. Y positions are valid if
the Y position plus the widow height is less than or equal to the screen height
in lines.

For example, if the window is 10 characters wide and 5 lines high and the
screen size is 80 x 25, the command move 70, 20 would put the lower right-
hand corner of the window in the lower right-hand corner of the screen. No X
value greater than 70 or Y value greater than 20 would be valid in this example.

If you enter the MOVE command without X position and Y position parameters,
you can use arrow keys to move the window.

↓ Moves the active window down one line.
↑ Moves the active window up one line.
← Moves the active window left one character position.
→ Moves the active window right one character position.

When you’re finished using the cursor keys, you must press or .

 Alphabetical Summary of Debugger Commands

13-31 Summary of Commands and Special Keys

Reset Memory Mapmr

Syntax mr

Menu selection M emory→Reset

Environments basic debugger profiling

Description The MR command resets the debugger’s memory map by deleting all defined
memory ranges from the map.

Save Memory Block to a Filems

Syntax ms address,length,filename

Menu selection M emory→Save

Environments basic debugger profiling

Description The MS command saves the values in a block of memory to a system file. The
command has three parameters:

� The address parameter identifies the beginning of the block.
� The length parameter defines the length of the block in bytes. This param-

eter can be any C expression.
� The filename is a system file. If you don’t supply an extension, the debug-

ger adds an .obj extension.

Alphabetical Summary of Debugger Commands

 13-32

Single-Step, Next Statementnext

Syntax next [expression]

Menu selection Next=F10 (in disassembly or mixed mode)

Environments basic debugger profiling

Description The NEXT command is similar to the STEP command. If you’re in C code, the
debugger executes one C statement at a time. In assembly or mixed mode,
the debugger executes one assembly language statement at a time. Unlike
STEP, NEXT never updates the display when executing called functions;
NEXT always steps to the next consecutive statement. Unlike STEP, NEXT
steps over function calls rather than stepping into them—you don’t see the
single-step execution of the function call.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (the Running code conditionally discussion, page 7-17,
discusses this in detail).

Patch Assemblepatch

Syntax patch address, assembly language instruction

Menu selection none

Environments basic debugger profiling

Description The PATCH command allows you to patch-assemble disassembly state-
ments. The address parameter identifies the address of the statement you
want to change. The assembly language instruction parameter is the new
statement you want to use at address. If you enter the command without pa-
rameters or with only the address parameter, the debugger will open a dialog
box so that you can enter the remaining parameter(s).

 Alphabetical Summary of Debugger Commands

13-33 Summary of Commands and Special Keys

Profile, Fullpf

Syntax pf starting point [, update rate]

Menu selection P rofile→Full

Environments basic debugger profiling

Description The PF command initiates a RUN and collects a full set of statistics on the
defined areas between the starting point and the first-encountered stopping
point. The starting point parameter can be a label, a function name, or a
memory address.

The optional update rate parameter determines how often the PROFILE
window will be updated. The update rate parameter can have one of these
values:

Value Description

0 This is the default. Statistics are not updated until the session is halted
(although you can force an update by clicking the mouse in the window
header). A “spinning wheel” character is shown to indicate that a profiling
session is in progress.

≥1 Statistics are updated during the session. A value of 1 means that data
is updated as often as possible.

<0 Statistics are not updated and the “spinning wheel” character is not
displayed.

Profile, Quickpq

Syntax pq starting point [, update rate]

Menu selection P rofile→Quick

Environments basic debugger profiling

Description The PQ command initiates a RUN command and collects a subset of the
available statistics on the defined areas between the starting point and the
first-encountered stopping point. PQ is similar to PF, except that PQ doesn’t
collect exclusive or exclusive max data.

The update rate parameter is the same as for the PF command.

Alphabetical Summary of Debugger Commands

 13-34

Resume Profiling Sessionpr

Syntax pr [clear data [, update rate]]

Menu selection P rofile→Resume

Environments basic debugger profiling

Description The PR command resumes the last profiling session (initiated by PF or PQ),
starting from the current program counter.

The optional clear data parameter tells the debugger whether or not it should
clear out the previously collected data. The clear data parameter can have one
of these values:

Value Description

0 This is the default. The profiler will continue to collect data, adding it to
the existing data for the profiled areas and to use the previous internal
profile stacks.

nonzero All previously collected profile data and internal profile stacks are
cleared.

The update rate parameter is the same as for the PF and PQ commands.

Change Command-Line Promptprompt

Syntax prompt new prompt

Menu selection C olor→Prompt

Environments basic debugger profiling

Description The PROMPT command changes the command-line prompt. The new prompt
can be any string of characters (note that a semicolon or comma ends the
string).

Exit Debuggerquit

Syntax quit

Menu selection none

Environments basic debugger profiling

Description The QUIT command exits the debugger and returns to the DOS environment.

 Alphabetical Summary of Debugger Commands

13-35 Summary of Commands and Special Keys

Reload Object Codereload

Syntax reload object filename

Menu selection L oad→Reload

Environments basic debugger profiling

Description The RELOAD command loads only an object file without loading its asso-
ciated symbol table. This is useful for reloading a program when target
memory has been corrupted. If you enter the RELOAD command without
specifying a filename, the debugger reloads the file that you loaded last.

Reset Target Systemreset

Syntax reset

Menu selection L oad→ReseT

Environments basic debugger profiling

Description The RESET command resets the target system.

Reset PC to Program Entry Pointrestart

Syntax restart
rest

Menu selection L oad→REstart

Environments basic debugger profiling

Description The RESTART or REST command resets the program to its entry point. (This
assumes that you have already used one of the load commands to load a pro-
gram into memory.)

Alphabetical Summary of Debugger Commands

 13-36

Return to Function’s Callerreturn

Syntax return
ret

Menu selection none

Environments basic debugger profiling

Description The RETURN or RET command executes the code in the current C function
and halts when execution reaches the caller. Breakpoints do not affect this
command, but you can halt execution by pressing the left mouse button or
pressing ESC .

Reset and Run Coderrun

Syntax rrun [expression]

Menu selection none

Environments basic debugger profiling

Description The RRUN command resets the target system and then begins program
execution. The command’s behavior depends on the type of parameter you
supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 7-17).

Reset and Run Freerrunf

Syntax rrunf

Menu selection none

Environments basic debugger profiling

Description The RRUNF command resets the target system and begins execution of the
BTT independently from the CPU.

You can use the RRUNF command to begin execution of the BTT and CPU
initially. However, after you have halted the BTT by pressing ESC , you must
restart the BTT by using the RUNF command.

The HALT command stops a RRUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

 Alphabetical Summary of Debugger Commands

13-37 Summary of Commands and Special Keys

Run Coderun

Syntax run [expression]

Menu selection Run=F5

Environments basic debugger profiling

Description The RUN command is the basic command for running an entire program. The
command’s behavior depends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 7-17).

� If you supply any other type of expression, the debugger treats the expres-
sion as a count parameter. The debugger executes count instructions,
halts, and updates the display.

Benchmark Code XDS/22 onlyrunb

Syntax runb

Menu selection none

Environments basic debugger profiling

Description The RUNB command executes a specific section of code and counts the num-
ber of CPU clock cycles consumed by the execution. In order to operate cor-
rectly, execution must be halted by a software breakpoint. After RUNB execu-
tion halts, the debugger stores the number of cycles into the CLK pseudoregis-
ter. For a complete explanation of the RUNB command and the benchmarking
process, read Section 7.7, Benchmarking, on page 7-20.

Alphabetical Summary of Debugger Commands

 13-38

Run Free XDS/22 Onlyrunf

Syntax runf

Menu selection none

Environments basic debugger profiling

Description The RUNF command simultaneously executes the BTT and CPU, while allow-
ing the BTT to run independently from the CPU. With the CPU running, you
can stop the BTT and perform operations such as dumping the contents of the
trace buffer and reconfiguring the BTT. To stop the BTT, press ESC . Otherwise,
you must wait for the BTT or CPU to stop on their own. While both the BTT and
CPU are running, you do not have access to the command line.

After you have finished operations on the BTT, you can restart it by entering
the RUNF command again.

You can use the RRUNF and WRUNF commands to begin execution of the
BTT and CPU initially. However, after you have halted the BTT by pressing
ESC , you must restart the BTT with the RUNF command.

The HALT command stops a RUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

Add Stoppointsa

Syntax sa address

Menu selection S top-points→Add

Environments basic debugger profiling

Description The SA command adds a stopping point at address. The address can be a
label, a function name, or a memory address.

 Alphabetical Summary of Debugger Commands

13-39 Summary of Commands and Special Keys

Change Screen Colorsscolor

Syntax scolor area name, attribute1 [, attribute2 [, attribute3 [, attribute4]]]

Menu selection C olor→Config

Environments basic debugger profiling

Description The SCOLOR command changes the color of specified areas of the debugger
display and updates the display immediately. The area name parameter identi-
fies the area of the display that is affected. The attributes identify how the area
is affected. The first two attribute parameters usually specify the foreground
and background colors for the area. If you do not supply a background color,
the debugger uses black as the background.

Valid values for the attribute parameters include:

black blue green cyan

red magenta yellow white

bright

Valid values for the area name parameters include:

menu_bar menu_border menu_entry menu_cmd

menu_hilite menu_hicmd win_border win_hiborder

win_resize field_text field_hilite field_edit

field_label field_error cmd_prompt cmd_input

cmd_cursor cmd_echo asm_data asm_cdata

asm_label asm_clabel background blanks

error_msg file_line file_eof file_text

file_brk file_pc file_pc_brk

You don’t have to type an entire attribute or area name; you need type only
enough letters to uniquely identify the attribute. If you supply ambiguous attrib-
ute names, the debugger interprets the names in this order: black, blue, bright,
blink. If you supply ambiguous area names, the debugger interprets them in
the order that they’re listed above (left to right, top to bottom).

Alphabetical Summary of Debugger Commands

 13-40

Load Screen Configurationsconfig

Syntax sconfig [filename]

Menu selection C olor→Load

Environments basic debugger profiling

Description The SCONFIG command restores the display to a specified configuration.
This restores the screen colors, window positions, window sizes, and border
styles that were saved with the SSAVE command into filename. If you don’t
supply a filename, the debugger looks for the init.clr file. The debugger
searches for the specified file in the current directory and then in directories
named with the D_DIR environment variable.

Delete Stoppointsd

Syntax sd address

Menu selection S top-points→Delete

Environments basic debugger profiling

Description The SD command deletes the stopping point at address.

 Alphabetical Summary of Debugger Commands

13-41 Summary of Commands and Special Keys

Set Default Data-Display Formatsetf

Syntax setf [data type, display format]

Menu selection none

Environments basic debugger profiling

Description The SETF command changes the display format for a specific data type. If you
enter SETF with no parameters, the debugger lists the current display format
for each data type.

� The data type parameter can be any of the following C data types:

char short uint ulong double
uchar int long float ptr

� The display format parameter can be any of the following characters:

Parameter Result Parameter Result

* Default for the data type o Octal

c ASCII character (bytes) p Valid address

d Decimal s ASCII string

e Exponential floating point u Unsigned decimal

f Decimal floating point x Hexadecimal

Only a subset of the display formats can be used for each data type. Listed
below are the valid combinations of data types and display formats.

Data Valid Display Formats Data Valid Display Formats

Type c d o x e f p s u Type c d o x e f p s u

char (c) √ √ √ √ √ long (d) √ √ √ √ √

uchar (d) √ √ √ √ √ ulong (d) √ √ √ √ √

short (d) √ √ √ √ √ float (e) √ √

int (d) √ √ √ √ √ double (e) √ √

uint (d) √ √ √ √ √ ptr (p) √ √ √ √

To return all data types to their default display format, enter:

setf *

Alphabetical Summary of Debugger Commands

 13-42

Size Active Windowsize

Syntax size [width, length]

Menu selection none

Environments basic debugger profiling

Description The SIZE command changes the size of the active window. You can use the
SIZE command in one of two ways:

� by supplying a specific width and length or
� by omitting the width and length parameters and using function keys to in-

teractively resize the window.

Valid values for the width and length depend on the screen size and the win-
dow position on the screen. If the window is in the upper left corner of the
screen, the maximum size of the window is the same as the screen size minus
one line. (The extra line is needed for the menu bar.) For example, if the screen
size is 80 characters by 25 lines, the largest window size is 80 characters by
24 lines.

If a window is in the middle of the display, you can’t size it to the maximum
height and width—you can size it only to the right and bottom screen borders.
The easiest way to make a window as large as possible is to zoom it, as
described on page 4-26.

If you enter the SIZE command without width and length parameters, you can
use arrow keys to size the window.

↓ Makes the active window one line longer.
↑ Makes the active window one line shorter.
← Makes the active window one character narrower.
→ Makes the active window one character wider.

When you’re finished using the cursor keys, you must press or .

List Stoppointssl

Syntax sl

Menu selection S top-points→List

Environments basic debugger profiling

Description The SL command lists all of the currently set stopping points.

 Alphabetical Summary of Debugger Commands

13-43 Summary of Commands and Special Keys

Load Symbol Tablesload

Syntax sload object filename

Menu selection L oad→Symbols

Environments basic debugger profiling

Description The SLOAD command loads the symbol table of the specified object file.
SLOAD is useful in a debugging environment in which the debugger cannot,
or need not, load the object code (for example, if the code is in ROM). SLOAD
clears the existing symbol table before loading the new one but does not
modify memory or set the program entry point. Note that SLOAD closes the
WATCH and DISP windows.

Enable Error Beepingsound

Syntax sound on | off

Menu selection none

Environments basic debugger profiling

Description You can cause a beep to sound every time a debugger error message is
displayed. This is useful if the COMMAND window is hidden (because you
wouldn’t see the error message). By default, sound is off.

Reset Stoppointssr

Syntax sr

Menu selection S top-points→Reset

Environments basic debugger profiling

Description The SR command resets (deletes) all currently set stopping points.

Alphabetical Summary of Debugger Commands

 13-44

Save Screen Configurationssave

Syntax ssave [filename]

Menu selection C olor→Save

Environments basic debugger profiling

Description The SSAVE command saves the current screen configuration to a file. This
saves the screen colors, window positions, window sizes, and border styles.
The filename parameter names the new screen configuration file. You can in-
clude path information (including relative pathnames); if you don’t supply path
information, the debugger places the file in the current directory. If you don’t
supply a filename, then the debugger saves the current configuration into a file
named init.clr and places the file in the current directory.

Single-Stepstep

Syntax step [expression]

Menu selection Step=F8 (in disassembly or mixed mode)

Environments basic debugger profiling

Description The STEP command single-steps through assembly language or C code. If
you’re in C code, the debugger executes one C statement at a time. In assem-
bly or mixed mode, the debugger executes one assembly language statement
at a time.

If you’re single-stepping through C code and encounter a function call, the
STEP command shows you the single-step execution of the called function
(assuming that the function was compiled with the compiler’s –g debug op-
tion). When function execution completes, single-step execution returns to the
caller. If the function wasn’t compiled with the debug option, the debugger ex-
ecutes the function but doesn’t show single-step execution of the function.

The expression parameter specifies the number of statements that you want
to single-step. You can also use a conditional expression for conditional
single-step execution (the Running code conditionally discussion, page 7-17,
discusses this in detail).

 Alphabetical Summary of Debugger Commands

13-45 Summary of Commands and Special Keys

Enter DOS Commandsystem

Syntax system [DOS command [, flag]]

Menu selection none

Environments basic debugger profiling

Description The SYSTEM command allows you to enter DOS commands without explicitly
exiting the debugger environment.

If you enter SYSTEM with no parameters, the debugger will open a system
shell and display the operating-system prompt. At this point, you can enter any
DOS command. (In MS-DOS, available memory may limit the commands that
you can enter.) When you finish, enter the appropriate information to return to
the debugger environment:

exit

If you prefer, you can supply the DOS command as a parameter to the SYS-
TEM command. If the result of the command is a message or other display, the
debugger will blank the top of the debugger display to show the information.
In this case, you can use the flag parameter to tell the debugger whether or
not it should hesitate after displaying the information. Flag may be a 0 or a 1.

