Application Note AN 114

“XICOR®

Interfacing the X9408/X9418 XDCP to 8051 Microcontrollers

by Applications Staff,
This application note describes the routines for the For those instructions which program the nonvolatile
control of an X9408 or X9418 digitally controllable data registers (XFR_WCR, GXFR_WCR, &
potentiometer. The X9408/X9418 devices have a variety WRITE_DR), acknowledge polling has been imple-
of different instructions that provide flexibility to the mented to determine an early completion of the internal
designer. Additionally, the nonvolatile nature of the write cycle. Although this is automatically handled by
device allows for stored wiper positions that can be the routines, a word or two regarding the procedure
retrieved after power cycles. should be informative. After issuing a start condition, the

master sends a slave address and receives an acknowl-
edge. It then issues an instruction byte to the X9408/
X9418 and again receives an acknowledge. If necessary,
it now transmits the data byte and receives a final
acknowledge. The master must then initiate a stop condi-
tion which will cause the X9408/X9418 to begin an
internal write cycle. The X9408/X9418 pins go to high
impedance until this internal cycle is complete. The

The following code implements all of the available
X9408/X9418 instructions using a standard bi-direc-
tional bus protocol. Although the subroutines occupy
about 300 bytes of program memory, designers who
won't need to implement all of the instructions can
shorten the code by removing any unnecessary routines.
However, this will necessitate the reassembly of the
code.

+5V LK
R1 R2
10K 10K

U1 U2
39 1Poo P10 |3 Z4scL vHo |o—
37| PO.1 P11 |5 SDA VWO [

P0.2 P1.2 VLO [
36 4
35| P03 P1.3 | £ 10
34| P04 P14 o VHT [
33 P05 P15 |5 VWi g —
35| P06 P1.6 |5 VL1

P0.7 P1.7 15

o VH2 (42
}g iNTO P2.0 g; VW2 |5
17| INT P21 [v o
10 | RD P2.2 754 18 22
2| RXD P2.3 [5& = A3 VH3 57—
15 TO P2.4 26 8 A2 VW3 o3
e P25 |57 50| A1 VL3 Fo—
5| IXD P26 |55 A0 |

WR P27 VCC |57

V+

12 X1 ALE/P gg 19 1yss v- 8

X2 PSEN
391) EAVP X340,

RST —a

80C51

5V K
Figure 1. Connecting the X9408 to an 80C51 microcontroller

REV 1.1 11/12/02 www.xicor.com 10f12

X

"XICOR®

Application Note

AN 114

master can now begin acknowledge polling by succes-
sively sending start conditions followed by "dummy"
instructions. When the X9408/X9418 finally answers
with an acknowledge, the internal write cycle has been
completed. The master must then initiate a stop condi-
tion. After the next start condition, the X9408/X9418 is
ready to receive further instructions.

In the code listing, an assumption was made that the code
executes upon a reset of the microcontroller. That is, the
code is loaded into low memory, however this can be
changed with an ORG assembler directive. Simple
MAIN program routines are included in the code listing.
These can be modified for different device addresses,
different registers and different DCPs within the device.

In this listing, the commands cause an X9408/X9418 (at
A3A2A1A0 = 1100 to be accessed.) The listing also
includes some instructions that are specific to the Cygnal
80C51 processor. These should be examined and modi-
fied, as needed, for the specific 80C51 in the system. The
commands issued in the “Main” section of the code are
simple assignment and call sequences.

In Figure 1, a representative hardware connection
between the X9408 and an 8051 family microcontroller
is shown. The pull-up resistors on the SDA and SCL
lines are determined by the total capacitance of all of the
devices connected to the bus, which is about 18pF.

80C51 MICROCONTROLLER ROUTINES FOR MANIPULATING AN X9408

QUAD EEPOT
(C) XICOR INC. 2002
FILE NAME X9408 8051.TXT
TARGET MCU: Cygnal C8051F000
DESCRIPTION:

might be helpful.

and receives and acknowledge (ACK).

further instructions.

