Dual-Channel Digital Isolator

FEATURES

Narrow body, 8-lead SOIC
Low power operation
5 V operation
1.1 mA per channel maximum @ 0 Mbps to 2 Mbps
3.7 mA per channel maximum @ 10 Mbps

3 V operation
0.8 mA per channel maximum @ 0 Mbps to 2 Mbps
2.2 mA per channel maximum @ 10 Mbps
$3 \mathrm{~V} / 5 \mathrm{~V}$ level translation
High temperature operation: $105^{\circ} \mathrm{C}$
High data rate: dc to $\mathbf{2 5}$ Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse width distortion
3 ns maximum channel-to-channel matching
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V / \mu s}$
Safety and regulatory approvals
UL recognition
2500 V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01
DIN EN 60950 (VDE 0805): 2001-12; DIN EN 60950: 2000
$V_{\text {IORM }}=560$ V peak

APPLICATIONS

Size-critical multichannel isolation
 SPI ${ }^{\oplus}$ interface/data converter isolation
 RS-232/RS-422/RS-485 transceiver isolation
 Digital field bus isolation

GENERAL DESCRIPTION

The ADuM1210 ${ }^{1}$ is a dual-channel, digital isolator based on Analog Devices' iCoupler ${ }^{\ominus}$ technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices.

By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The concerns of the typical optocoupler regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple, i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with iCoupler products. Furthermore, iCoupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates.

The ADuM1210 isolator provides two independent isolation channels operable with the supply voltage on either side ranging from 2.7 V to 5.5 V. This provides compatibility with lower voltage systems as well as enabling a voltage translation functionality across the isolation barrier. In addition, the ADuM1210 provides low pulse-width distortion ($<3 \mathrm{~ns}$) and tight channel-to-channel matching ($<3 \mathrm{~ns}$). Unlike other optocoupler alternatives, the ADuM1210 isolator has a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/power-down conditions. Furthermore, as an alternative to the ADuM1200 dual-channel, digital isolator that defaults to an output high condition, the ADuM1210's outputs default to a logic low state when input power is off.
${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065$; and other pending patents.

FUNCTIONAL BLOCK DIAGRAM

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no

TABLE OF CONTENTS

\qquadApplications 1
General Description 1
Functional Block Diagram 1
Revision History2
Specifications 3
Electrical Characteristics-5 V Operation. 3
Electrical Characteristics-3 V Operation. 5
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$ Operation 7
Package Characteristics 9
Regulatory Information 9
Insulation and Safety-Related Specifications 9
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics 10
REVISION HISTORY
2/06-Rev. 0 to Rev. A
Updated Format

\qquad
Universal
Added Note 1 1
Changes to Absolute Maximum Ratings 11
Changes to DC Correctness and Magnetic Field Immunity Section 14
Recommended Operating Conditions 10
Absolute Maximum Ratings 11
ESD Caution 11
Pin Configuration and Function Descriptions. 12
Typical Performance Characteristics. 13
Application Information 14
PC Board Layout 14
Propagation Delay-Related Parameters. 14
DC Correctness and Magnetic Field Immunity 14
Power Consumption 15
Outline Dimensions 16
Ordering Guide 16

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

${ }^{1}$ Supply current values are for both channels running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 through Figure 8 for total $l_{D D 1}$ and $l_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.
${ }^{4}$ t $_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I x}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. tpLн propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{5}$ tpsk is the magnitude of the worst-case difference in tphl and/or tplh that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V OPERATION