0 If you supply a value of 0 for flag, the debugger immediately returns to
the debugger environment after the last item of information is
displayed.

1 If you supply a value of 1 for flag, the debugger does not return to the
debugger environment until you press . (This is the default.)

Alphabetical Summary of Debugger Commands

 13-46

Execute Batch Filetake

Syntax take batch filename [, suppress echo flag]

Menu selection none

Environments basic debugger profiling

Description The TAKE command tells the debugger to read and execute commands from
a batch file. The batch filename parameter identifies the file that contains com-
mands.

By default, the debugger echoes the commands to the output area of the
COMMAND window and updates the display as it reads the commands from
the batch file.

� If you don’t use the suppress echo flag parameter, or if you use it but supply
a nonzero value, then the debugger behaves in the default manner.

� If you would like to suppress the echoing and updating, use the value 0 for
the suppress echo flag parameter.

Store and Save the Trace Buffer XDS/22 Onlytsave

Syntax tsave filename

Menu selection none

Environments basic debugger profiler

Description The TSAVE command stores and saves the information shown in the trace
buffer to a file called filename.

 Alphabetical Summary of Debugger Commands

13-47 Summary of Commands and Special Keys

Delete Alias Definitionunalias

Syntax unalias alias name
unalias *

Menu selection none

Environments basic debugger profiling

Description The UNALIAS command deletes defined aliases.

� To delete a single alias , enter the UNALIAS command with an alias name.
For example, to delete an alias named NEWMAP, enter:

unalias NEWMAP

� To delete all aliases , enter an asterisk instead of an alias name:

unalias *

Note that the * symbol does not work as a wildcard.

Use New Directoryuse

Syntax use directory name

Menu selection none

Environments basic debugger profiling

Description The USE command allows you to name an additional directory that the debug-
ger can search when looking for source files. You can specify only one directo-
ry at a time.

If you enter the USE command without specifying a directory name, the debug-
ger lists all of the current directories.

Save All Profile Data to a Filevaa

Syntax vaa filename

Menu selection V iew→Save→All views

Environments basic debugger profiling

Description The VAA command saves all statistics collected during the current profiling
session. The data is stored in a system file.

Alphabetical Summary of Debugger Commands

 13-48

Save Displayed Profile Data to a Filevac

Syntax vac filename

Menu selection V iew→Save→Current view

Environments basic debugger profiling

Description The VAC command saves all statistics currently displayed in the PROFILE
window. (Statistics that aren’t displayed aren’t saved.) The data is stored in a
system file.

Display the Current Debugger Versionversion

Syntax version

Menu selection none

Environments basic debugger profiler

Description The VERSION command displays the debugger’s copyright date and the cur-
rent version number of the debugger, silicon, XDS, and BTT.

Reset PROFILE Window Displayvr

Syntax vr

Menu selection V iew→Reset

Environments basic debugger profiling

Description The VR command resets the display in the PROFILE window so that all
marked areas are listed and the statistics are displayed with the default labels
and in the default sort order.

 Alphabetical Summary of Debugger Commands

13-49 Summary of Commands and Special Keys

Add Item to WATCH Windowwa

Syntax wa expression [,[label], display format]
wa *expression [,[label], display format]

Menu selection W atch→Add

Environments basic debugger profiling

Description The WA command displays the value of expression in the WATCH window. If
the WATCH window isn’t open, executing WA opens the WATCH window. The
expression parameter can be any C expression, including an expression that
has side effects. In an assembly language program, you can use a symbol
name as the expression parameter. To watch the contents of a symbol name,
you must precede the expression parameter an asterisk (refer to Displaying
Data in a WATCH Window, on page 8-14). It’s most useful to watch an expres-
sion whose value changes over time; constant expressions provide no useful
function in the watch window. The label parameter is optional. When used, it
provides a label for the watched entry. If you don’t use a label, the debugger
displays the expression in the label field.

When you use the optional display format parameter, data will be displayed in
one of the following formats:

Parameter Result Parameter Result

* Default for the data type x Hexadecimal

c ASCII character (bytes) o Octal

d Decimal p Valid address

e Exponential floating point s ASCII string

f Decimal floating point u Unsigned decimal

Delete Item From WATCH Windowwd

Syntax wd index number

Menu selection W atch→Delete

Environments basic debugger profiling

Description The WD command deletes a specific item from the WATCH window. The WD
command’s index number parameter must correspond to one of the watch in-
dexes listed in the WATCH window.

Alphabetical Summary of Debugger Commands

 13-50

Find Data Typewhatis

Syntax whatis symbol

Menu selection none

Environments basic debugger profiling

Description The WHATIS command shows the data type of symbol in the COMMAND win-
dow display area. The symbol can be any variable (local, global, or static), a
function name, structure tag, typedef name, or enumeration constant.

Select Active Windowwin

Syntax win WINDOW NAME

Menu selection none

Environments basic debugger profiling

Description The WIN command allows you to select the active window by name. Note that
the WINDOW NAME is in uppercase (matching the name exactly as dis-
played). You can spell out the entire window name, but you really need to spec-
ify only enough letters to identify the window.

If several of the same types of window are visible on the screen, don’t use the
WIN command to select one of them. If you supply an ambiguous name (such
as C, which could stand for CPU or CALLS), the debugger selects the first win-
dow it finds whose name matches the name you supplied. If the debugger
doesn’t find the window you asked for (because you closed the window or mis-
spelled the name), then the WIN command has no effect.

 Alphabetical Summary of Debugger Commands

13-51 Summary of Commands and Special Keys

Reset WATCH Windowwr

Syntax wr

Menu selection W atch→Reset

Environments basic debugger profiling

Description The WR command deletes all items from the WATCH window and closes the
window.

Wait and Runwrun

Syntax wrun [expression]

Menu selection none

Environments basic debugger profiling

Description The WRUN command waits for the emulator to ascert a reset in the target
system and then it executes an entire program. The command’s behavior de-
pends on the type of parameter you supply:

� If you don’t supply an expression, the program executes until it encounters
a breakpoint or until you press the left mouse button or press ESC .

� If you supply a logical or relational expression, this becomes a conditional
run (described in detail on page 7-17).

Alphabetical Summary of Debugger Commands

 13-52

Wait and Run Freewrunf

Syntax wrunf

Menu selection none

Environments basic debugger profiling

Description The WRUNF command waits for the debugger to reset the target system, and
then begins execution of the BTT independently from the CPU.

You can use the WRUNF command to begin execution of the BTT and CPU
initially. However, after you have halted the BTT by pressing ESC , you must
restart the BTT by using the RUNF command.

The HALT command stops a WRUNF; note that the debugger automatically
executes a HALT when the debugger is invoked.

Zoom Active Windowzoom

Syntax zoom

Menu selection none

Environments basic debugger profiling

Description The ZOOM command makes the active window as large as possible. To
“unzoom” a window, enter the ZOOM command a second time; this returns the
window to its prezoom size and position.

 Summary of Profiling Commands

13-53 Summary of Commands and Special Keys

13.4 Summary of Profiling Commands

The following tables summarize the profiling commands that are used for
marking, enabling, disabling, and unmarking areas and for changing the
display in the PROFILE window. These commands are easiest to use from the
pulldown menus, so they are not included in the alphabetical command
summary. The syntaxes for these commands are provided here so that you
can include these commands in batch files.

Table 13–1.Marking Areas

To mark this area C only Disassembly only

Lines

� By line number, address

� All lines in a function

MCLE filename, line number
MCLF function

MALE address
MALF function

Ranges

� By line numbers MCRE filename, line number, line number MARE address, address

Functions

� By function name

� All functions in a module

� All functions everywhere

MCFE function
MCFM filename
MCFG

not applicable

Summary of Profiling Commands

 13-54

Table 13–2.Disabling Marked Areas

To disable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

DCLE filename, line number
DCLF function
DCLM filename
DCLG

DALE address
DALF function
DALM filename
DALG

not applicable
DBLF function
DBLM filename
DBLG

Ranges

� By line numbers, addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

DCRE filename, line number
DCRF function
DCRM filename
DCRG

DARE address
DARF function
DARM filename
DARG

not applicable
DBRF function
DBRM filename
DBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

DCFE function
DCFM filename
DCFG

not applicable not applicable
DBFM filename
DBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

DCAF function
DCAM filename
DCAG

DAAF function
DAAM filename
DAAG

DBAF function
DBAM filename
DBAG

 Summary of Profiling Commands

13-55 Chapter Title—Attribute Reference

Table 13–3.Enabling Disabled Areas

To enable this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

ECLE filename, line number
ECLF function
ECLM filename
ECLG

EALE address
EALF function
EALM filename
EALG

not applicable
EBLF function
EBLM filename
EBLG

Ranges

� By line
numbers,addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

ECRE filename, line number
ECRF function
ECRM filename
ECRG

EARE address
EARF function
EARM filename
EARG

not applicable
EBRF function
EBRM filename
EBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

ECFE function
ECFM filename
ECFG

not applicable not applicable
EBFM filename
EBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

ECAF function
ECAM filename
ECAG

EAAF function
EAAM filename
EAAG

EBAF function
EBAM filename
EBAG

Summary of Profiling Commands

 13-56

Table 13–4.Unmarking Areas

To unmark this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

UCLE filename, line number
UCLF function
UCLM filename
UCLG

UALE address
UALF function
UALM filename
UALG

not applicable
UBLF function
UBLM filename
UBLG

Ranges

� By line
numbers,addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

UCRE filename, line number
UCRF function
UCRM filename
UCRG

UARE address
UARF function
UARM filename
UARG

not applicable
UBRF function
UBRM filename
UBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

UCFE function
UCFM filename
UCFG

not applicable not applicable
UBFM filename
UBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

UCAF function
UCAM filename
UCAG

UAAF function
UAAM filename
UAAG

UBAF function
UBAM filename
UBAG

 Summary of Profiling Commands

13-57 Summary of Commands and Special Keys

Table 13–5.Changing the PROFILE Window Display

(a) Viewing specific areas

To view this area C only Disassembly only C and disassembly

Lines

� By line number, address

� All lines in a function

� All lines in a module

� All lines everywhere

VFCLE filename, line number
VFCLF function
VFCLM filename
VFCLG

VFALE address
VFALF function
VFALM filename
VFALG

not applicable
VFBLF function
VFBLM filename
VFBLG

Ranges

� By line
numbers,addresses

� All ranges in a function

� All ranges in a module

� All ranges everywhere

VFCRE filename, line number
VFCRF function
VFCRM filename
VFCRG

VFARE address
VFARF function
VFARM filename
VFARG

not applicable
VFBRF function
VFBRM filename
VFBRG

Functions

� By function name

� All functions in a module

� All functions everywhere

VFCFE function
VFCFM filename
VFCFG

not applicable not applicable
VFBFM filename
VFBFG

All areas

� All areas in a function

� All areas in a module

� All areas everywhere

VFCAF function
VFCAM filename
VFCAG

VFAAF function
VFAAM filename
VFAAG

VFBAF function
VFBAM filename
VFBAG

(b) Viewing different data (c) Sorting the data

To view this information Use this
command

To sort on this data Use this
command

Count VDC Count VSC

Inclusive VDI Inclusive VSI

Inclusive, maximum VDN Inclusive, maximum VSN

Exclusive VDE Exclusive VSE

Exclusive, maximum VDX Exclusive, maximum VSX

Address VDA Address VSA

All VDL Data VSD

Summary of Special Keys

 13-58

13.5 Summary of Special Keys

The debugger provides function key, cursor key, and command key se-
quences for performing a variety of actions:

� Editing text on the command line
� Using the command history
� Switching modes
� Halting or escaping from an action
� Displaying the pulldown menus
� Running code
� Selecting or closing a window
� Moving or sizing a window
� Scrolling through a window’s contents
� Editing data or selecting the active field

Editing text on the command line

To do this
Use these
function keys

Enter the current command (note that if you press the return key
in the middle of text, the debugger truncates the input text at the
point where you press this key)

Move back over text without erasing characters CONTROL H

or
BACK SPACE

Move forward through text without erasing characters CONTROL L

Move back over text while erasing characters DELETE

Move forward through text while erasing characters SPACE

Insert text into the characters that are already on the command INSERT

line

Using the command history

To do this
Use these
function keys

Repeat the last command that you entered F2

Move backward, one command at a time, through the command TAB

history

Move forward, one command at a time, through the command SHIFT TAB

history

 Summary of Special Keys

13-59 Summary of Commands and Special Keys

Switching modes

To do this
Use these
function keys

Switch debugging modes in this order: F3

auto assembly mixed

Halting or escaping from an action

The escape key acts as an end or undo key in several situations.

To do this
Use this
 function key

� Halt program execution ESC

� Close a pulldown menu

� Undo an edit of the active field in a data-display window
(pressing this key leaves the field unchanged)

� Halt the display of a long list of data in the display area of
the COMMAND window

Displaying pulldown menus

To do this
Use these
function keys

Display the Load menu ALT L

Display the Break menu ALT B

Display the Watch menu ALT W

Display the Memory menu ALT M

Display the Color menu ALT C

Display the MoDe menu ALT D

Display the BTT menu ALT T

Display an adjacent menu ← or →

Execute any of the choices from a displayed pulldown menu Press the high-
lighted letter
corresponding
to your choice

Summary of Special Keys

 13-60

Running code

To do this
Use these
function keys

Run code from the current PC (equivalent to the RUN command F5

without an expression parameter)

Single-step code from the current PC (equivalent to the STEP F8

command without an expression parameter)

Single-step code from the current PC; step over function calls F10

(equivalent to the NEXT command without an expression
parameter)

Selecting or closing a window

To do this
Use these
function keys

Select the active window (pressing this key makes each window F6

active in turn; stop pressing the key when the desired window
becomes active)

Close the CALLS, DISP, or additional MEMORY window (the F4

window must be active before you can close it)

Moving or sizing a window

You can use the arrow keys to interactively move a window after entering the
MOVE or SIZE command without parameters.

To do this
Use these
function keys

� Move the window down one line ↓

� Make the window one line longer

� Move the window up one line ↑

� Make the window one line shorter

� Move the window left one character position ←

� Make the window one character narrower

� Move the window right one character position →

� Make the window one character wider

 Summary of Special Keys

13-61 Summary of Commands and Special Keys

Scrolling a window’s contents

These descriptions and instructions for scrolling apply to the active window.
Some of these descriptions refer to specific windows; if no specific window is
named, then the description/instructions refer to any window that is active.

To do this
Use these
function keys

Scroll up through the window contents, one window length at PAGE UP

a time

Scroll down through the window contents, one window length PAGE DOWN

at a time

Move the field cursor up, one line at a time ↑

Move the field cursor down, one line at a time ↓

� FILE window only: Scroll left 8 characters at a time ←

� Other windows: Move the field cursor left 1 field; at the first
field on a line, wrap back to the last fully displayed field on
the previous line

� FILE window only: Scroll right 8 characters at a time →

� Other windows: Move the field cursor right 1 field; at the last
field on a line, wrap around to the first field on the next line

FILE window only: Adjust the window’s contents so that the first HOME

line of the text file is at the top of the window

FILE window only: Adjust the window’s contents so that the last END

line of the text file is at the bottom of the window

DISP windows only: Scroll up through an array of structures CONTROL

PAGE UP

DISP windows only: Scroll down through an array of structures CONTROL

PAGE DOWN

Editing data or selecting the active field

The F9 function key makes the current field (the field that the cursor is pointing
to) active. This has various effects, depending on the field.

To do this
Use these
function key

� FILE or DISASSEMBLY window: Set or clear a breakpoint F9

� CALLS window: Display the source to a listed function

� Any data-display window: Edit the contents of the current field

� DISP window: Open an additional DISP window to display a
member that is an array, structure, or pointer

 13-62

14-1 Chapter Title—Attribute Reference

Basic Information About C Expressions

Many of the debugger commands take C expressions as parameters. This al-
lows the debugger to have a relatively small, yet powerful, instruction set.
Because C expressions can have side effects—that is, the evaluation of some
types of expressions can affect existing values—you can use the same
command to display or to change a value, thus reducing the number of
commands in the command set.