NO Ne Ne NE Ne Ne Ne N NS NE N N N Ne NE Ne Ne Ne Ne Ne We We Ne We Ne Ne We Ne e e e Ne Ne Ne Ne We Ne “e we “o

CEM

80C51 MICROCONTROLLER ROUTINES FOR MANIPULATING AN X9408

This code provides basic 80C51 code for commmunicating with and
controlling the X9408 quad digital potentiometer. In this listing

is code that implements all of the available X9408 instructions.

The X9408 communicates via a 2-wire bus that is similar, but a little
different from the I2C bus. This code is very generic and can be
simplified and shortened by removing any unnecessary routines.

For those instructions which program the nonvolatile data registers
(XFR_WCR, GFXR WCR, and WRITE DR) this program provides acknowledge
polling to determine early completion of the internal write cycle.
Although this is handled automatically by the routines, some background

After issuing a start condition, the master sends a slave address

The master then sends an instruction
byte to the X9408 and again receives an ACK. If necessary, the master sends

a data byte and receives a final ACK. The master then initiates a stop
condition to signal the X9408 to begin an internal nonvolatile write

cycle. When the write cycle begins, the I/O pins go to a high impedance state
and remain in this state until the nonvolatile write is complete.

Immediately following the stop condition, the master can begin acknowledge
polling by successively sending start conditions, followed by "dummy"
instructions. When the X9408 finally answers with an acknowledge, the
internal write cycle is completed. The master then issues a stop
condition. After the next start condition, the X9408 is ready to receive

REV 1.1 11/12/02

Www.xicor.com

20f12

"XICOR®

X Application Note 114

This code give the flexibility to communicate with up to 16 different X9408
devices on the same bus. It does this by using a register, named "ADDR BYTE".
This register is loaded with the specific slave address and address of the
desired X9408 device. The register can be saved if there is only one X9408
on the bus, by making ADDR BYTE a constant.

An 80C51 register is used to identify the particular X9408 register or DCP, or both,
are used for a particular operation. There are various constants available for

easy selection of the WCR and DR combination. The contents of the register

is appended to the specific instruction in the "instr gen' routine.

A register is used as a counter for keeping track of the number of bits sent
in each byte.

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne ~eo

A register is used for the increment/decrement instruction to specify up or
down movement of the wiper. For each command, the master loads the "PULSES"
register with a direction bit and 6 bits of count. If the MSB is a 1

the wiper increments the specified number of tap positions. If the MSB

is a 0 the wiper decrements the specified number of tap positions.

A register is used to hold the specific command being executed. This allows
the instruction to be built up and sent to the X9408.

In the MAIN section are sample main code segments showing how to use the
various subroutines.

This code was tested on a Cygnal 80C51 microcontroller, using the Cygnal
tools. The specific routines required to set up the Cygnal processor

are identified and are probably not needed for other standard 8051 devices.
Since each 8051 may have specific requirements that are not handled in this
code, the programmer is advised to check the setup needs of the specific
80C51 derivation that is being used.

I/0 Definition

Ne Ne Ne Ne Ne N N Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne e Wo Ne wo wo

SCL bit pl.0 ; 80C51 pin used AS SCL
SDA bit pl.1 ; 80C51 pin used AS SDA

Register Definition

~e ~e ~o

$include (c8051£f000.inc); Include regsiter definition file (Cygnal).

TEMP equ rl ; Scratch register

COUNT equ r2 ; Loop counting register

PULSES equ r3 ; Bits -> DIR 0 ##HH## (#=pulses = 0 to 64)
COMMAND equ rd ; Instruction (I.E. 0,4,8,12,16,...)

ID equ r5 ; Bits => 0 0 0 0 R1 RO P1 PO

ADDR BYTE equ ré6 ; Bits => 01 0 1 A3 A2 Al AO

DATA BYTE equ r7 ; Bits -=> CM DW D5 D4 D3 D2 D1 DO

Constant Definition

~e Neo e

SLAVE_ADRO equ 050h
SLAVE _ADR1 equ 051h
SLAVE_ADR2 equ 052h
SLAVE_ADR3 equ 053h
SLAVE ADR4 equ 054h
SLAVE_ADR5 equ 055h
SLAVE_ADR6 equ 056h