All voltages are relative to their respective ground. $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.
Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Input Supply Current, per Channel, Quiescent	IDDI (0)		0.26	0.35	mA		
Output Supply Current, per Channel, Quiescent Total Supply Current, Two Channels ${ }^{1}$	IdDo (0)		0.11	0.20	mA		
DC to 2 Mbps							
$V_{\text {DD1 }}$ Supply Current	$\mathrm{IDD1}$ (Q)		0.6	1.0	mA	DC to 1 MHz logic signal freq.	
VDD2 Supply Current	IDD2 (0)		0.2	0.6	mA	DC to 1 MHz logic signal freq.	
10 Mbps							
$V_{\text {DD1 }}$ Supply Current	$\mathrm{I}_{\text {DD1 (10) }}$		2.2	3.4	mA	5 MHz logic signal freq.	
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}$ (10)		0.7	1.1	mA	5 MHz logic signal freq.	
Input Currents	$\mathrm{l} \mathrm{IA}^{\text {, }} \mathrm{l}$ lib	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1 A}, \mathrm{~V}_{1 B} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$	
Logic High Input Threshold	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD} 1}$, $V_{D D 2}$			V		
Logic Low Input Threshold	VIL			$\begin{aligned} & 0.3 \mathrm{~V}_{\mathrm{DD} 1}, \\ & \mathrm{~V}_{\mathrm{DD} 2} \end{aligned}$	V		
Logic High Output Voltages	Voat	$V_{D D 1}$ $V_{D D 2}-0.1$	3.0		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{l}}=\mathrm{V}_{1 \times \mathrm{H}}$	
	$\mathrm{V}_{\text {Ob }}$	$V_{\mathrm{DD} 1} /$ $V_{D D 2}-0.5$	2.8		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	Voal		0.0	0.1	V	$\mathrm{l}_{\text {Ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {l }}=\mathrm{V}_{\text {IxL }}$	
	Vobl		0.04	0.1	V	$\mathrm{l}_{\text {ox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{4}$	$t_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse-Width Distortion, \|ttplH $-\left.\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{5}$	$\mathrm{t}_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tpskco			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{6}$	tPskod			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	$\left\|C M_{L}\right\|$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	1 DDI (D)		0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IdDo (D)		0.03		mA/Mbps		

ADuM1210

${ }^{1}$ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $I_{D D 1}$ and $\mathrm{I}_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4}$ tpHL $^{\text {p }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{0 \times}$ signal. tpLн propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{\text {ox }}$ signal.
${ }^{5}$ tpsk is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ and/or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} .3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.
Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	IDDI (0)				mA	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.50	0.6	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.26	0.35	mA	
Output Supply Current, per Channel, Quiescent	IDDo (0)				mA	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.11	0.20	mA	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.19	0.25	mA	
Total Supply Current, Two Channels ${ }^{1}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.4	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.6	1.0	mA	DC to 1 MHz logic signal freq.
$V_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.2	0.6	mA	DC to 1 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.5	0.8	mA	DC to 1 MHz logic signal freq.
10 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			4.3	5.5	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.2	3.4	mA	5 MHz logic signal freq.
$V_{\text {dD2 }}$ Supply Current	$\operatorname{ldD2}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.7	1.1	mA	5 MHz logic signal freq.
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.3	2.0	mA	5 MHz logic signal freq.
Input Currents	$l_{\text {A }}, l_{\text {IB }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{1 A}, \mathrm{~V}_{1 B} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & 0.7 \mathrm{~V}_{\mathrm{DD} 1}, \\ & \mathrm{~V}_{\mathrm{DD} 2} \end{aligned}$			V	
Logic Low Input Threshold	VIL			$\begin{aligned} & 0.3 \mathrm{~V}_{\mathrm{DD} 1}, \\ & \mathrm{~V}_{\mathrm{DD} 2} \end{aligned}$	V	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation		0.8			V	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation		0.4			V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан, }} \mathrm{V}_{\text {ов }}$	$V_{D D 1} /$ $V_{D D 2}-0.1$	$V_{D D 1}$, $V_{D D 2}$		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$V_{D D 1} /$ VDD2-0.5	$V_{D D 1}$, $V_{\mathrm{DD} 2}-0.2$		V	$\mathrm{l}_{\mathrm{ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
Logic Low Output Voltages	Voal, Vobl		0.0	0.1	V	$\mathrm{l}_{\text {Ox }}=20 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {IxL }}$
			0.04	0.1	V	$\mathrm{l}_{\text {lox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {lx }}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {Ix }}$
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	15		55	ns	$\mathrm{C}_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse-Width Distortion, \|tpLH - tphl ${ }^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		ps $/{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{5}$	tpsk			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{6}$	tPSKCD			3	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, OpposingDirectional Channels ${ }^{6}$	tPskod			22	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{f}}$					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			3.0		ns		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns		
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD1},}, \mathrm{~V}_{\mathrm{DD} 2,}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	$\left\|\mathrm{CM}_{L}\right\|$	25	35		kV/ $/ \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	$\mathrm{fr}^{\text {r }}$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	IDDI ($\mathrm{D}^{\text {(}}$						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDo (D)						
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps		
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps		