This chapter contains basic information that you’ll need to know in order to use
C expressions as debugger command parameters. If you’re an experienced
C programmer, skip Section 14.1.

Because the C expressions you’ll use are parameters to debugger
commands, some language features may be inappropriate. Therefore,
Section 14.2 covers specific implementation issues (including necessary limi-
tations and additional features) related to using C expressions as command
parameters.

Topic Page

14.1 C Expressions for Assembly Language Programmers 14-2

14.2 Restrictions and Features Associated With 14-4
Expression Analysis in the Debugger
Restrictions 14-4
Additional features 14-4

Chapter 14

C Expressions for Assembly Language Programmers

 14-2

14.1 C Expressions for Assembly Language Programmers

It’s not necessary for you to be an experienced C programmer in order to use
the debugger. However, in order to use the debugger’s full capabilities, you
should at least be familiar with the rules governing C expressions. A helpful
reference is The C Programming Language (second edition) by Brian W.
Kernighan and Dennis M. Ritchie, published by Prentice-Hall, Englewood
Cliffs, New Jersey. This book is referred to in the C community, and in Texas
Instruments documentation, as K&R.

Note:

A single value or symbol is a legal C expression.

K&R contains a complete description of C expressions; to get you started,
here’s a summary of the operators that you can use in expression parameters.

� Reference operators

–> indirect structure reference . direct structure reference
[] array reference * indirection (unary)
& address (unary)

� Arithmetic operators

+ addition (binary) – subtraction (binary)
* multiplication / division
% modulo – negation (unary)
(type) typecast

� Relational and logical operators

> greater than >= greater than or equal to
< less than <= less than or equal to
= = is equal to != is not equal to
&& logical AND || logical OR
! logical NOT (unary)

 C Expressions for Assembly Language Programmers

14-3 Basic Information About C Expressions

� Increment and decrement operators

++ increment – – decrement

These unary operators can precede or follow a symbol. When the operator
precedes a symbol, the symbol value is incremented/decremented before
it is used in the expression; when the operator follows a symbol, the sym-
bol value is incremented/decremented after it is used in the expression.
Because these operators affect the symbol’s final value, they have side
effects.

� Bitwise operators

& bitwise AND | bitwise OR
^ bitwise exclusive-OR << left shift
>> right shift ~ 1s complement (unary)

� Assignment operators

= assignment += assignment with addition
–= assignment with subtraction /= assignment with division
%= assignment with modulo &= assignment with bitwise AND
^= assignment with bitwise XOR |= assignment with bitwise OR
<<= assignment with left shift >>= assignment with right shift
*= assignment with multiplication

These operators support a shorthand version of the familiar binary expres-
sions; for example, X = X + Y can be written in C as X += Y. Because these
operators affect a symbol’s final value, they have side effects.

Restrictions and Features Associated With Expressions Analysis in the Debugger

 14-4

14.2 Restrictions and Features Associated With
Expression Analysis in the Debugger

The debugger’s expression analysis is based on C expression analysis. This
includes all mathematical, relational, pointer, and assignment operators.
However, there are a few limitations, as well as a few additional features not
described in K&R C.

Restrictions

The following restrictions apply to the debugger’s expression analysis fea-
tures.

� The sizeof operator is not supported.

� The comma operator (,) is not supported (commas are used to separate
parameter values for the debugger commands).

� Function calls and string constants are currently not supported in expres-
sions.

� The debugger supports a limited number of type casts; the following forms
are allowed.

(basic type)
(basic type * ...)
([structure/union/enum] structure/union/enum tag)
([structure/union/enum] structure/union/enum tag * ...)

Note that you can use up to six *s in a cast.

Additional features

� All floating-point operations are performed in double precision using stan-
dard widening. (This is transparent.)

� Void expressions are legal (treated like integers).

� The specification of variables and functions can be qualified with context
information. Local variables (including local statics) can be referenced
with the expression form:

function name.local name

This expression format is useful for examining the automatic variables of a
function that is not currently being executed. Unless the variable is static,
however, the function must be somewhere in the current call stack. If you

 Restrictions and Features Associated With Expressions Analysis in the Debugger

14-5 Basic Information About C Expressions

want to see local variables from the currently executing function, you need
not use this form; you can simply specify the variable name (just as in your
C source).

File-scoped variables (such as statics or functions) can be referenced with
the following expression form:

filename.function name
or filename.variable name

This expression format is useful for accessing a file-scoped static variable
(or function) that may share its name with variables in other files.

In this expression, filename does not include the file extension; the
debugger searches the object symbol table for any source filename that
matches the input name, disregarding any extension. Thus, if the variable
ABC is in file source.c, you can specify it as source.ABC.

These expression forms can be combined into an expression of the form:

filename.function name.variable name

� Any integral or void expression can be treated as a pointer and used with
the indirection operator (*). Here are several examples of valid use of a
pointer in an expression:

*123
*R5
*(R2 + 123)
*(I*J)

By default, the values are treated as integers (that is, these expressions
point to integer values).

� Any expression can be typecast to a pointer to a specific type (overriding
the default of pointing to an integer, as described above).

Hint: You can use casting with the WA and DISP commands to display
data in a desired format.

For example, the expression:

*(float *)10

treats 10 as a pointer to a floating-point value at location 10 in memory. In
this case, the debugger fetches the contents of memory location 10 and
treats the contents as a floating-point value. If you use this expression as a
parameter for the DISP command, the debugger displays memory
contents as an array of floating-point values within the DISP window,
beginning with memory location 10 as array member [0].

Restrictions and Features Associated With Expressions Analysis in the Debugger

 14-6

Note how the first expression differs from the expression:

(float)*10

In this case, the debugger fetches an integer from address 10 and
converts the integer to a floating-point value.

You can also typecast to user-defined types such as structures. For exam-
ple, in the expression:

((struct STR *)10)–>field

the debugger treats memory location 10 as a pointer to a structure of type
STR (assuming that a structure is at address 10) and accesses a field from
that structure.

A-1 What the Debugger Does During Invocation

Appendix A

What the Debugger Does
During Invocation

In some circumstances, you may find it helpful to know the steps that the
debugger goes through during the invocation process. These are the steps,
in order, that the debugger performs when you invoke it.

1) Reads options from the command line.

2) Reads any information specified with the D_OPTIONS environment vari-
able.

3) Reads information from the D_DIR and D_SRC environment variables.

4) Initializes the emulator and BTT, and resets the memory map.

5) Looks for the screen configuration file:

init.clr file.

(The debugger searches for the screen configuration file in directories
named with D_DIR.)

6) Initializes the debugger screen and windows but initially displays only the
COMMAND window.

7) Finds the batch file that defines your memory map by searching in directo-
ries named with D_DIR. The debugger expects this file to set up the
memory map and follows these steps to look for the batch file:

a) When you invoke the debugger, it checks to see if you’ve used the –t
debugger option. If it finds the –t option, the debugger reads and
executes the specified file.

b) If you don’t use the –t option, the debugger looks for

c) a file called init.cmd. If the debugger finds the file, it reads and
executes the file.

8) Loads any object filenames specified with D_OPTIONS or specified on the
command line during invocation.

9) Determines the initial mode (auto, assembly, or mixed) and displays the
appropriate windows on the screen.

At this point, the debugger is ready to process any commands that you enter.

Appendix A

A-2

 Managing Data in a WATCH Window

B-1 Chapter Title—Attribute Reference

Appendix A

Setting Up the Clock

For proper emulation you need to be using the same operating frequency as
your end application. Therefore, if you want to use a clock source other than
the default crystal, you must setup the ’370 debugger to match your new clock
source. The debugger has three ways of generating the clock, including:

� An Oscillator clock generated through an oscillator circuit on the
emulator.

� A Target clock generated from the target system. Note that your external
clock must be CMOS compatible; a crystal will not work because the signal
is not strong enough to reach the emulator board.

� A Crystal clock generated through a crystal inside the emulator.

Refer to your installation guide for instructions on installing the different clock
sources.

To select and monitor a particular clock, you can use the CONFIG dialog box
on the LOAD menu. The CONFIG dialog box looks like this:

Device Mode: microcomputer

Clock Source

() O scillator () Target (*) C r ystal

Clock Period: 200ns

<<OK>> < Cancel>

370 Configuration Setup

Appendix B

Setting Up the Clock

B-2

To select a clock through the CONFIG dialog box:

1) Point to the clock source you want to select.

2) Now click the left button. An asterisk is displayed next to the clock source
you enabled.

Another way to select a particular clock is to use the alias command, clock.
For example, to select the oscillator clock, you would enter:

clock=oscillator

Alternately, you can select the clock by assigning the appropriate value to the
pseudoregister. The values for the oscillator, target, and crystal clocks are 0,
1, and 2, respectively. Therefore, to select the oscillator clock using the ap-
propriate value, enter:

?clock = 0

Hint: To be sure the debugger set the clock source according to the new clock,
pay attention to the clock period. The debugger computes the clock period
from the clock source you selected as a way to verify the setup.

Note:

When programming in C, do not use a variable named CLOCK.

C-1 Chapter Title—Attribute Reference

Appendix A

Debugger Messages

This appendix contains an alphabetical listing of the progress and error mes-
sages that the debugger might display in the COMMAND window display area.
Each message contains both a description of the situation that causes the
message and an action to take if the message indicates a problem or error.

Topic Page

C.1 Associating Sound With Error Messages C-2

C.2 Alphabetical Reference of Debugger Messages C-2

C.3 Additional Instructions for Expression Errors C-22

C.4 Additional Instructions for Hardware Errors C-22

Appendix C

Associating Sound With Error Messages / Alphabetical Summary of Debugger Messages

C-2

C.1 Associating Sound With Error Messages

You can associate a beeping sound with the display of an error message. To
do this, use the SOUND command. The format for this command is:

sound on | off

By default, no beep is associated with error messages (SOUND OFF). The
beep is helpful if the COMMAND window is hidden behind other windows.

C.2 Alphabetical Summary of Debugger Messages

Symbols

‘]’ expected

Description This is an expression error—it means that the parameter
contained an opening [symbol but didn’t contain a closing]
symbol.

Action See Section C.3 (page C-22).

‘)’ expected

Description This is an expression error—it means that the parameter
contained an opening (symbol but didn’t contain a closing)
symbol.

Action See Section C.3 (page C-22).

A

Aborted by user

Description The debugger halted a long COMMAND display listing (from
WHATIS, DIR, ML, or BL) because you pressed the ESC key.

Action None required; this is normal debugger behavior.

 Alphabetical Summary of Debugger Messages

C-3 Debugger Messages

B

Breakpoint already exists at address

Description During single-step execution, the debugger attempted to set
a breakpoint where one already existed. (This isn’t necessari-
ly a breakpoint that you set—it may have been an internal
breakpoint that was used for single-stepping).

Action None should be required; you may want to reset the program
entry point (RESTART) and re-enter the single-step
command.

Breakpoint table full

Description 200 breakpoints are already set, and there was an attempt to
set another. The maximum limit of 200 breakpoints includes
internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all breakpoints, or
use the BD command to delete individual breakpoints.

C

Cannot allocate host memory

Description This is a fatal error—it means that the debugger is running out
of memory to run in.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Cannot allocate system memory

Description This is a fatal error—it means that the debugger is running out
of memory to run in.

Action You might try invoking the debugger with the –v option so that
fewer symbols may be loaded. Or you might want to relink
your program and link in fewer modules at a time.

Alphabetical Summary of Debugger Messages

C-4

Cannot change directory
Description The directory name specified with the CD command either

doesn’t exist or is not in the current or auxiliary directories.

Action Check the directory name that you specified. If this is really
the directory that you want, re-enter the CD command and
specify the entire pathname for that directory (for example,
specify C:\370tools, not just 370tools).

Cannot detect target power
Description This hardware error occurs after resetting the emulator (with

emurst). Follow the steps described below and then restart
your emulator.

Action � Check the emulator board to be sure it is installed
snugly.

� Check the cable connecting your emulator and target
system to be sure it is not loose.

� Check the power to be sure it is on.

� Check your target board to be sure it is getting the cor-
rect voltage.

� Check your emulator scan path to be sure it is uninter-
rupted.

� Ensure that your serial port is set correctly. See the sec-
tion on Identifying the port address (–p option), page
1-14.

Cannot edit field
Description Expressions that are displayed in the WATCH window cannot

be edited.

Action If you attempted to edit an expression in the WATCH window,
you may have actually wanted to change the value of a sym-
bol or register used in the expression. Use the ? or EVAL
command to edit the actual symbol or register. The expres-
sion value will automatically be updated.

Cannot execute command
Description The command you attempted to execute cannot be executed

while the emulator or BTT is running.

Action Halt the emulator or BTT before you attempt to execute this
command.

 Alphabetical Summary of Debugger Messages

C-5 Debugger Messages

Cannot find/open initialization file

Description The debugger can’t find the init.cmd file.

Action Be sure that the init.cmd is in the appropriate directory. If it
isn’t, copy it from the debugger product diskette. If the file is
already in the correct directory, verify that the D_DIR environ-
ment variable is set up to identify the directory. See Setting Up
the Debugger Environment in the installation guide.

Cannot halt the processor

Description This is a fatal error—for some reason, pressing ESC didn’t halt
program execution.

Action Exit the debugger. Invoke the autoexec.bat or config.sys file,
then invoke the debugger again.

Cannot initialize target system

Description This error occurs while you are invoking the debugger. Any
combination of events may cause this error to occur.

Action � Check the cable connecting the emulator to the target
system to be sure it is not loose.

� Check the cable connecting the emulator to the PC to be
sure it is not loose.

� Check the power to be sure it is on.

� Check your SET D_OPTIONS in the autoexec.bat file or
initdb.bat file, depending on which operating system
you are using. The port address (or –p option) is not set
correctly. If you didn’t note the I/O switch settings, use a
trial-and-error approach to find the correct setting.

� Ensure that your serial port is set correctly. See the sec-
tion on Identifying the port address (–p option), page
1-14.

Cannot map into reserved memory: ?

Description The debugger tried to access to unconfigured/reserved/non-
existent memory.

Action Remap the reserved memory accesses. See the discussion
on memory mapping in the TMS370 Family XDS/22 User’s
Guide for more information.

Alphabetical Summary of Debugger Messages

C-6

Cannot open config file

Description The SCONFIG command can’t find the screen-customization
file that you specified.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was,
re-enter the command and specify full path information with
the filename.

Cannot open “ filename”

Description The debugger attempted to show filename in the FILE win-
dow but could not find the file.

Action Be sure that the file exists as named. If it does, enter the USE
command to identify the file’s directory.

Cannot open new window

Description A maximum of 127 windows can be open at once. The last
request to open a window would have made 128, which isn’t
possible.

Action Close any unnecessary windows. Windows that can be
closed include WATCH, CALLS, DISP, and additional
MEMORY windows. To close the WATCH window, enter WD.
To close the CALLS window, a DISP window, or a MEMORY
window make the desired window active and press F4 .

Cannot open object file: “ filename”

Description The file specified with the LOAD, SLOAD, or RELOAD
command is not an object file that the debugger can load.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run cl370 again to create
an executable object file).

Cannot read processor status

Description This is a fatal error—for some reason, pressing ESC didn’t halt
program execution.

Action Exit the debugger. Invoke the autoexec.bat or initdb.bat file,
then invoke the debugger again.

 Alphabetical Summary of Debugger Messages

C-7 Debugger Messages

Cannot reset the processor

Description This is a fatal error—for some reason, pressing ESC didn’t halt
program execution.

Action Exit the debugger. Invoke the autoexec or initdb.bat file, then
invoke the debugger again.

Cannot restart processor

Description If a program doesn’t have an entry point, then RESTART
won’t reset the PC to the program entry point.

Action Don’t use RESTART if your program doesn’t have an explicit
entry point.

Cannot set/verify breakpoint at address

Description Either you attempted to set a breakpoint in read-only or
protected memory, or there are hardware problems with the
target system.

Action Check your memory map. If the address that you wanted to
breakpoint wasn’t in ROM, see Section C.4 (page C-22).

Cannot take address of register

Description This is an expression error. C does not allow you to take the
address of a register.

