

SMALL SIGNAL DUAL N-CHANNEL J-FET IN A HERMETICALLY SEALED **CERAMIC SURFACE MOUNT PACKAGE** FOR HIGH RELIABILITY APPLICATIONS

MECHANICAL DATA

Dimensions in mm (inches)

FEATURES

- HERMETIC CERAMIC SURFACE MOUNT **PACKAGE**
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS

LCC2 Package **Underside View**

Pad 1 - Gate 1 Pad 4 - Gate 2 Pad 2 - Source 1 Pad 5 - Source 2 Pad 3 - Drain 2 Pad 6 - Drain 1

APPLICATIONS:

Hermetically sealed dual surface mount version of the popular 2N4393 for high reliability / space applications requiring small size and low weight devices.

ABSOLUTE	MAXIMUM RATINGS (T _{amb} = 25°C unless otherwise stated) EACH SIDE	TOTAL DEVICE
$V_{\sf GD}$	Gate – Drain Voltage	-35V	-35V
V_{GS}	Gate – Source Voltage	-35V	-35V
I_{G}	Gate Current	50mA	50mA
P_{D}	Power Dissipation	350mW	600mW/°C
	Derate	2.8mW/ °C	3.4mW/°C
T _i	Operating Junction Temperature Range	–55 to 150°C	−55 to 150°C
T _{stg}	Storage Temperature Range	–55 to 150°C	−55 to 150°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

Document Number 2835 E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1

2N4393DCSM

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Conditions		Min.	Тур.	Max.	Unit			
	STATIC CHARACTERISTICS									
V _{(BR)GSS}	Gate – Source Breakdown Voltage	$V_{DS} = 0V$	$I_G = -1\mu A$	-35	- 55		V			
V _{GSS(off)}	Gate – Source Cut–off Voltage	$V_{DS} = 15V$	I _D = 10nA	-0.5		-3]			
I _{DSS*}	Saturation Current	$V_{DS} = 20V$	$V_{GS} = 0V$	5			mA			
I _{GSS}	Gate Reverse Current	$V_{GS} = -5V$			- 5	-100	рА			
		$V_{DS} = 0V$	T _{amb} = 125°C		-3	-200	nA			
I _{D(off)}	Drain Cut-off Current	$V_{DG} = 10V$	$V_{GS} = -10V$		5	100	рА			
		V _{DS} = 10V	$V_{GS} = -10V$		3	200	nA			
			T _{amb} = 125°C							
V _{DS(on)}	Drain – Source On Voltage	$V_{GS} = 0V$	$I_D = 3mA$		0.25	0.4	V			
R _{DS(on)}	Drain – Source On Resistance	$V_{GS} = 0V$	I _D = 1mA			100	Ω			
	DYNAMIC CHARACTERISTICS									
R _{DS(on)}	Drain – Source On Resistance	V _{GS} = 0V	$I_D = 0mA$			100	Ω			
		f = 1kHz								
C _{ISS}	Common – Source Input Capacitance	$V_{DS} = 20V$	$V_{GS} = 0V$		13	16	pF			
		f = 1MHz								
C _{RSS}	Common – Source Reverse Transfer	$V_{DS} = 0V$	$V_{GS} = -5V$		4	E				
	Capacitance	f = 1MHz			4	5	pF			
ē _n	Equivalent Input Noise Voltage	V _{DG} = 10V	I _D = 10mA		2.0		<u>nV</u>			
		f = 1kHz		3.0	3.0		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$			

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 2835 E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1