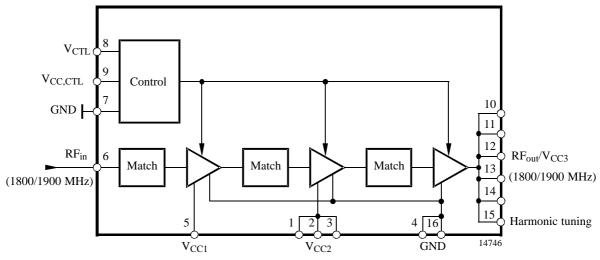
SiGe-Power Amplifier for GSM 1800/1900 (DCS/PCS)


Description

The TST0913 is a monolithic integrated power amplifier. The device is manufactured using TEMIC Semiconductors' advanced Silicon-Germanium (SiGe) technology and has been designed for use in GSM 1800/1900-MHz (DCS/PCS) mobile phones. With a single supply voltage operation of 3 V and a neglectable leakage current in power-down mode, the TST0913 needs few external components.

Features

- 32 dBm output power
- Power-added efficiency (PAE) 42%
- Single supply operation at 3 V no negative voltage necessary
- Current consumption in power-down mode $\leq 10 \,\mu\text{A}$, no external power-supply switch required
- Power-ramp control
- Simple input and output matching
- Simple output matching for maximum flexibility
- SMD package (PSSOP16 with heat slug)

Block Diagram

Figure 1. Block diagram

Ordering Information

Extended Type Number	Package	Remarks
TST0913-M	PSSOP16	Tube
TST0913-M	PSSOP16	Taped and reeled

TST0913

Function

Supply voltage 2

Supply voltage 1

Ground (control)

Supply voltage for control

RF output / supply voltage 3

Control input

Ground

RF input

Ground

Symbol

V_{CC2}

V_{CC2}

 V_{CC2}

GND

V_{CC1}

RF_{in}

GND

V_{CTL}

V_{CC,CTL}

RFout/VCC3

RF_{out}/V_{CC3}

RF_{out}/V_{CC3}

RF_{out}/V_{CC3}

RFout/VCC3

RFout/VCC3

GND

Pin

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Pin Description

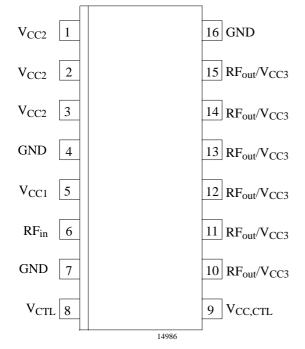


Figure 2. Pinning

Absolute Maximum Ratings

All voltages are referred to GND

Para	ameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage V _{CC}	Pins 5,	V _{CC1} ,			5.0	V
	1, 2, 3,	V _{CC2}				
	10, 11, 12, 13, 14, 15	V _{CC3} ,				
	and 9	V _{CC, CTL}				
Input power	Pin 6	P _{in}			6	dBm
Gain-control voltage Pin 8	3	V _{CTL}	0		2.2	V
Duty cycle for operation					25	%
Burst duration		t _{burst}			1.2	ms
Junction temperature		T _i			+ 150	°C
Storage temperature		T _{stg}	- 40		+150	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	t.b.d.	K/W

Operating Range

All voltages are referred to GND

Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V_{CC1}, V_{CC2}	2.4	3.5	4.5	V
	$V_{CC3}, V_{CC, CTL}$				
Ambient temperature	T _{amb}	- 25		+ 85	°C
Input frequency	f _{in}		1800/1900		MHz

Electrical Characteristics

Test conditions: $V_{CC} = V_{CC1}$, V_{CC2} , V_{CC3} , $V_{CC, CTL} = 3.5$ V, $V_{CTL} = 1.5$ V, $T_{amb} = +25^{\circ}C$ (see application circuit)