Action See Section C.3 (page C-22).

Command “ cmd” not found

Description The debugger didn’t recognize the command that you typed.

Action Re-enter the correct command. Refer to Chapter 13 or the
Quick Reference Card for a list of valid debugger commands.

Command timed out, emulator busy

Description There is a problem with the target system.

Action See Section C.4 (page C-22).

Alphabetical Summary of Debugger Messages

C-8

Conflicting map range
Description A block of memory specified with the MA command overlaps

an existing memory map entry. Blocks cannot overlap.

Action Use the ML command to list the existing memory map; this will
help you find the existing block that the new block would over-
lap. If the existing block is not necessary, delete it with the MD
command and re-enter the MA command. If the existing block
is necessary, re-enter the MA command with parameters that
will not overlap the existing block.

Corrupt call stack
Description The debugger tried to update the CALLS window and

couldn’t. This may be because a function was called that
didn’t return. Or it could be that the call stack was overwritten
in memory.

Action If your program called a function that didn’t return, then this is
normal behavior (as long as you intended for the function not
to return). Otherwise, you may be overwriting program
memory.

E

EEPROM control register not defined
Description You attempted to define a block of memory for the EEPROMs/

EPROMs without defining the EEPROM/EPROM control reg-
ister.

Action Define the EEPROM/EPROM control register before defining
memory for the EEPROM/EPROM.

Emulator error
Description A low-level hardware error has occurred.

Action See Section C.4 (page C-22).

Emulator memory error
Description There is a problem with your emulator memory.

Action Be sure the emulator board not damaged and is placed snug-
ly in your PC. Be sure you do not have a control address con-
flict.

 Alphabetical Summary of Debugger Messages

C-9 Debugger Messages

Emulator translation error
Description There is a problem with the target system.

Action See Section C.4 (page C-22).

Error in expression
Description This is an expression error.

Action See Section C.3 (page C-22).

Exception encountered
Description The debugger received an unexpected communication from

the emulator.

Action Reset the emulator.

Execution error
Description A low-level hardware error occurred while you were trying to

run the device.

Action Be sure the device is not reset. See Section C.3 (page C-22).

F

File not found
Description The filename specified for the FILE command was not found

in the current directory or any of the directories identified with
D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the FILE command with the correct name. If it was,
re-enter the FILE command and specify full path information
with the filename.

File not found : “ filename”
Description The filename specified for the LOAD, RELOAD, SLOAD, or

TAKE command was not found in the current directory or any
of the directories identified with D_SRC.

Action Be sure that the filename was typed correctly. If it wasn’t,
re-enter the command with the correct name. If it was,
re-enter the command and specify full path information with
the filename.

Alphabetical Summary of Debugger Messages

C-10

File too large (filename)

Description You attempted to load a file that was more than 65,518 bytes
long.

Action Try loading the file without the symbol table (SLOAD), or use
gspcl to relink the program with fewer modules.

Float not allowed

Description This is an expression error—a floating-point value was used
invalidly.

Action See Section C.3 (page C-22).

Function required

Description The parameter for the FUNC command entered was not the
name of a function in the program that is loaded.

Action Re-enter the FUNC command with a valid function name.

I

Illegal addressing mode

Description An illegal ’370 addressing mode was encountered.

Action Refer to Table 11–1, Number of Actions Allowed Per State, in
section 11.4 (page 11-12) for valid addressing modes.

Illegal cast

Description This is an expression error—the expression parameter uses
a cast that doesn’t meet the C language rules for casts.

Action See Section C.3 (page C-22).

Illegal left hand side of assignment

Description This is an expression error—the lefthand side of an assign-
ment expression doesn’t meet C language assignment rules.

Action See Section C.3 (page C-22).

 Alphabetical Summary of Debugger Messages

C-11 Debugger Messages

Illegal memory access

Description The debugger tried to access unconfigured/reserved/nonex-
istent memory.

Illegal opcode

Description An invalid ’370 instruction was encountered.

Action Modify your source code or reset the emulator.

Illegal operand of &

Description This is an expression error—the expression attempts to take
the address of an item that doesn’t have an address.

Action See Section C.3 (page C-22).

Illegal pointer math

Description This is an expression error—some types of pointer math are
not valid in C expressions.

Action See Section C.3 (page C-22).

Illegal pointer subtraction

Description This is an expression error—the expression attempts to use
pointers in a way that is not valid.

Action See Section C.3 (page C-22).

Illegal structure reference

Description This is an expression error—either the item being referenced
as a structure is not a structure, or you are attempting to refer-
ence a nonexistent portion of a structure.

Action See Section C.3 (page C-22).

Illegal use of structures

Description This is an expression error—the expression parameter is not
using structures according to the C language rules.

Action See Section C.3 (page C-22).

Alphabetical Summary of Debugger Messages

C-12

Illegal use of void expression
Description This is an expression error—the expression parameter does

not meet the C language rules.

Action See Section C.3 (page C-22).

Integer not allowed
Description This is an expression error—the command did not accept an

integer as a parameter.

Action See Section C.3 (page C-22).

Invalid address
Description Either the defined memory block for the peripheral frame fell

outside of the range 0x1010–0x1100, or the starting and end-
ing addresses of the memory block are not multiples of 0x10.

Action � Check to be sure the starting and ending addresses fall
within the range 0x1010–0x1100. (This pertains only to
the peripheral frame.)

� Check to be sure the starting and ending addresses are
multiples of 0x10.

Invalid address
––– Memory access outside valid range: address
Description The debugger attempted to access memory at address,

which is outside the memory map.

Action Check your memory map to be sure that you access valid
memory.

Invalid argument
Description One of the command parameters does not meet the require-

ments for the command.

Action Re-enter the command with valid parameters. Refer to the
appropriate command description in Chapter 13.

Invalid attribute name
Description The COLOR and SCOLOR commands accept a specific set

of area names for their first parameter. The parameter
entered did not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid area
name parameter. Valid area names are listed in Table 10–2
(page 10-3).

 Alphabetical Summary of Debugger Messages

C-13 Debugger Messages

Invalid color name

Description The COLOR and SCOLOR commands accept a specific set
of color attributes as parameters. The parameter entered did
not match one of the valid attributes.

Action Re-enter the COLOR or SCOLOR command with a valid color
parameter. Valid color attributes are listed in Table 10–1
(page 10-2).

Invalid length for EEPROM control register
Description The length of the peripheral frame defined while mapping the

EEPROM control register is invalid.

Action Define a length of ten for the peripheral frame.

Invalid map type
Description The EEPROM/EPROM or EEPROM/EPROM control frame

you attempted to define already exists.

Action Delete the existing EEPROM/EPROM or EEPROM/EPROM
control frame and redefine the map type.

Alphabetical Summary of Debugger Messages

C-14

Invalid memory attribute
Description The third parameter of the MA command specifies the type, or

attribute, of the block of memory that MA adds to the memory
map. The parameter entered did not match one of the valid
attributes.

Action Re-enter the MA command. Use one of the following valid
parameters to identify the memory type:

R, ROM, EROM (read-only emulator memory)

XROM (read-only external memory)

IROM (read-only internal memory)

RW, RAM, ERAM (read/write emulator memory)

XRAM (read/write external memory)

IRAM (read/write internal memory)

SERW, SEPER (read/write serial peripheral frame in
emulator memory)

SIRW, SIPER (read/write serial peripheral frame in
internal memory)

TERW, TEPER (read/write timer peripheral frame in
emulator memory)

TIRW, TIPER (read/write timer peripheral frame in
internal memory)

PROTECT (no-access memory)

EPCTL (EPROM control frame)

PEPROM (program EPROM read-only emulator
memory)

DEPROM (data EPROM read-only emulator
memory)

CEPROM (custom EPROM read-only emulator
memory)

PEEPROM (program EEPROM read-only emula-
tor memory)

DEEPROM (data EEPROM read-only emulator
memory)

CEEPROM (custom EEPROM read-only emula-
tor memory)

 Alphabetical Summary of Debugger Messages

C-15 Debugger Messages

Invalid object file
Description Either the file specified with the LOAD, SLOAD, or RELOAD

command is not an object file that the debugger can load, or it
has been corrupted.

Action Be sure that you’re loading an actual object file. Be sure that
the file was linked (you may want to run dspcl again to create
an executable object file). If the file you attempted to load was
a valid executable object file, then it was probably corrupted;
recompile, assemble, and link with dspcl.

Invalid register
Description This is an internal error.

Action Shutdown the debugger and restart it. If the problem recurs,
call the hotline.

Invalid scan path
Description This is an internal error.

Action Shutdown the debugger and restart it. If the problem recurs,
call the hotline.

Invalid state
Description Your target system is in an invalid state.

Action Reset the emulator.

Invalid target revision
Description The debugger attempted to debug an unknown revision of the

’370 processor.

Action Your debugger needs to be updated.

Invalid watch delete
Description The debugger can’t delete the parameter supplied with the

WD command. Usually, this is because the watch index
doesn’t exist or because a symbol name was typed in instead
of a watch index.

Action Re-enter the WD command. Be sure to specify the watch
index that matches the item you’d like to delete (this is the
number in the left column of the WATCH window). Remem-
ber, you can’t delete items symbolically—you must delete
them by number.

Alphabetical Summary of Debugger Messages

C-16

Invalid window position

Description The debugger can’t move the active window to the XY posi-
tion specified with the MOVE command. Either the XY param-
eters are not within the screen limits, or the active window
may be too large to move to the desired position.

Action � You can use the mouse to move the window.

� If you don’t have a mouse, enter the MOVE command
without parameters; then use the arrow keys to move the
window. When you’re finished, you must press ESC or .

� If you prefer to use the MOVE command with parameters,
the minimum XY position is 0,1; the maximum position
depends on which screen size you’re using.

Invalid window size

Description The width and length specified with the SIZE or MOVE com-
mand may be too large or too small. If valid width and length
were specified, then the active window is already at the far
right or bottom of the screen and so cannot be made larger.

Action � You can use the mouse to size the window.

� If you don’t have a mouse, enter the SIZE command with-
out parameters; then use the arrow keys to move the win-
dow. When you’re finished, you must press ESC or .

� If you prefer to use the SIZE command with parameters,
the minimum size is 4 by 3; the maximum size depends
on which screen size you’re using.

L

Load aborted

Description This message always follows another message.

Action Refer to the message that preceded Load aborted.

Lost power (or cable disconnected)

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section C.4 (page C-22).

 Alphabetical Summary of Debugger Messages

C-17 Debugger Messages

Lost processor clock

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section C.4 (page C-22).

Lost target power or clock

Description Either the target cable is disconnected, or the target system is
faulty.

Action Check the target cable connections. If the target seems to be
connected correctly, see Section C.4 (page C-22).

Lval required

Description This is an expression error—an assignment expression was
entered that requires a legal left-hand side.

Action See Section C.3 (page C-22).

M

Memory access error at address

Description Either the processor is receiving a bus fault, or there are
problems with target system memory.

Action See Section C.4 (page C-22).

Memory access outside valid range: address

Description Your program tried to access unmapped memory.

Action Check your memory map.

Memory map table full

Description Too many blocks have been added to the memory map. This
rarely happens unless someone is adding blocks word by
word (which is inadvisable).

Action Stop adding blocks to the memory map. Consolidate any
adjacent blocks that have the same memory attributes.

Alphabetical Summary of Debugger Messages

C-18

N

Name “ name” not found
Description The command cannot find the object named name.

Action � If name is a symbol, be sure that it was typed correctly. If it
wasn’t, re-enter the command with the correct name. If it
was, then be sure that the associated object file is loaded.

� If name was some other type of parameter, refer to the
command’s description for a list of valid parameters.

No breakpoint at address
Description This is an internal error.

Action Shutdown the debugger and restart it. If the problem recurs,
call the hotline.

P

Pointer not allowed
Description This is an expression error.

Action See Section C.3 (page C-22).

Processor access timeout at address
Description There is a problem with your target system.

Action See Section C.4 (page C-22).

Processor is already running
Description One of the RUN commands was entered while the debugger

was running free from the target system.

Action Enter the HALT command to stop the free run, then re-enter
the desired RUN command.

R

Register access error
Description Either the processor is receiving a bus fault, or there are

problems with target-system memory.

Action See Section C.4 (page C-22).

 Alphabetical Summary of Debugger Messages

C-19 Debugger Messages

RESET encountered

Description The debugger received a hardware reset from another device
on the system.

Action Reset the emulator if this problem recurs frequently.

S

Specified map not found

Description The MD command was entered with an address or block that
is not in the memory map.

Action Use the ML command to verify the current memory map.
When using MD, you can specify only the first address of a
defined block.

Structure member not found

Description This is an expression error—an expression references a non-
existent structure member.

Action See Section C.3 (page C-22).

Structure member name required

Description This is an expression error—a symbol name followed by a
period but no member name.

Action See Section C.3 (page C-22).

Structure not allowed

Description This is an expression error—the expression is attempting an
operation that cannot be performed on a structure.

Action See Section C.3 (page C-22).

Alphabetical Summary of Debugger Messages

C-20

T

Take file stack too deep

Description Batch files can be nested up to 10 levels deep. Batch files can
call other batch files, which can call other batch files, and so
on. Apparently, the batch file that you are TAKEing calls batch
files that are nested more than 10 levels.

Action Edit the batch file that caused the error. Instead of calling
another batch file from within the offending file, you may want
to copy the contents of the second file into the first. This will
remove a level of nesting.

Too many breakpoints

Description 200 breakpoints are already set, and there was an attempt to
set another. Note that the maximum limit of 200 breakpoints
includes internal breakpoints that the debugger may set for
single-stepping. Under normal conditions, this should not be
a problem; it is rarely necessary to set this many breakpoints.

Action Enter a BL command to see where breakpoints are set in your
program. Use the BR command to delete all breakpoints, or
use the BD command to delete individual breakpoints.

Too many paths

Description More than 20 paths have been specified cumulatively with the
USE command, D_SRC environment variable, and –i debug-
ger option.

Action If you are entering the USE command before entering another
command that has a filename parameter, don’t enter the USE
command. Instead, enter the second command and specify
full path information for the filename.

U

Unable to read EMULATOR ID

Description The debugger was unable to read the emulator identification.

Action Reset the emulator.

 Alphabetical Summary of Debugger Messages

C-21 Debugger Messages

Unable to send command packet

Description The debugger was unable to send the command you entered
to the emulator.

Action Re-enter the command; if this does not work, reset the emula-
tor.

User halt

Description The debugger halted program execution because you
pressed the ESC key.

Action None required; this is normal debugger behavior.

W

Window not found

Description The parameter supplied for the WIN command is not a valid
window name.

Action Re-enter the WIN command. Remember that window names
must be typed in uppercase letters. Here are the valid window
names; the bold letters show the smallest acceptable abbre-
viations:

CALLS CPU DISP MEMORY

COMMAND DISASSEMBLY FILE WATCH

PROFILE INSPECT

Additional Instructions for Expression Errors / Additional Instructions for Hardware Errors

C-22

C.3 Additional Instructions for Expression Errors

Whenever you receive an expression error, you should re-enter the command
and edit the expression so that it follows the C language expression rules. If
necessary, refer to a C language manual such as The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie.

C.4 Additional Instructions for Hardware Errors

If you continue to receive the messages that send you to this section, this indi-
cates persistent hardware problems.

� If a bus fault occurs, the emulator may not be able to access memory.

� The ’370 must be reset before you can use the emulator. Most target sys-
tems reset the ’370 at power-up; your target system may not be doing this.

D-1 Glossary

Appendix A

Glossary

A
action: A function performed by the BTT. Supported actions include hard-

ware breakpoints, event counting, collection of trace samples, jumps to
BTT states, and collection of timing statistics. Actions are not performed
unless they meet predefined conditions.

active window: The window that is currently selected for moving, sizing,
editing, closing, or some other function.

address-only state mode: A BTT mode that allows you to qualify actions
based on address values but prevents you from qualifying actions based
on data values.

address-and-data state mode: A BTT mode that allows you to qualify
actions based on a combination of address and data values. This mode
limits the number of actions that can be defined for a state.

aggregate type: A C data type such as a structure or array where a variable
is composed of multiple variables, called members.

aliasing: A method of customizing debugger commands; aliasing provides
a shorthand method for entering often-used command strings.