${ }^{1}$ The supply current values are for both channels combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $I_{D D 1}$ and $l_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I x}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R-o		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	Cl_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	$\theta_{\text {Јсı }}$		46		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		41		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

${ }^{1}$ The device is considered a 2-terminal device; Pin 1, Pin 2, Pin 3, and Pin 4 are shorted together, and Pin 5, Pin 6, Pin 7, and Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM1210 is approved by the following organizations:
Table 5.

UL	CSA	VDE
Recognized under 1577 Component	Approved under CSA Component	
Recognition Program ${ }^{1}$	Certified according to	
2500 V rms isolation voltage		DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01²
		Basic insulation, 560 V peak
		Complies with DIN EN 60747-5-2 (VDE 0884
		Part 2):2003-01, DIN EN 60950 (VDE 0805):2001-12;
		EN 60950:2000, Reinforced insulation, 560 V peak

${ }^{1}$ In accordance with UL1577, each ADuM1210 is proof-tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 second (current leakage detection limit = $5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN EN 60747-5-2, each ADuM1210 is proof-tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$).

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.
\(\left.$$
\begin{array}{l|l|l|l|l}\hline \text { Parameter } & \text { Symbol } & \text { Value } & \text { Unit } & \text { Conditions } \\
\hline \text { Rated Dielectric Insulation Voltage } & \text { L(I01) } & 2500 & 4.90 \mathrm{~min} & \mathrm{~V} \mathrm{rms} \\
\text { mm } & \begin{array}{l}\text { 1-minute duration } \\
\text { Minimum External Air Gap (Clearance) }\end{array}
$$ \& L(I02) \& 4.01 \mathrm{~min} \& \mathrm{~mm}

Measured from input terminals to output terminals,

shortest distance through air

Measured from input terminals to output terminals,

shortest distance path along body\end{array}\right\}\)| Minimum External Tracking (Creepage) |
| :--- |
| Minimum Internal Gap (Internal Clearance) |

ADuM1210

DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS

Table 7.

Description	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110			
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms		I-IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms		I-III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms		I-II	
Climatic Classification		40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	Viorm	560	\checkmark peak
Input-to-Output Test Voltage, Method b1	$V_{\text {PR }}$	1050	\checkmark peak
$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR, }} 100 \%$ Production Test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$			
Input-to-Output Test Voltage, Method a	$V_{\text {PR }}$		
After Environmental Tests Subgroup 1			
$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$		896	\checkmark peak
After Input and/or Safety Test Subgroup 2/3			
$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$)	$\mathrm{V}_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values (maximum value allowed in the event of a failure; also see Figure 2)			
Case Temperature	Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current	I_{1}	160	mA
Side 2 Current	$\mathrm{I}_{\text {S } 2}$	170	mA
Insulation Resistance at $\mathrm{T}_{5}, \mathrm{~V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Note that the "*" marking on the package denotes DIN EN 60747-5-2 approval for a 560 V peak working voltage.
This isolator is suitable for basic isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits.

Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values on Case Temperature, per DIN EN 60747-5-2

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	VDD1, $^{1} \mathrm{VDD2}$	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T_{ST}	-55	150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	T_{A}	-40	105	${ }^{\circ} \mathrm{C}$
Supply Voltages 1	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	-0.5	7.0	V
Input Voltage 1	$\mathrm{~V}_{\mathrm{IA},} \mathrm{V}_{\mathrm{IB}}$	-0.5	$\mathrm{~V}_{\mathrm{DDI}}+0.5$	V
Output Voltage 1	$\mathrm{~V}_{\mathrm{OA},} \mathrm{V}_{\mathrm{OB}}$	-0.5	$\mathrm{~V}_{\mathrm{DDO}}+0.5$	V
Average Output Current, per Pin 2	IO	-35	mA	
Common-Mode Transients 3	$\mathrm{CM}_{\mathrm{L},}, \mathrm{CM}_{\mathrm{H}}$	-100	+100	$\mathrm{kV} / \mu \mathrm{s}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ See Figure 2 for maximum rated current values for various temperatures.
${ }^{3}$ Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Rating may cause latch-up or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; Functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 10. ADuM1210 Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$\mathrm{V}_{\text {IB }}$ Input	VDD1 State	V ${ }_{\text {D } 2}$ State	VoA Output	Vob Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $V_{\text {DDI }}$ power restoration.
X	X	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 11. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	$\mathrm{~V}_{\mathrm{IA}}$	Logic Input A.
3	$\mathrm{~V}_{I B}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2,2.7 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Input Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation

Figure 5. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 6. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 7. Typical ADuM1210 VDII Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 8. Typical VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation

ADuM1210

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM1210 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 9. Propagation Delay Parameters
Pulse-width distortion is the maximum difference between the two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM1210 component.

Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM120x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $2 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 10) by the watchdog timer circuit.

The ADuM1210 is extremely immune to external magnetic fields. The limitation on the ADuM1210's magnetic field immunity is set by the condition in which induced voltage in the transformer's receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM1210 is examined because it represents the most susceptible mode of operation.

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \Pi r_{n}^{2} ; n=1,2, \ldots N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the nth turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM1210 and an imposed requirement that the induced voltage is at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 10.

Figure 10. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event occurs during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM1210 transformers. Figure 11 expresses these allowable current magnitudes as a function of frequency for selected distances. As seen, the ADuM1210 is extremely immune and can be affected only by extremely large currents operated at high frequency and very close to the component. For the 1 MHz example, one would have to place a 0.5 kA current 5 mm away from the ADuM1210 to affect the component's operation.

Figure 11. Maximum Allowable Current for Various Current-to-ADuM1210 Spacings

Note that at combinations of strong magnetic fields and high frequencies, any loops formed by printed circuit board traces could induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM1210 isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.

For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I}(Q) & \mathrm{f}>0.5 f_{r}
\end{array}
$$

for each output channel, the supply current is given by

$$
\begin{array}{lr}
I_{D D O}=I_{D D O(Q)} & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q),} I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).

To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled. Figure 4 and Figure 5 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 6 provides perchannel supply current as a function of data rate for a 15 pF output condition. Figure 7 and Figure 8 provide total $I_{D D 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current as a function of data rate.

ADuM1210

OUTLINE DIMENSIONS

ORDERING GUIDE

Model	Number of Inputs, $V_{D D 1}$ Side	Number of Inputs, $V_{\text {DD } 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse-Width Distortion (ns)	Temperature Range (${ }^{\circ} \mathrm{C}$)	Package Option ${ }^{1}$
ADuM1210BRZ ${ }^{2}$	2	0	10	50	3	-40 to +105	R-8
ADuM1210BRZ-RL7 ${ }^{2}$	2	0	10	50	3	-40 to +105	R-8

${ }^{1}$ R-8 $=8$-lead, narrow body SOIC.
${ }^{2} Z=P b$-free part.