REV 1.1 11/12/02 Www.xicor.com 3of12

"XICOR®

X Application Note 114

SLAVE_ADR7 equ 057h
SLAVE_ADRS8 equ 058h
SLAVE ADR9 equ 05%9h
SLAVE_ADR10 equ 05Ah
SLAVE _ADR11l equ 05Bh
SLAVE_ADR12 equ 05Ch
SLAVE ADR13 equ 05Dh
SLAVE_ADR14 equ 05Eh
SLAVE ADR15 equ 05Fh

’
WCR_0 equ 00h
WCR_1 equ 01h
WCR 2 equ 02h
WCR_3 equ 03h
’
DR 0 equ 00h
DR 1 equ 04h
DR 2 equ 08h
DR 3 equ 0Ch
’
DCP0O_RO equ 00h
DCPO_RI1 equ 04h
DCP0O_R2 equ 08h
DCP0O_R3 equ 0Ch
’
DCP1_RO equ 01h
DCP1 R1 equ 05h
DCP1_R2 equ 09h
DCP1_R3 equ 0Dh
4
DCP2_RO equ 02h
DCP2_RI1 equ 06h
DCP2_R2 equ 0Ah
DCP2_R3 equ OEh
4
DCP3_RO equ 03h
DCP3_RI1 equ 07h
DCP3_R2 equ 0Bh
DCP3_R3 equ OFh
7
READWCR equ 0
WRITEWCR equ 4
READDR equ 8
WRITEDR equ 12
XFRDR equ 16
XFRWCR equ 20
GXFRDR equ 24
GXFRWCR equ 28

INCDECWIPER edu 32

INTERNAL RAM

~e Neo e

STACK TOP equ 060H ; Stack top

RESET and INTERRUPT VECTORS

~e ~e ~o

cseg AT 0
1jmp main ; Locate a jump to the start of code at

REV 1.1 11/12/02 www.xicor.com sl

“XICOR®

Application Note AN 114

~e Ne ~e

CODE SEGMENT

Code Seg segment CODE

rseg Code_Seg
using

Switch to this code segment.
Specify register bank for the
program code.

following

Ne Ne Ne Ne Ne N Ne Ne Ne Ne e No

NAME: execute
FUNCTION: Determines which X9408 instruction is issued,

then executes

INPUTS: COMMAND
OUTPUTS: none
CALLS: read wcr, read dr, write wcr, write dr, xfr dr,

xfr wer, gxfr dr, gxfr wecr, inc wiper

AFFECTED: DPTR, A

execute:
mov dptr,#first ; Get Base Address
mov a, COMMAND ; Jump Offset
jmp @a+dptr ; Jump to instruction handler

first:
call read wcr ; COMMAND #0
ret
call write wer ; COMMAND #4
ret
call read dr ; COMMAND #8
ret
call write dr ; COMMAND #12
ret
call xfr dr ; COMMAND #16
ret
call xfr wer ; COMMAND #20
ret
call gxfr dr ; COMMAND #24
ret
call gxfr wer ; COMMAND #28
ret
call inc_wiper ; COMMAND #32
ret

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne e wo

The following routines handle each X9408 instruction.
These are called by the "execute" routine.

read wcrReads a WCR and returns its value in DATA BYTE
write wcrWrites the value in DATA BYTE to a WCR

read drReads a Data Register and returns its value in DATA BYTE
write drWrites the value in DATA BYTE to a data register
xfr drTransfers the value in a data register to its WCR
xfr werTransfers the value in a WCR to one of its data registers
gxfr drGlobal transfer of data registers to WCRs
gxfr wcrGlobal transfer of WCRs to Data Registers
inc_wiperSingle Step Increment/Decrement of wiper position for WCR

REV 1.1 11/12/02

Www.xicor.com

50f12

“XICOR®

Application Note AN 114

INPUTS: ID

FUNCTION: Appends bits R1, R0, P1l, PO to the appropriate
Instruction code and passes the instruction byte to the
Instruction Generator.