ANSI C: A version of the C programming language that conforms to the C
standards defined by the American National Standards Institute.

assembly mode: A debugging mode that shows assembly language code
in the DISASSEMBLY and doesn’t show the FILE window, no matter
what type of code is currently running.

autoexec.bat: A batch file that contains DOS commands for initializing your
PC.

auto mode: A context-sensitive debugging mode that automatically
switches between showing assembly language code in the DISASSEM-
BLY window and C code in the FILE window, depending on what type of
code is currently running.

Appendix D

Glossary

D-2

B

batch file: One of two different types of files. One type contains DOS com-
mands for the PC to execute. A second type of batch file contains debug-
ger commands for the debugger to execute. The PC doesn’t execute
debugger batch files, and the debugger doesn’t execute PC batch files.

benchmarking: A type of program execution that allows you to track the
number of CPU cycles consumed by a specific section of code.

BP/event: An action performed by the BTT when predefined conditions are
met. Depending upon the conditions you have defined, the BTT will
perform a hardware breakpoint, or it will decrement the event counter.

breakpoint: A point within your program where execution will halt because
of a previous request from you.

BTT: Breakpoint, trace, and timing. A set of features supported by the BTT
board (included with the XDS/22 emulation system). BTT features allow
you to set hardware breakpoints, collect trace samples, and perform
timing analysis.

BTT setup: A collection of information that you have defined for using the
BTT. The setup includes conditions defined for actions, the actions that
are defined for each state, and the global settings; a setup can be saved
and reused.

C

C: A high-level, general-purpose programming language useful for writing
compilers and operating systems and for programming microproces-
sors.

CALLS window: A window that lists the functions called by your program.

casting: A feature of C expressions that allows you to use one type of data
as if it were a different type of data.

CEEPROM: Custom electrically erasable programmable read-only
memory.

CEPROM: Custom erasable programmable read-only memory.

children: Additional windows opened for aggregate types that are members
of a parent aggregate type displayed in an existing DISP window.

 Glossary

D-3 Glossary

cl370: A shell utility that invokes the TMS370 compiler, assembler, and link-
er to create an execution object file version of your program.

click: To press and release a mouse button without moving the mouse.

CLK: A pseudoregister that shows the number of CPU cycles consumed
during benchmarking. The value in CLK is valid only after entering a
RUNB command but before entering another RUN command.

clock: An aliased command that is used to select the clock source (target,
crystal, oscillator). Refer to Appendix B Setting Up the Clock.

code-display windows: Windows that show code, text files, or code-
specific information. This category includes the DISASSEMBLY, FILES,
and CALLS windows.

COFF: Common Object File Format. An implementation of the object file for-
mat of the same name developed by AT&T. The TMS370 compiler,
assembler, and linker use and generate COFF files.

command line: The portion of the COMMAND window where you can enter
commands.

command-line cursor: A block-shaped cursor that identifies the current
character position on the command line.

COMMAND window: A window that provides an area for you to enter com-
mands and for the debugger to echo command entry, show command
output, and list progress or error messages.

CPU window: A window that displays the contents of ’370 on-chip registers,
including the register and peripheral files.

current-field cursor: A screen icon that identifies the current field in the ac-
tive window.

cursor: An icon on the screen (such as a rectangle or a horizontal line) that
is used as a pointing device. The cursor is usually under mouse or
keyboard control.

D

data-display windows: Windows for observing and modifying various
types of data. This category includes the MEMORY, CPU, DISP, and
WATCH windows.

dbrst: A utility that resets the SWDS.Change the dbrst
entry to match the
utility in your book.

⇒

Glossary

D-4

D_DIR: An environment variable that identifies the directory containing the
commands and files necessary for running the debugger.

debugger: A window-oriented software interface that helps you to debug
’370 programs running on an emulator or application board.

DEEPROM: Data electrically erasable programmable read-only memory.

delay counter: A global BTT setting that defines how many trace samples
can be collected between the time when a BP/event is detected and the
time when the CPU and BTT are halted.

DEPROM: Data erasable programmable read-only memory.

disassembly: Assembly language code formed from the reverse-assembly
of the contents of memory.

DISASSEMBLY window: A window that displays the disassembly of
memory contents.

DISP window: A window that displays the members of an aggregate data
type.

display area: The portion of the COMMAND window where the debugger
echoes command entry , shows command output, and lists progress or
error messages.

D_OPTIONS: An environment variable that you can use for identifying often-
used debugger options.

drag: To move the mouse while pressing one of the mouse buttons.

D_SRC: An environment variable that identifies directories containing
program source files.

E

EGA: Enhanced Graphics Adaptor. An industry standard for video cards.

EEPROM: Electrically erasable programmable read-only memory.

EPROM: Erasable programmable read-only memory.

EISA: Extended Industry Standard Architecture. A standard for PC buses.

emulator: A debugging tool that is external to the target system and pro-
vides direct control over the ’370 processor that is on the target system.

 Glossary

D-5 Glossary

end state: A global BTT setting that defines the last state in a sequence of
states. By default, the end state is 0.

environment variable: A special system symbol that the debugger uses for
finding directories or obtaining debugger options.

event counter: A counter associated with a state that can count down the
number of times BP/event conditions are qualified. The default event-
counter value is 0; a hardware breakpoint cannot occur until the event
counter reaches 0.

external-signal probe: A part of the BTT board that can be connected to
external signals so that you can monitor the signals or use the values of
the signals for qualifying actions.

EVM: Evaluation Module. A development tool that lets you execute and
debug applications programs by using the ’C5x debugger.

evmrst: A utility that resets the EVM.

F

FILE window: A window that displays the contents of the current C code.
The FILE window is primarily intended for displaying C code but can be
used to display any text file.

G

global settings: Settings that control global operation of the BTT board.
These settings include the delay counter, max trace, end state, loop
counter, and time-out timer values.

H

hardware breakpoint: A hardware function performed by the BTT board;
halts both the BTT board and the ’370 CPU.

I

IAQ: Instruction acquisition cycle.

init.cmd: A batch file that contains debugger commands. If this file isn’t
present when you first invoke the debugger, then all memory is invalid.

Edit as necessary. ⇒

Change as neces-
sary.

⇒

Running Title—Attribute Reference

D-6

initdb.bat: A batch file created to contain DOS commands to set up the
debugger environment.

INSPECT window: A window that displays the contents of the trace buffer
and timing statistics collected for timer 1 and timer 2.

ISA: Industry Standard Architecture. A subset of the EISA standard.

 Glossary

D-7 Glossary

J

jump: An action performed when the BTT is used and when predefined
conditions are met; the BTT jumps to the next sequential state.

L

loop counter: A global BTT setting that defines the number of times the BTT
will sequence through states before taking a hardware breakpoint.

M

masking: To ignore specific bits within an address, data, or external-signal
value.

max trace: A global BTT setting that defines the maximum number of trace
samples that the BTT can collect. The default value of max trace is 0,
which allows the BTT to collect all trace samples that qualify. A nonzero
max-trace value acts as a maximum limit.

memory map: A map of memory space that tells the debugger which areas
of memory can and can’t be accessed.

MEMORY window: A window that displays the contents of memory.

menu bar: A row of pulldown menu selections found at the top of the debug-
ger display.

mixed mode: A debugging mode that simultaneously shows both assembly
language code in the DISASSEMBLY window and C code in the FILE
window.

mouse cursor: A block-shaped cursor that tracks mouse movements over
the entire display.

MR: Memory read cycle.

MW: Memory write cycle.

Glossary

D-8

N
normal trace mode: A type of trace mode that allows only those cycles

meeting predefined conditions to qualify as trace samples.

P
PC: Personal computer or program counter, depending on the context and

where it’s used in this book: 1) In installation instructions or information
relating to hardware and boards, PC means Personal Computer (as in
IBM PC). 2) In general debugger and program-related information, PC
means Program Counter, which is the register that identifies the current
statement in your program.

PEEPROM: Program electrically erasable programmable read-only
memory.

PEPROM: Program erasable programmable read-only memory.

point: To move the mouse cursor until it overlays the desired object on the
screen.

point timer: (1) A timer that can be started and stopped when predefined
addresses are accessed. (2) An action performed by the BTT when
predefined conditions are met.

port address: The serial port that the debugger uses for communicating
with the emulator or the applications board. The port address is selected,
depending on which communication port the debugger is attached to.

pulldown menu: A command menu that is accessed by name or with the
mouse from the menu bar at the top of the debugger display.

Q
qualifying: The process of matching bus activity to predefined conditions.

Matching bus activity and conditions qualifies an action so that it can be
performed by the BTT.

R
range timer: (1) A timer that can be started and stopped on any set of condi-

tions. (2) An action performed by the BTT when predefined conditions
are met.

 Glossary

D-9 Glossary

S

scalar type: A C type in which the variable is a single variable, not composed
of other variables.

scrolling: A method of moving the contents of a window up, down, left, or
right to view contents that weren’t originally shown.

side effects: A feature of C expressions in which using an assignment
operator in an expression affects the value of one of the components
used in the expression.

single-step: A form of program execution that allows you to see the effects
of each statement. The program is executed statement by statement; the
debugger pauses after each statement to update the data-display
windows.

SWDS: Software Development System. A development tool that lets you
execute and debug applications programs by using the ’C5x debugger.

state: One of four sets of actions supported by the BTT. There are four
states, labeled state 0–state 3; each state may define a maximum of four
actions.

state mode: A mode of BTT operation that allows you to qualify actions
based on address values only or on combinations of address and data
values. Each state has its own state mode. The state mode can affect the
number of actions that can be defined for a state. There are two types
of state mode: address-only state mode and address-and-data state
mode.

symbol table: A file that contains the names of all variables and functions
in your ’370 program.

system shell: A utility invoked with the SYSTEM command, which makes
it possible for the debugger to blank the debugger display and temporari-
ly exit to the DOS prompt. This allows you to enter DOS commands or
allows the debugger to display information resulting from a DOS com-
mand.

Edit as necessary. ⇒

Glossary

D-10

T
target system: A ’370 board that works with the emulator. Usually, the target

system is a board that you have designed; you use the emulator and
debugger to help you debug your design.

time-out timer: A global BTT setting that defines a time limit for running your
program.

timer 1/timer 2: Timer values reported in the INSPECT window. These
timers are associated with the point and range timer actions; the timer
action that you define first is reported as timer 1, and the timer action that
you define second is defined as timer 2.

TMS370 family: A 2–20 MHz, 8-bit, CMOS microcontroller with on-chip
EEPROM storage and peripheral support functions.

TMS370Cx1x: An 8-bit, single-chip microcomputer that contains a 16-bit
timer, flexible I/O, a serial peripheral interface, static RAM, and an option-
al data EEPROM.

TMS370Cx3x: An 8-bit, single-chip microcomputer that contains an A/D
converter, flexible I/O, static RAM, optional data EEPROM, and a pro-
grammable timing module with a built-in watchdog timer.

TMS370Cx5x: A device that has the same basic features as the
TMS370Cx1x with the addition of another 16-bit timer, a serial commu-
nications interface, memory expansion ports, and an 8-bit, 8-channel,
A/D converter.

trace buffer: A storage area for trace samples. The trace buffer is a circular
buffer that can hold a maximum of 2047 trace samples. Under certain
conditions, if more trace samples are qualified, they will overwrite
samples that have already been collected.

trace mode: A BTT mode that defines whether or not cycles associated with
a trace sample can also be stored in the trace buffer. There are two types
of trace mode: normal trace mode and TRIX mode.

trace sample: A set of information about the processor status, including
values on the address and data buses, cycle information, timing informa-
tion, and (when appropriate) the reverse assembly of associated code.

tracing: An action performed by the BTT when predefined conditions are
met; the BTT stores a trace sample to the trace buffer.

TRIX mode: A type of trace mode in which any reads and writes associated
with a qualified instruction-acquisition cycle will also be stored in the
trace buffer.

 Glossary

D-11 Glossary

V

VGA: Video Graphics Array. An industry standard for video cards.

W

WATCH window: A window that displays the values of selected expres-
sions, symbols, addresses, and registers.

window: A defined rectangular area of virtual space on the display.

 Index

Index-1

Index

? command 2-16, 8-3, 13-10
display formats 2-25, 8-18, 13-10
modifying PC 7-12
profiling 12-4
side effects 8-5

$$ABD$$ constant 5-18
$$XDS22$$ constant 5-18

A
abd370 command 2-3, 7-10

options 1-13
–b 1-14
–i 1-14
–p 1-14
–profile 1-15
–s 1-15
–t 1-15
–v 1-15
–x 1-15

absolute addresses 8-7, 9-3
actions 11-2

action dialog box 11-6
adding 3-5, 11-4
BP/events 3-7 to 3-8, 3-18 to 3-20, 11-14 to

11-16
conditions

address qualifiers 11-8
cycle qualifiers 11-10
data qualifiers 11-9
external-signal qualifier 11-9
jump qualifier 11-7
masking 11-10

defining 11-4, 11-6 to 11-10
definition D-1
deleting 11-4, 11-5
editing 11-5
hardware breakpoints 11-14 to 11-16

See also breakpoints (software), BTT

actions (continued)
jumps 3-28 to 3-31, 11-13
limitations 11-5, 11-6, 11-11 to 11-12
menu 11-6
modifying 11-5
point timer 3-25 to 3-27, 11-18 to 11-19
range timer 3-25 to 3-27, 11-18 to 11-19
reusing 11-24
Select action menu 3-5, 11-6
tracing 3-5, 3-7 to 3-8, 3-14 to 3-15, 3-16 to

3-17, 3-18 to 3-20, 11-17
viewing action descriptions 3-5, 11-4

active window 4-21 to 4-23
current field 2-6, 4-20
customizing its appearance 10-4
default appearance 4-21
definition D-1
effects on command entry 5-3
identifying 2-6, 4-21
selecting 4-22, 13-49

function key method 2-6, 4-22, 13-57
mouse method 2-6, 4-22
WIN command 2-5, 4-23

zooming 2-8, 4-26, 13-51

ADDR command 7-5, 7-9, 13-11
profiling 12-4

ADDR field 3-9, 4-12, 11-21

address-and-data state mode 3-6, 11-5
action limitations 11-11 to 11-12
definition D-1
selecting 11-11
using data qualifiers 11-9

address-only state mode 3-5 to 3-6, 11-5
action limitations 11-11 to 11-12
definition D-1
selecting 11-11
using data qualifiers 11-9

Index

Index-2

addresses
absolute addresses 8-7, 9-3
accessible locations 6-1
conditions 11-8
contents of (indirection) 8-8
data memory notation 2-5
hexadecimal notation 8-7
in MEMORY window 2-5, 8-7, 8-8
invalid memory 6-3
pointers in DISP window 2-22
program memory notation 2-5
protected areas 6-3
qualifying actions 11-2, 11-8
shown in INSPECT window 3-9, 4-12, 11-21
symbolic addresses 8-8
undefined areas 6-3

aggregate types
definition D-1
displaying 2-21, 4-18, 8-11 to 8-13

ALIAS command 2-28, 5-20 to 5-22, 13-11
profiling 12-4

aliasing 5-20 to 5-22
definition D-1

ANSI C, definition D-1

application board, $$ABD$$ constant 5-18

area names (for customizing the display)
code-display windows 10-5
COMMAND window 10-4
common display areas 10-3
data-display windows 10-6
menus 10-7
summary of valid names 10-3
window borders 10-4

arithmetic operators 14-2

arrays
displaying/modifying contents 8-11
format in DISP window 2-22, 8-12, 13-19
member operators 14-2

arrow keys
editing 8-4
moving a window 2-9, 4-28, 13-57
scrolling 4-30, 13-58
sizing a window 2-7, 4-26, 13-57

