

140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013 PHONE: (215) 631-9840 FAX: (215) 631-9855

Features

- DESIGNED FOR HIGH POWER PULSED IFF, DME, AND TACAN APPLICATIONS
- 350 W (typ.) IFF 1030 1090 MHz
- 300 W (min.) DME 1025 1150 MHz
- 290 W (typ.) TACAN 960 1215 MHz
- 960 1215 MHz
- GOLD METALLIZATION
- P_{OUT} = 300W MINIMUM
- $G_P = 6.3 \text{ dB MINIMUM}$
- INFINITE VSWR CAPABILITY @ RATED CONDITIONS
- EMITTER BALLASTED
- COMMON BASE

DESCRIPTION:

The MS2422 is a gold metallized silicon, NPN power transistor designed for applications requiring high peak power and low duty cycles such as IFF, DME, and TACAN. The MS2422 is designed with internal input/output matching resulting in improved broadband performance and low thermal resistance.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{сво}	Collector-Base Voltage	65	V
V _{CES}	Collector-Emitter Voltage	65	V
V _{EBO}	Emitter-Base Voltage	3.5	V
Ι _c	Device Current	22	Α
P _{DISS}	Power Dissipation	875	W
TJ	Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Thermal Data

RTH(LC) Junction-case Thermal Resistance 0.20 °C/W	
--	--

.400 SQ. 2LFL (M138)

MS2422

hermetically sealed

ELECTRICAL SPECIFICATIONS (Tcase = 25°C) STATIC

Symbol	Test Conditions			Value		
Symbol			Min.	Тур.	Max.	Unit
BV _{CBO}	I _c = 10 mA	I _E = 0 mA	65			v
BV _{CES}	I _c = 25 mA	$V_{BE} = 0 V$	65			v
BV _{EBO}	I _E = 5.0 mA	I _c = 0 mA	3.5			v
I _{CES}	$V_{CE} = 50 V$	I _E = 0 mA			25	mA
h _{FE}	$V_{CE} = 5 V$	I _C = 1A	10			mA

DYNAMIC

Symbol	Test Conditions		Value			Unit
Symbol			Min.	Тур.	Max.	Unit
Ρουτ	f = 1025 - 1150 MHz P _{IN} = 70W	$V_{CE} = 50V$	300			W
G _P	f = 1025 - 1150 MHz P _{IN} = 70W	$V_{CE} = 50V$	6.3			dB
ης	f = 1025 - 1150 MHz P _{IN} = 70W	$V_{CE} = 50V$	35			%
Conditions	Pulse Width = 10 μ s Duty Cycle = 1%	6				

IMPEDANCE DATA

FREQ	$Z_{IN}(\Omega)$	$Z_{CL}(\Omega)$		
960 MHz	5.1 + j1.0	2.2 – j3.5		
1090 MHz	4.2 + j0.5	2.5 – j3.5		
1215 MHz	7.5 + j1.5	2.3 – j1.5		

Pin = 70W Vce = 50V

TYPICAL PERFORMANCE

POWER OUTPUT vs POWER INPUT

EFFICIENCY vs POWER INPUT

POWER OUTPUT vs FREQUENCY

TYPICAL POWER OUT vs. FREQUENCY

EFFICIENCY vs FREQUENCY

TEST CIRCUIT

All Dimension are in Inches

C1,C2. C3, C4 C5	:	.6 - 4.5pF JOHANSON Gigatrim 1000μF, 63V, Electrolytic	Z1 Z2 Z3	:	.404 x .075 .263 x .995 483 x .077
C6	:	100pF Chip Capacitor Across .090 Gap	Z4	÷	.350 x 1.203
L1	:	2 Turns #24 .12 I.D., Spaced Wire Diameter	Z5	:	.505 x 1.200 with Two Notches .05 Long By .068 Wide
L2 :	:	4 Turns #24, .07 I.D., Spaced Wire Diameter	Z6	:	.335 x .076
			Z7	:	.260 x .442
			Z8	:	.310 x .082

Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.

PACKAGE MECHANICAL DATA

PACKAGE STYLE M138

Advanced Power Technology reserves the right to change, without notice, the specifications and information contained herein Visit our website at **WWW.ADVANCEDPOWER.COM** or contact our factory direct.