OUTPUTS: NONE
CALLS: instr gen
AFFECTED: ID,A,DPTR

Ne Ne Ne Ne Ne Ne N Ne ~e

read wcr:
mov
orl
mov
mov
call
ret

write wcr:
mov
orl
mov
mov
call
ret

read dr:
mov
orl
mov
mov
call
ret

write dr:
mov
orl
mov
mov
call
ret

xfr dr:
mov
orl
mov
mov
call
ret

xfr wcr:
mov
orl
mov
mov
call
ret

gxfr dr:
mov
orl
mov
mov
call
ret

a,ID ; Get bits x x P1 PO
a,#090h ; Append to read WCR instruction code
ID,a ; Save the result

7

dptr,#casel Jump to the base addr for this instruciton
instr gen

a,ID ; Get bits x x P1 PO

a,#0A0h ; Append to Write WCR instruction code

ID,a Save the result

7
dptr,#case2 ;
instr gen

Jump to the base addr for this instruction

a,ID ; Get bits R1 RO P1 PO

a,#0B0h ; Append to Read DR instruction code

ID,a ; Save the result

dptr,#casel ; Jump to the base addr for this instruction
instr gen

a,ID ; Get bits R1 RO P1 PO
a,#0C0h ; Append to Write DR instruction code
ID, a ; Save the result

7

dptr,#case3 Jump to the base addr for this instruction
instr gen
a,ID ; Get bits R1 RO P1 PO
a,#0D0h ; Append to the XFR DR instruction code
D, a ; Save the result
7

dptr,#case4d
instr gen

Jump to the addr for this instruction

a,ID ; Get bits R1 RO P1 PO
a,#0EOh ; Append to the XFR WCR instruction code
ID, a ; Save the result

dptr,#case5 ; Jump to the addr for this instruction
instr gen

a,ID ; Get bits R1 RO x X
a,#010h ; Append to the GXFR DR instruction code
ID, a ; Save the result

dptr,#case4d ; Jump to the addr for this instruction
instr gen

REV 1.1 11/12/02

www.xicor.com 6 0f 12

"XICOR®

X Application Note 114

gxfr wcr:
mov a,ID ; Get bits R1 RO x X
orl a,#080h ; Append to the GXFR WCR instruction code
mov ID, a ; Save the result
mov dptr,#case5b ; Jump to the addr for this instruction
call instr gen
ret

inc_wiper:

mov a,ID ; Get bits x x P1 PO

orl a,#020h ; Append to the Incr Wiper instruction code
mov ID,a ; Save the result

mov dptr,#case6 ; Jump to the addr for this instruction
call instr gen

ret

NAME: instr gen (Instruction generator)

FUNCTION: Issues appropriate I2C protocol for each X9408 instruction
INPUTS: ADDR BYTE, ID, PULSES, DPTR, DATA BYTE

OUTPUTS: DATA BYTE

CALLS: start cond, stop cond, send byte, send bit, get byte, polling
AFFECTED: DATA BYTE, A, COUNT

Ne Ne Ne Ne Ne Ne Ne Ne N o

instr gen:
call start_cond ; Issue an I2C start condition
mov a,ADDR BYTE ; Send X9408 slave/address byte
call send byte

jc stop gen ; if NACK, end...
mov a,ID ; Send X9408 instruction byte
call send byte
jc stop_gen ; if NACK, end...
clr a ; Reset offset before jump
4

jmp @a +dptr Jump to various instruction cases

caseb:
mov a,PULSES ; A <- Bits DIR X D5 D4 D3 D2 D1 DO
anl a,#00111111b ; A <- Bits 0 0 D5 D4 D3 D2 D1 DO
mov COUNT, a ; Save as the number of pulses
mov a,PULSES
anl a,#10000000b ; A <- Bits DIR0 0 0 0 0 0 0
wiper lp:
call send bit ; Send the bit (a single pulse)
djnz COUNT,wiper lp ; Continue until all pulses are sent
cased:
jmp stop gen ; If program gets here, then it is done
case2:
mov a,DATA BYTE ; Send X9408 data byte
call send byte
jmp stop_gen
casel:
call get byte ; Receive X9408 Data Byte
jmp stop_gen
case3:

mov a,DATA BYTE ; Send X9408 Data Byte
call send byte

REV 1.1 11/12/02 Www.xicor.com 70f12

L] L]
Application Note AN 114
“XICOR®
call stop cond ; Issue a stop condition
call polling ; Begin Acknowledge Polling
jmp stop gen
caseb5:
call stop cond ; Issue a stop condition
call polling ; Begin Acknowledge Polling
stop gen:
call stop_cond ; I2C Transmission Over!
ret
; — — ——
7
; NAME: send byte
; FUNCTION: Sends 8 bits (from MSB to LSB) to SDA and reads 1 bit from SDA
; INPUTS: A
; OUTPUTS: NONE
; CALLS: send bit, get bit
; AFFECTED: COUNT, TEMP, A
7
; - - -
send byte:
mov COUNT, #8 ; Set loop for 8 repetitions
mov TEMP, a ; store as shifted byte (no shift)
bit loop:
mov a, TEMP ; Retrieve last saved shifted byte
anl a,#10000000b ; Mask for MSB (Most Significant Bit)
call send bit ; Place this bit on SDA
next bit:
mov a, TEMP ; Retrieve last saved shifted byte
rl a ; Rotate all bits 1 position left
mov TEMP, a ; Store this updated shifted byte
djnz COUNT,bit loop
setb SDA ; let SDA go high after 8th bit
call clock ; When all 8 bits done, read SDA line
; (ACKnowledge pulse)
ret
7
; NAME: send bit
; FUNCTION: Places a bit on SDA and initiates a clock pulse on SCL
; INPUTS: A
; OUTPUTS: NONE
; CALLS: clock
; AFFECTED: SDA
7
; -— -— —
send bit:
clr SDA ; Pull SDA Low
jz sent zero ; Should SDA really be LOW?
setb SDA ; If Not, pull SDA HIGH
sent zero:
call clock ; Initiate a clock pulse
ret
; — — —
:
REV 1.1 11/12/02 www.xicor.com 8of12

“XICOR®

Application Note AN 114

Q) ~e ~o ~o o o o ~o N o

Ne Ne Ne Ne Ne Ne Ne Neo Ne ~o

NAME: clock

FUNCTION: Issues a LOW-HIGH-LOW clock pulse of sufficient duration
& reads SDA during the high phase, just in case its needed

INPUTS: NONE

OUTPUTS: C

CALLS: NONE

AFFECTED: SCL, C

lock:
nop ; Let SDA Set-up
setb SCL ; Pull SCL HIGH and hold
nop
nop
nop
mov c,SDA ; Move SDA bit into carry flag
clr SCL ; Pull SCL LOW
ret

NAME: get byte

FUNCTION: Receives 8 bits from SDA (MSB to LSB) and sends 1 bit to SDA
INPUTS: NONE

OUTPUTS: DATA BYTE

CALLS: clock, send bit

AFFECTED: COUNT, SDA, A, DATA BYTE

get byte:

Receiver shouldn't drive SDA low
Set Loop count to 8 repetitions

setb SDA
mov COUNT, #8

~e e

get loop:

Ne Ne Ne Ne Ne Ne Ne Neo Ne ~o

Clock in the current bit
Reconstruct byte using left shifts

call clock
rlc a

djnz COUNT,get loop
mov DATA BYTE,a

~e ~eo

Store retrieved Byte for user

7
clr a ; A <- LOW (Sending a 0)
call send bit ; Send an acknowledge
ret

NAME: start cond (Start Condition)
FUNCTION: Issues an I2C bus start condition
INPUTS: NONE

OUTPUTS: NONE

CALLS: NONE

AFFECTED: SDA, SCL

start_cond:

setb SDA ; Pull SDA HIGH and allow set-up
setb SCL ; Pull SCL HIGH and hold

nop

nop

nop

nop

clr SDA ;Pull SDA LOW (SCL=HIGH) and hold
nop

nop

nop

nop

REV 1.1 11/12/02 Www.xicor.com 90f12

X

Www.xicor.com

L] L]
Application Note AN 114
“XICOR®
clr SCL ;Complete clock pulse
ret
; -— -—
7
; NAME: stop cond (Stop condition)
; FUNCTION: Issues an I2C bus stop condition
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: NONE
; AFFECTED: SDA, SCL
7 - -
stop cond:
clr SDA ; Pull SDA LOW and hold
setb SCL ; Pull SCL HIGH and hold
nop
nop
nop
nop
setb SDA ; Pull SDA HIGH (SCL=HIGH)
ret
; — —
7
; NAME: ack send (Send Acknowledge)
; FUNCTION: Sends an acknowledge bit to complete SDA line data reads
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: send bit
; AFFECTED: A
7
7 - -
ack send:
clr a ; A <- LOW (Sending a 0)
call SEND BIT ; Send the bit!
ret
7 - -
7
; NAME: polling (Acknowledge polling for XFR WCR, WRITE DR, GXFR_WCR)
; FUNCTION: Sends dummy commands to X9408 during an internal write cycle
; so that the end of the cycle is marked by an acknowledge
; INPUTS: ADDR BYTE
; OUTPUTS: NONE
; CALLS: start cond, send byte
; AFFECTED: C
7
; -— -—
polling:
call START COND ; Re-establish I2C protocol
mov a,ADDR BYTE ; Attempt to send a dummy command
again:
call SEND_BYTE
jc POLLING ; If C=1, then there was no ACK
ret
REV 1.1 11/12/02 10 0f 12

X Application Note

AN 114
“XICOR®
; — — ——
7
; PUT MAIN PROGRAM HERE...
7
; Below are sample main programs calling the various command routines
7
main:
mov SP, #STACK TOP; Initialize stack pointer
; —— —— ——
7
; The following section is required for the Cygnal processor. This could
; change for different versions of the 80C51.
7
; Disable the WDT. (IRQs not enabled at this point.)
; If interrupts were enabled, they would need to be explicitly disabled
; so that the 2nd move to WDTCN occurs no more than four clock
; cycles after the first move to WDTCN.
clr EA ; Disable interupts
mov WDTCN, #O0ODEh; Cygnal processor specific
mov WDTCN, #O0ADh; Cygnal processor specific
; Enable the Port I/0 Crossbar
mov XBR2, #40h ; Cygnal processor specific (enable weak pull ups)
mov PRTICF, #00h ; Cygnal processor specific
; Set no ports as push-pull (this processor
; operates from 3.3V, but the X9408 operates from
; 5V, so the 8051 outputs must be pulled up to 5V
; with external resistors.)
; —— —— —— —
7
; The following are sample code segments for use in the main program...
; The potentiometer was A0-A3 pins were set to address OCh.
7
write 2 wecr:
mov ADDR_BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #WCR 2 ; Specify WCR for DCP#2
mov COMMAND, #WRITEWCR; Write to WCR
mov DATA BYTE, #43; Set wiper position to tap 43
call execute
read from wcr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #WCR 2 ; Specify WCR for DCP#2
mov COMMAND, #READWCR; Read WCR
call execute ; WCR value is in DATA BYTE
write 2 dr:
mov ADDR BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DCP2_R1l; Specify DR#l for DCP#2
mov COMMAND, #WRITEDR; Write to DR
mov DATA BYTE, #21; Set data value to 21
call execute
REV 1.1 11/12/02 www.xicor.com 11 0f 12

() [)
Application Note AN 114
“XICOR®
read from dr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify DR#1l for DCP#2
mov COMMAND, #READDR; Read DR
call execute ; DR value is in DATA BYTE
mov_dr 2 wcr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify DR#1l to WCR of DCP#2
mov COMMAND, #XFRDR; Transfer DR to WCR
call execute
mov_wcr_2 dr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #DCP2_R1l; Specify WCR to DR#1 of DCP#2
mov COMMAND, #XFRWCR; Transfer WCRto DR
call execute
global dr 2 wcr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #DR 1 ; Specify DR#1 to WCR
mov COMMAND, #GXFRDR; Transfer DR to WCR
call execute
global wcr 2 dr:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #DR 1 ; Specify WCR to DR#1 of DCP#2
mov COMMAND, #GXFRWCR; Transfer WCRto DR
call execute
decr wiper:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #WCR 2 ; Select DCP#2
mov PULSES, #0Fh; Decrement DCP#2 for 16 pulses
mov COMMAND, #INCDECWIPER; INC wiper
call execute
incr wiper:
mov ADDR BYTE, #SLAVE ADR12; Load Slave address byte
mov ID, #WCR 2 ; Select DCP#2
mov PULSES, #8Fh; Increment DCP#2 for 16 pulses
mov COMMAND, #INCDECWIPER; DEC wiper
call execute
END
REV 1.1 11/12/02 WWW.XICOr.com 12 of 12