–as shell option 1-11

ASM command 2-13, 7-3, 13-12
profiling 12-4
pulldown selection 7-3, 13-9

assembler 1-10, 1-11

assembly language code, displaying 7-4
assembly mode 2-12, 2-13, 4-3

ASM command 2-13, 7-3, 13-12
definition D-1
selection 7-3

assignment operators 8-5, 14-3
assistance viii
attributes 10-2
auto mode 2-12, 2-13, 4-2

C command 2-13, 7-3, 13-14
definition D-1
selection 7-3

autoexec.bat file, definition D-1

B
–b{b} debugger option 1-13, 1-14
BA command 9-3, 13-12

profiling 12-4
pulldown selection 13-8

background 10-3
batch files 5-16

autoexec.bat file, definition D-1
controlling command execution 5-18

conditional commands 5-18 to 5-19, 13-24
looping commands 5-19, 13-25

definition D-2
displaying 7-9
displaying text when executing 5-17, 13-21
echoing messages 5-17, 13-21
execution 13-45
halting execution 5-16
init.clr 10-9
init.cmd 6-2, A-1

definition D-5
initdb.bat, definition D-5
initialization 6-2 to 6-10, A-1

init.cmd A-1
TAKE command 5-16, 6-9, 13-45

BD command 9-4, 13-12
profiling 12-4
pulldown selection 13-8

benchmarking 7-20
definition D-2

bitwise operators 14-3
BL command 9-5, 13-13

profiling 12-4
pulldown selection 13-8

blanks 10-3

 Index

Index-3

BORDER command 10-8, 13-13
profiling 12-4
pulldown selection 13-9

borders
colors 10-4
styles 10-8

BP/events 11-2, 11-14 to 11-16
breakpointing

after counting events 11-15 to 11-16
after state sequence 11-16
after tracing 3-18 to 3-20, 11-16
immediately 11-14, 11-15 to 11-16

counting events 11-14 to 11-16
definition D-2
hardware breakpoints, definition D-5
qualifying 11-6 to 11-10
selecting 11-14
state sequencing 11-16
tracing after breakpoint 3-18 to 3-20, 11-16

BR command 2-16, 9-4, 13-14
profiling 12-4
pulldown selection 13-8

breakpoints, active window 2-6

breakpoints (hardware)
See also BTT
definition D-2, D-5

breakpoints (software) 9-1 to 9-6
adding 13-12

function key method 9-3, 13-58
mouse method 9-3
with commands 9-3

benchmarking with RUNB 7-20
clearing 2-16, 9-4, 13-12, 13-14

function key method 9-4, 13-58
mouse method 9-4
with commands 9-4

commands 13-2, 13-6
BA command 9-3, 13-12
BD command 9-4, 13-12
BL command 9-5, 13-13
BR command 2-16, 9-4, 13-14
pulldown menu 13-8

definition D-2
highlighting 9-2
listing set breakpoints 9-5, 13-13
pulldown menu 13-8
restrictions 9-2

breakpoints (continued)
setting 2-15 to 2-16, 9-2

function key method 9-3, 13-58
mouse method 9-3
with commands 9-3

BTT 11-1 to 11-24
See also breakpoints (hardware)
action, definition D-1
actions 11-2

BP/events 3-7 to 3-8, 3-18 to 3-20, 11-14 to
11-16

jump 3-28 to 3-31, 11-13
point & range timers 3-25 to 3-27, 11-18 to

11-19
tracing 3-5 to 3-6, 3-7 to 3-8, 3-14 to 3-15,

3-16 to 3-17, 3-18 to 3-22, 3-23 to 3-24,
11-17

command 11-24, 13-14
conditions 11-2, 11-6 to 11-10
definition D-2
example program 3-2 to 3-3
features 1-5
global settings 11-3

definition D-5
INSPECT window 3-9, 11-20 to 11-23
jumps, definition D-6
loop counter, definition D-6
max trace, definition D-6
process 11-2 to 11-3
pulldown menu 13-9
resource limits 11-11 to 11-12
running code 11-3
running independently

RRUNF command 13-35
RUNF command 13-37
WRUNF command 13-51

saving trace buffer 13-45
TSAVE command 11-23
using a dialog box 11-23

setup
definition D-2
dialog box 3-5, 11-4 to 11-5
reusing 11-24

timers 3-25 to 3-27, 11-18 to 11-19
TSAVE command 13-45
tutorial 3-1 to 3-32

BTT command, profiling 12-4

Index

Index-4

C
C command 2-13, 7-3, 13-14

profiling 12-4
pulldown selection 7-3, 13-9

C language, definition D-2
C source

debugging, managing memory data 8-8
displaying 2-11, 7-4, 7-8, 13-22

CALLS command 4-10, 13-15
profiling 12-4
restrictions 4-4

CALLS window 2-11, 4-9, 4-32, 7-9
closing 4-10, 4-32, 13-57
definition D-2
opening 4-10, 13-15

casting 2-24, 14-4
definition D-2

CD command, profiling 12-4

CEEPROM, definition D-2
CEPROM, definition D-2
CHDIR (CD) command 2-20, 5-24, 7-11, 13-15

children, definition D-2
cl370

command 1-12
definition D-3
shell 1-12

clearing the display area 2-20, 5-5, 13-15

“click and type” editing 8-4
clicking, definition D-3
CLK pseudoregister 2-16, 7-20

definition D-3
restrictions in C code 7-20

clock B-1 to B-2
CONFIG dialog box B-1
definition D-3
period B-2

CLOCK command (alias), pulldown menu 13-8
closing

a window 4-32
CALLS window 4-10, 4-32, 13-57
debugger 1-16, 13-33
DISP window 2-23, 4-32, 8-13, 13-57
INSPECT window 4-32
log files 5-6, 13-20
MEMORY window 4-16, 4-32
WATCH window 4-32, 8-15, 13-50

CLS command 2-20, 5-5, 13-15
profiling 12-4

CNEXT command 7-15, 13-16
profiling 12-4

code-display windows 4-5, 7-2
CALLS window 2-11, 4-5, 4-9, 4-32, 7-2, 7-9
definition D-3
DISASSEMBLY window 2-5, 4-5, 4-7, 7-2
effect of debugging modes 7-2
FILE window 2-11, 4-5, 4-8, 7-2

COFF, definition D-3

COLOR command 10-2, 13-16 to 13-17
profiling 12-4

colors 10-2 to 10-7
area names 10-3 to 10-7

comma operator 14-4

command history 5-5
function key summary 13-55

command line 4-6, 5-2
changing the prompt 10-11, 13-33
cursor 4-20

customizing its appearance 10-4, 10-11
definition D-3
editing 5-3

function key summary 13-55
COMMAND window 4-5, 4-6, 5-2

colors 10-4
command line 2-4, 5-2

editing keys 13-55
customizing 10-4
definition D-3
display area 2-4, 5-2

clearing 13-15
recording information from the display area 5-6

to 5-7, 13-20

commands
alphabetical summary 13-10 to 13-51
batch files 5-16

controlling command execution
conditional commands 5-18 to 5-19, 13-24
looping commands 5-19, 13-25

breakpoint commands (software) 13-2, 13-6
command line 5-2
command strings 5-20
customizing 5-20
data-management commands 13-2, 13-4
entering and using 5-1 to 5-26
file-display commands 13-2, 13-4, 13-5
load commands 13-2, 13-5

 Index

Index-5

commands (continued)
memory-map commands 13-2, 13-5
mode commands 13-2, 13-3
notation v to vi
profiling commands 13-2, 13-7
pulldown menus 5-7, 13-8 to 13-9
run commands 13-2, 13-6
screen-customization commands 10-1 to 10-12,

13-2, 13-5
system commands 5-23 to 5-26, 13-2, 13-3
window commands 13-2, 13-3

compiler 1-9, 1-11
key characteristics 1-9

conditional commands 5-18 to 5-19, 13-24
conditions 11-2
CONFIG selection, pulldown menu 13-8
constants, while editing disassembly 7-7
continuous run

RRUNF command 13-35
RUNF command 13-37
WRUNF command 13-51

continuous run mode 7-18
CPU window 4-17, 8-2, 8-10

colors 10-6
customizing 10-6
definition D-3

crystal clock B-1 to B-2

CSTEP command 2-18, 7-15, 13-17
profiling 12-4

current directory, changing 5-24, 7-11, 13-15
current-field cursor 4-20
current PC 2-4, 4-7

finding 7-12
selecting 7-12

current state 11-4
cursors 4-20

command-line cursor, definition D-3
command-line cursor 4-20
current-field cursor 4-20
current-field cursor, definition D-3
definition D-3
mouse cursor 4-20

definition D-6
custom EPROM/EEPROM, restrictions 6-6
customizing the display 10-1 to 10-12

changing the prompt 10-11
colors 10-2 to 10-7
init.clr 10-9, 10-10, 13-39

customizing the display (continued)
loading a custom display 10-10
saving a custom display 10-9
window border styles 10-8

CYCLE field 3-9, 4-12, 11-21

cycles
IAQs 11-10, 11-21
qualifying actions 3-8, 3-11, 3-12, 3-20, 11-2,

11-10
qualifying reads/writes on IAQs 3-20 to 3-21,

11-17
reads 11-10, 11-21
shown in INSPECT window 3-9, 4-12, 11-21
trace mode 3-20 to 3-21, 11-17
writes 11-10, 11-21

D

D_DIR environment variable 5-16, 10-10, 13-39
definition D-3
effects on debugger invocation A-1

D_OPTIONS environment variable 1-13
definition D-4
effects on debugger invocation A-1
ignoring 1-15

D_SRC environment variable 7-11
definition D-4
effects on debugger invocation A-1

DASM command 7-5, 13-18
profiling 12-4
restrictions 4-4

data
conditions 11-9
qualifying actions 11-2, 11-9
shown in INSPECT window 3-9, 4-12, 11-21

data-display windows 2-21, 4-5, 8-2
colors 10-6
CPU window 4-5, 4-17, 8-2, 8-10
DISP window 2-21, 4-5, 4-18, 8-2, 8-11
MEMORY window 2-5, 4-5, 4-14 to 4-16, 8-2,

8-6
WATCH window 2-17, 4-5, 4-19, 8-2, 8-14

data EPROM/EEPROM, restrictions 6-6

DATA field 3-9, 4-12, 11-21

Index

Index-6

data-management commands 13-2, 13-4
? command 2-16, 8-3, 13-10
controlling data format 2-24
data-format control 8-16 to 8-18
DISP command 2-21, 8-11, 13-19
EVAL command 8-3, 13-22
MEM command 2-5, 8-7, 13-28
SETF command 2-24, 8-16 to 8-18, 13-40
side effects 8-5
WA command 2-17, 5-11 to 5-26, 8-14, 13-48
WD command 2-18, 8-15, 13-48
WHATIS command 2-20, 8-2, 13-49
WR command 2-19, 8-15, 13-50

data memory, saving 8-9

data types 8-17

data-display windows, definition D-3

debugger
BTT features 1-5
debugging process 1-17
definition D-4
description 1-2 to 1-5
developing code 1-8 to 1-10
display 2-4, 4-1 to 4-32

basic 1-2
profiling-environment 1-6

escaping 2-3
invocation 1-13, 2-3

task ordering A-1
key features 1-3 to 1-5
messages C-1 to C-22

expression errors C-22
hardware errors C-22
software errors C-2 to C-21
with sound C-2

modes 2-12, 7-3
assembly mode 2-12, 4-3
auto mode 2-12, 4-2
default mode 4-2, 7-2
mixed mode 2-12, 4-4
pulldown menu 2-13
restrictions 4-4
selection 2-12

commands 2-13, 7-3
function key method 7-3, 13-56
mouse method 7-3

profiler, description 1-6 to 1-7

decrement operator 14-3

DEEPROM, definition D-4

default
address qualifier 11-8
data formats 8-16
debugging mode 4-2, 7-2
delay counter value 11-14
display 2-4, 4-2, 7-2, 10-10
end state 11-14
event counter value 11-14
flag setting 11-23
loop counter value 11-14
mask value 11-10
max trace value 11-17
memory cycle qualifiers 11-10
memory map (sample) 6-4
screen configuration file 10-9

monochrome displays 10-9
state mode 11-5
time-out timer value 11-19
trace buffer size 11-17
trace mode 11-17
trace sample timing statistics 11-20

defining areas for profiling 12-6 to 12-13
disabling areas 12-8
enabling areas 12-11
marking areas 12-6
unmarking areas 12-12

delay counter 3-18 to 3-19, 11-3, 11-14 to 11-16
default value 11-14
definition D-4
effects on BP/events 11-15
setting 11-15

DEPROM, definition D-4

dialog boxes
BTT

action dialog box 11-6
format time stamp 11-21
global BTT settings 11-15
loading setup 11-24
locate (by trace sample condition) 11-22 to

11-23
position (trace sample number) 11-22
saving setup 11-24
saving trace buffer 11-23
setup 11-4

clock setup B-1
closing 5-12, 5-15

function key method 5-16
mouse method 5-15

 Index

Index-7

dialog boxes (continued)
complex 5-12

components of 5-13
entering parameters 5-11
modifying text in 5-12
parameters

enabling 5-13, 5-14
mutually exclusive, enabling 5-14
predefined 5-12, 5-13

profiling environment 5-8
selecting parameters 5-12
selecting predefined parameters 5-12
using 5-11

DIR command 2-20, 5-25, 13-18
profiling 12-4

directives, while editing disassembly 7-7

directories
changing current directory 5-24, 13-15
identifying additional source directories 13-46
identifying current directory 7-11
listing contents of current directory 5-25, 13-18
relative pathnames 5-24, 13-15
search algorithm 5-16, 7-11, A-1

disabling areas 12-8

disassembly
definition D-4
shown in INSPECT window 3-9, 4-12, 11-21

DISASSEMBLY window 2-5, 4-7
colors 10-5
customizing 10-5
definition D-4
modifying display 13-18

DISP command 2-21, 8-11, 13-19
display formats 2-24, 2-25, 8-18, 13-19
profiling 12-4
restrictions 4-4

DISP window 2-21, 4-18, 8-2, 8-11
children, definition D-2
closing 2-21, 2-23, 4-32, 8-13, 13-57
colors 10-6
customizing 10-6
definition D-4
identifying arrays, structures, pointers 13-19
opening 8-11
opening another DISP window 8-12

function key method 2-23, 8-12, 13-58
mouse method 2-22, 8-12
with DISP command 8-12

display area 4-6
clearing 2-20, 5-5, 13-15
definition D-4
recording information from 5-6 to 5-7, 13-20

display formats 2-24, 8-16 to 8-18
? command 2-25, 8-18, 13-10
casting 2-24
data types 8-17
DISP command 2-24, 2-25, 8-18, 13-19
MEM command 2-25, 8-18, 13-28
SETF command 2-24, 8-16 to 8-18, 13-40
trace sample timing 3-12 to 3-13, 11-21
WA command 2-24, 8-18, 13-48

displaying
assembly language code 7-4
batch files 7-9
C code 7-8
current version of debugger 13-47
data in nondefault formats 8-16 to 8-18
debugger copyright date 13-47
source programs 7-4
text files 7-9
text when executing a batch file 5-17, 13-21
timing statistics 3-9, 11-20, 11-24
trace buffer contents 3-9, 11-20 to 11-23

DLOG command 5-6 to 5-7, 13-20
ending recording session 5-6
profiling 12-4
starting recording session 5-6

documentation, ordering viii
dragging, definition D-4

E
E command 13-22
ECHO command 5-17, 13-21

profiling 12-4
“edit” key (F9) 4-31, 8-4, 13-58
editing

actions 3-16, 11-5
“click and type” method 2-26, 8-4
command line 5-3, 13-55
data values 8-4 to 8-5, 13-58
dialog boxes 5-11
disassembly 7-5 to 7-9, 13-31

side effects 7-6 to 7-9
expression side effects 8-5
FILE, DISASSEMBLY, CALLS 4-31
function key method 8-4, 13-58

Index

Index-8

editing (continued)
MEMORY, CPU, DISP, WATCH 4-31
mouse method 8-4
overwrite method 8-4
window contents 4-31