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Power supply						
Supply voltage		V _{CC}	2.7	3.5	4.5	V
Current consumption	Active mode	Ι				
	$P_{out} = 32 \text{ dBm}, \text{PAE} = 42\%$			1.1		A
Current consumption	Power-down mode	Ι			10	μΑ
	$V_{CTL} \le 0.2 V$					
RF input	1	1		1	1	1
Frequency range	DCS	f _{in}	1710		1785	MHz
	PCS		1850		1910	MHz
Input impedance *)		Zi		50		Ω
Input power		Pin		0	6	dBm
Input VSWR *)	$P_{in} = 0$ to 6 dBm, $P_{out} = 31.5$ dBm	VSWR			2:1	
RF output					-	
Output impedance *)		Zo		50		Ω
Output power	$P_{in} = 0 \text{ dBm}, R_L = RG = 50 \Omega$					
	$V_{CC} = 3.5 \text{ V}, T_{amb} = +25^{\circ}\text{C}$	Pout	31.7	32.5		dBm
	$V_{CC} = 2.7 \text{ V}, T_{amb} = +85^{\circ}\text{C}$		30.0	30.5		dBm
Minimum output power	$V_{CTL} = 0.5 V$			- 20		dBm
Power-added efficiency at	$P_{out} = 26 \text{ dBm}$	PAE	25			
P _{out,max}	$P_{out} = 28 \text{ dBm}$		35			%
	$P_{out} = 31.5 \text{ dBm}$		42			
Stability	$T_{amb} = -25 \text{ to} + 85 ^{\circ}\text{C}$	VSWR			10:1	
Load mismatch	$P_{out} = 31.5 \text{ dBm}$	VSWR			10:1	
(stable, no demage)	all phases					
Second harmonic distortion		2fo			-35	dBc
Third harmonic distortion		3fo			-35	dBc
Noise power	$P_{out} = 31.5 \text{ dBm}, \text{RBW} = 100 \text{ kHz}$					
	f = 1805 to 1880 MHz (DCS)				- 71	dBm
	f = 1930 to 1990 MHz (PCS)				- 71	dBm
Rise and fall time		t _r , t _f			0.5	μs
Isolation between input	$P_{in} = 0$ to 6 dBm,		48			dB
and output	$V_{CTL} \le 0.2 V$ (power down)					
Power control					<u>.</u>	
Control curve slope	Pout $\ge 25 \text{ dBm}$				150	dB/V
Power-control range	$V_{CTRL} = 0.3$ to 2.0 V		50			dB
Control-voltage range		V _{CTL}	0.3		2.0	V
Control current	$P_{in} = 0$ to 6 dBm,					
	$V_{\text{CTL}} = 0$ to 2.2 V	I _{CTL}			200	μA

*) with external matching (see application circuit)

TST0913

Application Circuit

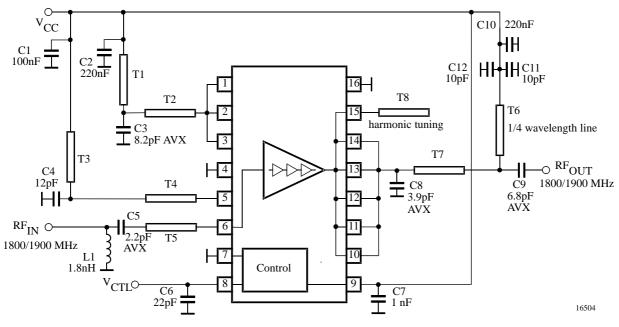
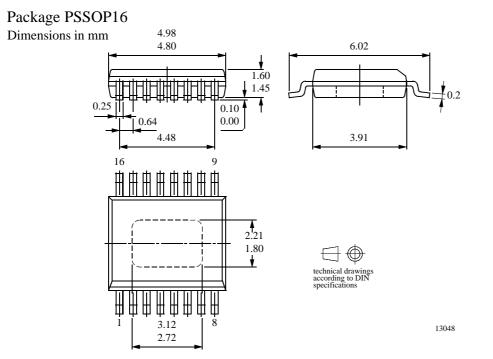



Figure 3. Application circuit

Package Information

Preliminary Information

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423