EEPROM, definition D-4

EGA, definition D-4

EISA, definition D-4

ELSE command 5-18 to 5-19, 13-21, 13-24

emulator
$$XDS22$$ constant 5-18
BTT features 1-5, 11-1 to 11-24
definition D-4
memory 6-5

enabling areas 12-11

end key, scrolling 4-30, 13-58

end state 11-3, 11-14 to 11-16
default value 11-14
definition D-4
effects on BP/events 11-15
setting 11-15

ENDIF command 5-18 to 5-19, 13-21, 13-24

ENDLOOP command 5-19, 13-21, 13-25

entering commands 2-2
from pulldown menus 5-7 to 5-10
on the command line 5-2 to 5-6

entry point 7-12

environment variables
D_DIR 5-16, 10-10
D_OPTIONS A-1
D_SRC 7-11
D_OPTIONS 1-13
definition D-5
for debugger options 1-13

EPROM/EEPROM,
definition D-4
restrictions 6-6

error messages
beeping 13-42
initialization 1-15

escape key 13-56

escaping, debugger 2-3

EVAL command 8-3, 13-22
modifying PC 7-12
profiling 12-4
side effects 8-5

event counter 11-14 to 11-16
default setting 11-14
definition D-5
effects on BP/events 11-15
setting 11-5, 11-14

executing code 2-11, 7-12 to 7-18
See also run commands
benchmarking 7-13, 7-20
conditionally 2-18, 7-17
continuously 13-35, 13-37, 13-51
function key method 13-57
halting execution 2-15, 7-19
halting the CPU 7-18
program entry point 2-15, 7-12 to 7-18
reset and run 7-14
reset and run free 7-18, 13-35
run free 7-18, 13-37
single stepping 2-18, 13-16, 13-17, 13-31,

13-43
wait and run 7-16
wait for reset and run free 7-18, 13-51
when using BTT 11-3

exiting the debugger 1-16, 2-28, 13-33
expressions 14-1 to 14-6

addresses 8-7, 8-8
evaluation

with ? command 8-3, 13-10
with EVAL command 8-3, 13-22
with LOOP command 5-19, 13-25

expression analysis 14-4
operators 14-2 to 14-3
restrictions 14-4
side effects 8-5
void expressions 14-4
while editing disassembly 7-7

extensions, filename 1-12
EXTERNAL field 3-9, 4-12, 11-21
external memory 6-5
external-signal probe

definition D-5
qualifier 11-3, 11-9
shown in INSPECT window 3-9, 4-12, 11-21
trace value 11-20, 11-21

F
F2 key 5-5, 13-55
F3 key 7-3, 13-56
F4 key 2-21, 2-23, 4-10, 4-16, 4-32, 8-13, 13-57

 Index

Index-9

F5 key 5-10, 7-14, 13-57

F6 key 2-6, 4-22, 8-4, 13-57

F8 key 5-10, 7-15, 13-57

F9 key 2-23, 2-26, 4-8, 4-10, 4-31, 7-9, 8-5, 9-3,
9-4, 13-58

F10 key 5-10, 7-15, 13-57

FILE command 2-11, 2-14, 7-8, 13-22
changing the current directory 5-24, 13-15
profiling 12-4
pulldown selection 13-8
restrictions 4-4

FILE window 2-11, 2-14, 4-8
colors 10-5
customizing 10-5
definition D-5

file/load commands 13-2, 13-5
ADDR command 7-5, 7-9, 13-11
CALLS command 4-10, 13-15
DASM command 7-5, 13-18
FILE command 2-11, 2-14, 7-8, 13-22
FUNC command 2-14, 7-8, 13-23
LOAD command 2-4, 7-10, 13-25
PATCH command 7-5, 13-31
pulldown menu 13-8
RELOAD command 7-10, 13-34
SLOAD command 7-10, 13-42

files
log files 5-6 to 5-7, 13-20
saving memory to a file 8-9

FILL command 8-9, 13-22
profiling 12-4
pulldown selection 13-9

flag field 3-12, 11-22 to 11-23

floating point
display format 2-24
operations 14-4

FUNC command 2-14, 7-8, 13-23
profiling 12-4
restrictions 4-4

function calls
displaying functions 13-23

keyboard method 4-10
mouse method 4-10

executing function only 13-35
in expressions 8-5, 14-4
stepping over 13-16, 13-31
tracking in CALLS window 4-9, 7-9, 13-15

G
–g shell option 1-11, 1-12

global settings 11-3
accessing 3-15, 11-4, 11-5
definition D-5
delay counter 3-18 to 3-19, 11-14 to 11-16
dialog box 3-15, 11-15
end state 11-14 to 11-16
loop counter 11-14 to 11-16
max trace 3-20 to 3-21, 11-17
time-out timer 3-14 to 3-15, 11-19

GO command 2-11, 7-13, 13-23
profiling 12-4

grouping/reference operators 14-2

H
HALT command 7-18, 13-23

profiling 12-4

halting
batch file execution 5-16
BTT session 11-3, 11-19
debugger 1-16, 13-33
program execution 1-16, 2-15, 7-12, 7-19

function key method 7-19, 13-56
mouse method 7-19

target system 13-23

hardware breakpoints. See BTT

hex conversion utility 1-10

hexadecimal notation, addresses 8-7

history, of commands 5-5

home key, scrolling 4-30, 13-58

hotline assistance viii

I
–i debugger option 1-13, 1-14, 7-11

IAQs
definition D-5
qualifying 11-10
TRIX mode 3-20 to 3-21, 11-17

icons
method identification v
mouse actions v

Index

Index-10

IF/ELSE/ENDIF command 5-18 to 5-19, 13-24
conditions 5-20, 13-24
creating initialization batch file 5-18
predefined constants 5-18
profiling 12-4

increment operator 14-3

index numbers, for data in WATCH window 8-15

indirection operator (*) 8-8

INDX field 3-9, 4-12, 11-20

init.clr file 10-9, 10-10, 13-39, A-1
restrictions 1-14

init.cmd 2-14, 6-2, A-1
definition D-5

initdb.bat file, definition D-5

initialization batch files 6-2 to 6-10, A-1
creating using IF/ELSE/ENDIF 5-18
creating using LOOP/ENDLOOP 5-19
init.cmd A-1

initialization files, naming an alternate file 1-15

INSP command 4-11, 11-20, 13-24
profiling 12-4
pulldown menu 13-9

INSPECT, window 3-9, 4-5, 4-11 to 4-12, 11-20 to
11-23
closing 3-31, 4-32
definition D-5
example 11-20
fields 4-12, 11-20 to 11-21
pulldown menu 13-9
timing statistics 3-25 to 3-27, 11-24
trace buffer display 3-9, 11-20 to 11-23

internal memory 6-5

invalid memory addresses 6-3

invoking
compiler

–g option 1-12
–z option 1-12
cl370 definition D-3

custom displays 10-10
debugger 1-12, 1-13, 2-3

with Microsoft Windows 1-13
shell program 1-12

ISA, definition D-5

J
jumps 11-2, 11-13

definition D-6
qualifying 3-28 to 3-31, 11-7

K
key sequences

action dialog boxes 11-7
displaying functions 13-58
displaying previous commands (command

history) 13-55
editing

command line 5-3, 13-55
data values 13-58

halting actions 13-56
menu selections 13-56
moving a window 4-28, 13-57
opening additional DISP windows 13-58
running code 13-57
scrolling 13-58
selecting the active window 13-57
setting/clearing software breakpoints 13-58
sizing a window 13-57
switching debugging modes 13-56

L
labels

for data in WATCH window 2-17, 8-15
while editing disassembly 7-7

limits
actions per state 11-6, 11-11 to 11-12
breakpoints (software) 9-2
BTT timer resources 11-18
program run time 3-14, 11-19
window positions 4-28, 13-29
window sizes 4-25, 13-41

linker 1-10, 1-11
command files, MEMORY definition 6-2 to 6-10

LOAD command 2-4, 7-10, 13-25
profiling 12-4
pulldown selection 13-8

load/file commands 13-2, 13-5
ADDR command 7-5, 7-9, 13-11
CALLS command 4-10, 13-15
DASM command 7-5, 13-18
FILE command 2-11, 2-14, 7-8, 13-22

 Index

Index-11

load/file commands (continued)
FUNC command 2-14, 7-8, 13-23
LOAD command 2-4, 7-10, 13-25
PATCH command 7-5, 13-31
pulldown menu 13-8
RELOAD command 7-10, 13-34
SLOAD command 7-10, 13-42

loading
batch files 5-16
custom displays 10-10
object code 2-3, 7-10

after invoking the debugger 7-10
symbol table only 7-10, 13-42
while invoking the debugger 1-13, 7-10
without symbol table 7-10, 13-34

log files 5-6 to 5-7, 13-20
logical operators 14-2

conditional execution 7-17
loop counter 11-3, 11-14 to 11-16

default value 11-14
definition D-6
effects on BP/events 11-15
setting 11-15

LOOP/ENDLOOP command 5-19, 13-25
conditions 5-20, 13-25
profiling 12-4

looping commands 5-19, 13-25

M
–mm debugger option 1-13
MA command 2-27, 6-4, 6-5, 6-8, 13-26

emulator memory 6-5
external memory 6-5
internal memory 6-5
profiling 12-4
pulldown selection 13-9
type parameter 6-5

managing data 8-1 to 8-18
MAP command 6-7, 13-27

profiling 12-4
pulldown selection 13-9

marking areas 12-6
masking 3-23 to 3-24, 11-10

definition D-6
max trace 3-20 to 3-21, 11-3, 11-17

definition D-6
global settings dialog box 11-15

MC command, pulldown selection 13-9

MD command 2-27, 6-8, 13-27
profiling 12-4
pulldown selection 13-9

MEM command 2-5, 4-14, 8-7, 13-28
display formats 2-25, 8-18, 13-28
profiling 12-4
restrictions 4-4

memory
batch file search order 6-2, A-1
commands 13-2, 13-5

FILL command 8-9, 13-22
MA command 2-27, 6-4, 6-5, 6-8, 13-26
MAP command 6-7, 13-27
MEM command 4-16
MD command 2-27, 6-8, 13-27
ML command 2-27, 6-7, 13-29
MR command 6-8, 13-30
MS command 8-9, 13-30
pulldown menu 13-9

data formats 8-16
defining a starting address 6-5
defining length 6-5
displaying in different numeric format 2-24
emulator 6-5
external 6-5
filling 8-9, 13-22, 13-30
identifying read/write characteristics 6-5
internal 6-5
invalid addresses 6-3
mapping

adding ranges 6-5, 13-26
defining 6-1

in a batch file 6-2
interactively 6-2

definition D-6
deleting ranges 6-8, 13-27
enabling/disabling 6-7

MEMORY window 2-5, 4-14, 4-32, 8-2, 8-6,
13-28
additional, opening 4-16
closing 4-16, 4-32
colors 10-6
creating additional windows 4-15
customizing 10-6
definition D-6
displaying new memory ranges 4-16
modifying display 13-28

Index

Index-12

memory (continued)
pulldown menu 13-9

listing current map 6-7
modifying 6-2 to 6-10
potential problems 6-3
reading multiple maps 6-10
resetting 6-8, 13-30
returning to default 6-9
sample 6-4

protected areas 6-3
read cycles 11-10, 11-21

qualifying on IAQs 11-17
restrictions 6-6
sample map 6-4
saving 8-9
tutorial 2-27
undefined areas 6-3
using the type parameter 6-5
valid types 6-5
write cycles 11-10, 11-21

qualifying on IAQs 11-17

menu bar 2-4, 5-7
customizing its appearance 10-7
definition D-6
items without menus 5-10
using menus 5-7 to 5-10

menu selections
definition (pulldown menu) D-7
function key methods 13-56

messages C-1 to C-22
expression errors C-22
hardware errors C-22
software errors C-2 to C-21
with sound C-2

MI command, pulldown selection 13-9

Microsoft Windows
debugger, invocation 1-13
profiling code 12-1
xds370w command 1-13

MIX command 2-13, 7-3, 13-28
profiling 12-4
pulldown selection 7-3, 13-9

mixed mode 2-12, 2-13, 4-4
definition D-6
MIX command 2-13, 7-3, 13-28
selection 7-3

ML command 2-27, 6-7, 13-29
profiling 12-4
pulldown selection 13-9

mode commands 13-3

modes 4-2 to 4-4
assembly mode 2-12, 4-3
auto mode 2-12, 4-2
commands 13-2

ASM command 2-13, 7-3, 13-12
C command 2-13, 7-3, 13-14
MIX command 2-13, 7-3, 13-28

default mode 4-2
during debugger invocation A-1
mixed mode 2-12, 4-4
pulldown menu 2-12, 2-13, 7-3, 13-9
restrictions 4-4
selection 2-12, 7-3

commands 2-13, 7-3
function key method 7-3
mouse method 7-3

modifying
action definitions 3-16, 11-5
colors 10-2 to 10-7
command line 5-3
command-line prompt 10-11
current directory 5-24, 13-15
data values 8-4 to 8-5
memory map 6-8
window borders 10-8

monochrome monitors 10-9

mouse
cursor 4-20
icon identification v

MOVE command 2-9, 4-28, 13-29
effect on entering other commands 5-4
profiling 12-4

moving a window 4-27, 13-29
function key method 2-9, 4-28, 13-57
mouse method 2-9, 4-27
MOVE command 2-9, 4-28
XY screen limits 4-28, 13-29

MR command 6-8, 11-10, 11-21, 13-30
definition D-6
profiling 12-4
pulldown selection 13-9

MS command 8-9, 13-30
profiling 12-4
pulldown selection 13-9

 Index

Index-13

MS-DOS, exiting from system shell 13-44

MW 11-10, 11-21
definition D-6

N
natural format 2-24, 14-5

NEXT command 2-18, 7-15, 13-31
from the menu bar 5-10
function key entry 5-10, 13-57
profiling 12-4
pulldown selection 13-8

normal trace mode 3-20, 11-17
definition D-7

notational conventions v

O
object files

creating 7-10
loading 1-13, 13-25

after invoking the debugger 7-10
symbol table only 1-15, 13-42
while invoking the debugger 1-13, 2-3, 7-10
without symbol table 7-10, 13-34

operators 14-2 to 14-3
& operator 8-8
* operator (indirection) 8-8
side effects 8-5

ordering documentation viii

oscillator clock B-1 to B-2

overwrite editing 8-4

P
–p debugger option 1-13 to 1-14

–profile debugger option 1-13, 1-15

page-up/page-down keys, scrolling 4-30, 13-58

parameters
abd370 command 1-13 to 1-15
cl370 shell 1-12
enabling

function key method 5-14
mouse method 5-14

parameters (continued)
entering in a dialog box 5-11

without highlighted characters 11-7
mutually exclusive, enabling 5-14
notation vi
predefined 5-13

enabling 5-13
selecting from dialog boxes 5-12

xds370 command 1-13
xds370w command 1-13

PATCH command 7-5, 13-31
profiling 12-4

PC 7-12
definition D-7
finding the current PC 4-7

PEPROM, definition D-7

peripheral frame, restrictions 6-6

PF command 12-16, 13-32

point timer 3-25 to 3-27, 11-2, 11-18 to 11-19
definition D-7
qualifying 11-18 to 11-19
relationship to timer 1/timer 2 3-26, 11-19
selecting 11-18
statistics 3-26, 4-11

pointers
displaying/modifying contents 2-22, 8-11
format in DISP window 2-22, 8-12, 13-19
natural format 14-5
typecasting 14-5

pointing, definition D-7

port, definition D-7

PQ command 12-16, 13-32

PR command 12-17, 13-33

PROFILE window 4-5, 4-13, 12-18 to 12-22
associated code 12-22
data accuracy 12-20
displaying areas 12-20
displaying different data 12-18
sorting data 12-20

Profiler. See profiling

profiling 12-1 to 12-24
areas

disabling marked areas 13-52
enabling disabled areas 13-53
marking 13-52
unmarking 13-53

changing display 13-54

Index

Index-14

profiling (continued)
collecting statistics

full statistics 12-16, 13-32
subset of statistics 12-16, 13-32

commands 13-2, 13-7
PF command 12-16, 13-32
PQ command 12-16, 13-32
PR command 12-17, 13-33
SA command 12-15, 13-37
SD command 12-15, 13-39
SL command 12-15, 13-41
SR command 12-15, 13-42
summary 13-52 to 13-54
VAA command 12-23, 13-46
VAC command 12-23, 13-47
VR command 13-47

defining areas 12-6 to 12-13
disabling areas 12-8
enabling areas 12-11
marking areas 12-6
unmarking areas 12-12

description 1-6 to 1-7
display, basic 1-6
entering environment 12-4
key features 1-6 to 1-13
overview 12-2
pulldown menus 5-8, 12-5
resetting PROFILE window 13-47
restrictions

available windows 12-4
batch files 12-4
breakpoints 12-4
commands 12-4
modes 12-4

resuming a session 12-17, 13-33
running a session 12-16 to 12-17

full 12-16, 13-32
quick 12-16, 13-32

saving data to a file 12-23
saving statistics

all views 12-23, 13-46
current view 12-23, 13-47

stopping points 12-14 to 12-15
adding 12-15, 13-37
deleting 12-15, 13-39, 13-42
listing 12-15, 13-41
resetting 12-15, 13-42

viewing data 12-18 to 12-22
associated code 12-22
data accuracy 12-20

profiling, viewing data (continued)
displaying areas 12-20
displaying different data 12-18
sorting data 12-20

program
entry point 7-12

resetting 13-34
execution

commands 2-11, 13-2, 13-6
CNEXT command 7-15, 13-16
conditional parameters 2-18
CSTEP command 2-18, 7-15, 13-17
GO command 2-11, 7-13, 13-23
HALT command 7-18, 13-23
menu bar selections 5-10
NEXT command 2-18, 7-15, 13-31
pulldown menu 13-8
RESET command 2-4, 7-16, 13-34
RESTART command 2-16, 7-12, 13-34
RETURN command 7-13, 13-35
RRUN command 7-14, 13-35
RRUNF command 7-18, 13-35
RUN command 2-15, 7-13, 13-36
RUNB command 2-16, 7-13, 7-20, 13-36
RUNF command 7-18, 13-37
STEP command 2-18, 7-15, 13-43
TAKE command 5-16, 6-9, 13-45
WRUN command 7-16, 13-50
WRUNF command 7-18, 13-51

halting 1-16, 2-15, 7-12, 7-19, 13-56
memory, saving 8-9
preparation for debugging 1-11

program EPROM/EEPROM, restrictions 6-6

PROMPT command 10-11, 13-33
profiling 12-4
pulldown selection 13-9

pseudoregisters, CLK 2-16, 7-20

pulldown menus 5-7, 13-8 to 13-9
colors 10-7
correspondence to commands 13-8
customizing their appearance 10-7
definition D-7
entering parameter values 5-11
escaping 5-9
function key methods 5-9
list of menus 5-7
mouse methods 5-8 to 5-9
moving to another menu 5-9
profiling 5-8, 12-5
usage 5-8

 Index

Index-15

Q
qualifying 11-2, 11-6 to 11-10

action dialog box 11-6
address qualifiers 11-8
cycle qualifiers 11-10
data qualifiers 11-9
definition D-7
external-signal qualifier 11-9
jump qualifier 11-7
masking qualifiers 11-10
reads and writes on IAQs 11-17

QUIT command 1-16, 2-28, 13-33
profiling 12-4

R
range timer 3-25 to 3-27, 11-2, 11-18 to 11-19

definition D-7
qualifying 11-18 to 11-19
relationship to timer 1/timer 2 11-19
selecting 11-18
statistics 4-11

re-entering commands 5-5

read cycles, qualifying 11-10
on IAQs 3-20 to 3-22, 11-17

recording COMMAND window displays 5-6 to 5-7,
13-20

re-entering commands 13-55

registers
CLK pseudoregister 7-20
displaying/modifying 8-10

relational operators 14-2
conditional execution 7-17

relative pathnames 5-24, 7-11, 13-15

RELOAD command 7-10, 13-34
profiling 12-4
pulldown selection 13-8

repeating commands 5-5, 13-55

RESET command 2-4, 7-16, 13-34
profiling 12-4
pulldown selection 13-8

resetting
current state 3-14, 3-19, 3-30, 11-4
memory map 13-30
program entry point 13-34
target system 2-4, 7-16, 13-34

RESTART (REST) command 2-3, 2-16, 7-12,
13-34
profiling 12-4
pulldown selection 13-8

restrictions
breakpoints (software) 9-2
memory ranges 6-6

RETURN (RET) command 7-13, 13-35
profiling 12-4

REVERSE ASM field 3-9, 4-12, 11-21

RRUN command 7-14, 13-35
profiling 12-4

RRUNF command 7-18, 13-35
profiling 12-4

RUN command 2-15, 7-13, 13-36
from the menu bar 5-10
function key entry 5-10, 7-14, 13-57
menu bar selections 5-10
profiling 12-4
pulldown selection 13-8
with conditional expression 2-18

run commands 2-11, 13-2, 13-6
CNEXT command 7-15, 13-16
conditional parameters 2-18
CSTEP command 2-18, 7-15, 13-17
GO command 2-11, 7-13, 13-23
HALT command 7-18, 13-23
menu bar selections 5-10, 13-57
NEXT command 2-18, 7-15, 13-31
pulldown menu 13-8
RESET command 2-4, 7-16, 13-34
RESTART command 2-16, 7-12, 13-34
RETURN command 7-13, 13-35
RRUN command 7-14, 13-35
RRUNF command 7-18, 13-35
RUN command 2-15, 7-13, 13-36
RUNB command 2-16, 7-13, 7-20, 13-36
RUNF command 7-18, 13-37
STEP command 2-18, 7-15, 13-43
TAKE command 5-16, 6-9, 13-45
WRUN command 7-16, 13-50
WRUNF command 7-18, 13-51

RUNB command 2-16, 7-13, 7-20, 13-36
profiling 12-4

RUNF command 7-18, 13-37
profiling 12-4

Index

Index-16

running programs 7-12 to 7-18
continuous mode 7-18
halting execution 7-19
program entry point 7-12
when using BTT 11-3

S
–s debugger option 1-11, 1-13, 1-15, 7-10

SA command 12-15, 13-37

saving custom displays 10-9

saving trace buffer 13-45

scalar type, definition D-8

SCOLOR command 10-2, 13-38
profiling 12-4
pulldown selection 13-9

SCONFIG command 10-10, 13-39
profiling 12-4
pulldown selection 13-9

screen-customization commands 13-2, 13-5
BORDER command 10-8, 13-13
COLOR command 10-2, 13-16 to 13-17
PROMPT command 10-11, 13-33
pulldown menu 13-9
SCOLOR command 10-2, 13-38
SCONFIG command 10-10, 13-39
SSAVE command 10-9, 13-43

scrolling 2-10, 4-29
definition D-8
function key method 2-10, 4-30, 13-58
mouse method 2-10, 4-30, 8-8

SD command 12-15, 13-39

serial port 1-14

SETF command 2-24, 8-16 to 8-18, 13-40
profiling 12-4

shell program 1-12

side effects 8-5, 14-3
definition D-8
valid operators 8-5

signals
external-signal qualifier 11-9
external-signal probe 11-9, 11-21
status during tracing 11-21

single step
commands

CNEXT command 7-15, 13-16
CSTEP command 2-18, 7-15, 13-17
menu bar selections 5-10
NEXT command 2-18, 7-15, 13-31
STEP command 2-18, 7-15, 13-43

definition D-8
execution 7-14

assembly language code 7-15, 13-43
C code 7-15, 13-17
function key method 7-15, 13-57
mouse methods 7-16
over function calls 7-15, 13-16, 13-31

SIZE command 2-7, 4-25 to 4-27, 13-41
effect on entering other commands 5-4
profiling 12-4

sizeof operator 14-4
sizes

display 4-28, 13-29
trace buffer 11-17
windows 4-25, 13-41

sizing a window 4-24
function key method 2-7, 4-26, 13-57
mouse method 2-7, 4-24
SIZE command 2-7, 4-25
size limits 4-25, 13-41
while moving it 4-28, 13-29

SL command 12-15, 13-41
SLOAD command 7-10, 13-42

profiling 12-4
pulldown selection 13-8
–s debugger option 1-15

software breakpoints. See breakpoints (software)
SOUND command 13-42

profiling 12-4
SR command 12-15, 13-42
SSAVE command 10-9, 13-43

profiling 12-4
pulldown selection 13-9

ST field 3-9, 4-12, 11-20
state mode 3-5, 11-5

action limitations 11-11 to 11-12
address-and-data mode 11-5, 11-11 to 11-12

definition D-1
address-only mode 11-5, 11-11 to 11-12

definition D-1
default 11-5
definition D-8

 Index

Index-17

state mode (continued)
selecting 3-6, 11-11
using data qualifiers 3-6, 11-9

states
adding actions 11-4, 11-6
beginning state 11-2
current state 11-4
definition D-8
deleting actions 11-5
editing actions 11-5
number of actions allowed 11-11 to 11-12
qualifying actions 11-6 to 11-10
resetting 11-4
shown in INSPECT window 3-9, 4-12, 11-20
state 0–state 3 3-5, 11-2

STEP command 2-18, 7-15, 13-43
from the menu bar 5-10
function key entry 5-10, 13-57
profiling 12-4
pulldown selection 13-8

stopping points 12-14 to 12-15
adding 12-15, 13-37
deleting 12-15, 13-39, 13-42
listing 12-15, 13-41
resetting 12-15, 13-42

storing trace buffer 13-45

structures
direct reference operator 14-2
displaying/modifying contents 8-11
format in DISP window 2-23, 8-12, 13-19
indirect reference operator 14-2

symbol table
definition D-8
loading without object code 1-15, 7-10, 13-42

symbolic addresses 8-8

SYSTEM command 5-23 to 5-24, 13-44
profiling 12-4

system commands 5-23 to 5-26, 13-2 to 13-3
ALIAS command 2-28, 5-20 to 5-22, 13-11
BTT command 11-24, 13-14
CD command 2-20, 5-24, 7-11, 13-15
CLS command 2-20, 5-5, 13-15
DIR command 2-20, 5-25, 13-18
DLOG command 5-6 to 5-7, 13-20
ECHO command 5-17, 13-21
from debugger command line 5-23
IF/ELSE/ENDIF commands 5-18 to 5-19, 13-24

conditions 5-20, 13-24
predefined constants 5-18

system commands (continued)
LOOP/ENDLOOP commands 5-19, 13-25

conditions 5-20, 13-25
QUIT command 2-28, 13-33
RESET command 2-4, 7-16, 13-34
SOUND command 13-42
SYSTEM command 5-23 to 5-24, 13-44
system shell 5-24
TAKE command 5-16, 6-9, 13-45
UNALIAS command 13-46
USE command 7-11, 13-46

system overview iii

system shells 5-23 to 5-24
definition D-8

T
–t debugger option 1-13, 1-15

during debugger invocation 6-2, A-1

TAKE command 5-16, 6-9, 13-45
executing log file 5-6
profiling 12-4
reading new memory map 6-10

target clock B-1 to B-2

target system
definition D-9
memory definition for debugger 6-1 to 6-10
resetting 2-4, 13-34

terminating the debugger 13-33

text files, displaying 2-14, 7-9

time-out timer 3-14, 11-3, 11-19
default 11-19
definition D-9
global settings dialog box 11-15
setting 11-19

timer 1, timer 2
definition D-9
statistics 3-26, 11-24

timers 11-18 to 11-19

timing statistics
point timer 3-26, 11-24
range timer 3-28, 11-24
timer 1, timer 2 3-26, 11-24
trace sample statistics 11-20 to 11-21

formatting 3-12 to 3-13, 11-21
viewing 3-9, 3-26, 11-20, 11-24

Index

Index-18

TMS370
definition

Cx1x D-9
Cx3x D-9
Cx5x D-9
family D-9

trace
buffer

definition D-9
overwriting 11-17
saving to a file 11-23, 13-9, 13-45
size 11-17
viewing 4-11, 11-20 to 11-23

mode 3-20 to 3-22, 11-17
default 11-17
definition D-9
normal mode 3-20 to 3-22, 11-17

definition D-7
selecting 3-20 to 3-22, 11-5
setting 11-17
TRIX mode 3-20 to 3-22, 11-17

definition D-9
samples

collecting 3-5 to 3-6, 11-17
definition D-9
viewing 3-9, 11-20 to 11-23

selected samples 3-10 to 3-11, 11-22 to 11-23
viewing 3-9

tracing 11-2
definition D-9

TRIX trace mode 3-20, 11-17
definition D-9

TSAVE command 11-23
profiling 12-4

tutorial
introductory 2-1 to 2-28
using 2-2

type casting 2-24, 14-4

type checking 2-20, 8-2

U
UNALIAS command 5-22, 13-46

profiling 12-4

unmarking areas 12-12

USE command 7-11, 13-46
profiling 12-4

V
–v debugger option 1-13, 1-15

VAA command 12-23, 13-46

VAC command 12-23, 13-47

variables
aggregate values in DISP window 2-21, 4-18,

8-11, 13-19
determining type 8-2
displaying in different numeric format 2-24, 14-5
displaying/modifying 8-14
scalar values in WATCH window 4-19, 8-14 to

8-16

VERSION command 13-47
profiling 12-4

VGA, definition D-10

viewing profile data 12-18 to 12-22
associated code 12-22
data accuracy 12-20
displaying areas 12-20
displaying different data 12-18
sorting data 12-20

void expressions 14-4

VR command 13-47

W
WA command 2-17, 5-11, 8-14, 13-48

display formats 2-24, 13-48
profiling 12-4
pulldown selection 13-8

watch commands
pulldown menu 8-14, 13-8
WA command 2-17, 5-11, 8-14, 13-48
WD command 2-18, 8-15, 13-48
WR command 2-19, 8-15, 13-50

WATCH window 2-17, 4-19, 8-2, 8-14, 13-48,
13-50
adding items 8-14, 13-48
closing 4-32, 8-15
colors 10-6
customizing 10-6
definition D-10
deleting items 8-15
labeling watched data 8-15, 13-48
opening 8-14, 13-48

 Index

Index-19

WD command 2-18, 8-15, 13-48
profiling 12-4
pulldown selection 13-8

WHATIS command 2-20, 8-2, 13-49
profiling 12-4

WIN command 2-5, 4-23, 13-49
profiling 12-4

window commands 13-2, 13-3
MEM command 4-15
MOVE command 2-9, 4-28, 13-29
SIZE command 2-7, 4-25, 13-41
WIN command 2-5, 4-23, 13-49
ZOOM command 2-8, 4-26, 13-51

windows 4-5 to 4-19
active window 4-21 to 4-23

definition D-1
border styles 10-8, 13-13
closing 4-32
commands 13-2, 13-3

MOVE command 2-9, 4-28
SIZE command 2-7, 4-25, 13-41
WIN command 2-5, 4-23, 13-49
ZOOM command 2-8, 4-26, 13-51

definition D-10
editing 4-31
INSPECT window 3-9, 11-20 to 11-23
moving 2-9, 4-27, 13-29

function keys 4-28, 13-57
mouse method 4-27
MOVE command 4-28
XY positions 4-28, 13-29

resizing 2-7, 4-24
function keys 4-26, 13-57
mouse method 4-24
SIZE command 4-25
while moving 4-28, 13-29

scrolling 2-10, 4-29

WR command 2-19, 8-15, 13-50
profiling 12-4
pulldown selection 13-8

write cycles, qualifying 11-10
on IAQs 3-20 to 3-22, 11-17

WRUN command 7-16, 13-50
profiling 12-4

WRUNF command 7-18, 13-51
profiling 12-4

X
–x debugger option 1-13, 1-15

XDS/22 emulation system, profiling 12-1 to 12-24

xds370 command 2-3, 7-10
options 1-13

–b 1-14
–i 1-14
–p 1-14
–profile 1-15
–s 1-15
–t 1-15
–v 1-15
–x 1-15

xds370w command, options 1-13

Z
–z shell option 1-12

ZOOM command 2-8, 4-26, 13-51
profiling 12-4

zooming a window, mouse method 2-8

Index-20

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

