

GENERAL DESCRIPTION

The CM2852 family is positive, linear regulators featured low quiescent current ($30\mu A$ typ.) with low dropout voltage, making them ideal for battery applications. The space-saving SOT-23-5 package is attractive for "Pocket" and "Hard Held" applications.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

An additional feature is a "Power Good" detector, which pulls low when the output is out of regulation.

The CM2852 is stable with an output capacitance of $2.2\mu F$ or greater.

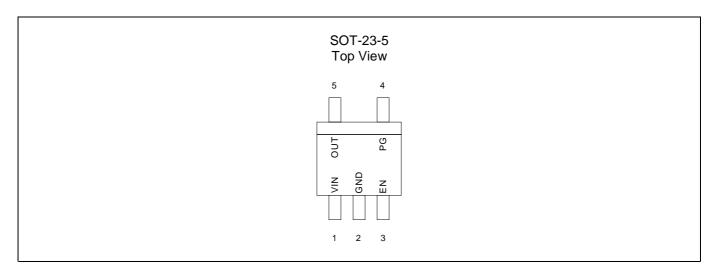
APPLICATIONS

- Battery-powered devices
- Personal communication devices
- ♦ Home electric/electronic appliances
- PC peripherals

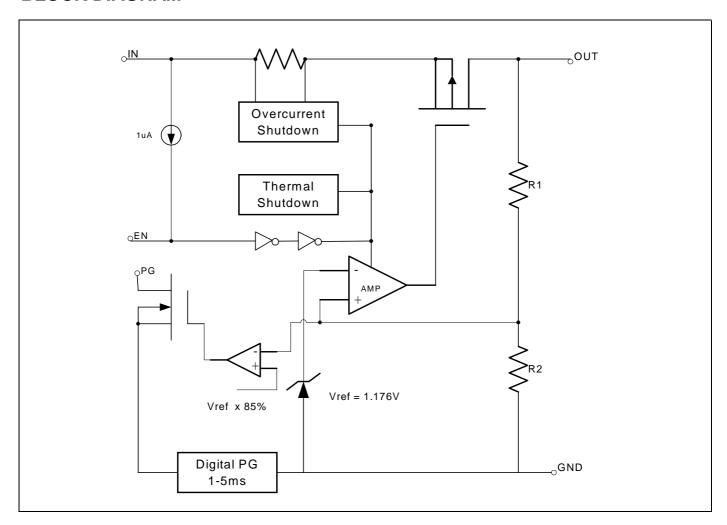
TYPICAL APPLICATIONS

OUT _CIN IN OUT CM2852 1M Ω PG GND ΕN C1 C2 5 V For programming 1uF 4.7uF delay > typ. 5ms (Optional)

FEATURES


- Very Low Dropout Voltage
- ♦ Low Current Consumption: Typ. 30μA, Max. 35μA
- ♦ High Accuracy Output Voltage: +/- 2.5%
- Guaranteed 300mA Output
- ♦ Input Range of 2.5V to 7.0V
- Thermal Shutdown
- Current Limiting
- Power Good Output Function
- ◆ Compact Package: SOT-23-5
- ◆ Factory Pre-set Output Voltages
- ◆ Short Circuit Current Fold-Back
- ◆ Low Temperature Coefficient

24 Hours Technical Support--WebSIM


Champion provides customers an online circuit simulation tool called WebSIM. You could simply logon our website at www.champion-micro.com for details.

PIN CONFIGURATION

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Output Voltage	Temperature Range	Package
CM2852ACIM25	1.2V	-40°C ~+85°C	SOT-23-5
CM2852SIM25	3.3V	-40°C ~ +85°C	SOT-23-5

Note: For other pre-set output voltage, please contact Champion Sales office.

ABSOLUTE MAXIMUM RATINGS

OPERATING RATINGS

Input Voltage	+7V	Ambient Temperature Range (T _A)40°C to +85°C
Output Current	$P_D / (V_{IN} - V_0)$	Junction Temperature Range	40°C to +125°C
Output Voltage GND-	0.3V to V _{IN} +0.3V		
ESD Classification	B		

THERMAL INFORMATION

Parameter		Maximum	Unit
Thermal Resistance (⊖ _{jc})	SOT-23-5	160	°C.W
Internal Power Dissipation (P_D) ($\Delta T = 100^{\circ}C$)	SOT-23-5	250	mW
Maximum Junction Temperature		150	$^{\circ}\mathbb{C}$
Maximum Lead Temperature (10 Sec)		300	$^{\circ}\mathbb{C}$

^{*}With Junction sink capable of twice times of Θ_{jc}

Caution: Stress above the listed absolute rating may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS

 $T_A = +25^{\circ}C$; unless otherwise noted

Davamatan	Cumbal	Toot Conditions		CM2852					
Parameter Symbol Test Condition		ions	Min.	Тур.	Max.	Unit			
Input Voltage	V _{IN}			Note 1		7	V		
Output Voltage Accuracy	V _{OUT}	I _O =	1m/	\	-2.5		2.5	%	
	V _{DROPOUT}	1.2V< V _{O(NOM)} <		V< V _{O(NOM)} <=2.0V			1300		
Dropout Voltage		$I_0 = 300 \text{mA},$	2.0	V< V _{O(NOM)} <=2.5V			800	mV	
		$V_{OUT} = V_{O(NOM)} - 2.5\%,$ 2.5V < $V_{O(NOM)}$		2.5V< V _{O(NOM)}			300		
Output Current	lo	V _{OUT} :	V _{OUT} > 1.2V		150			mA	
Current Limit	I _{LIM}	V _{OUT} :	> 1.2	2V		450		mA	
Short Circuit Current	I _{SC}	V _{OUT} .	< 0.8	3V		150	300	mA	
Quiescent Current	IQ	I _O =	0m/	1		30	35	μ A	
Ground Pin Current	I _{GND}	$I_O = 1mA$	to 3	00mA		30	35	μ A	
		1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	1 4-	V _{OUT} < 2.0V	-0.1	0.02	0.1	%	
Line Regulation	REGLINE	I_{OUT} =1mA, V_{IN} = V_{OUT} +1 to V_{OUT} +2		2.0V <v<sub>OUT < 3.0V</v<sub>	015	0.03	0.15	%	
				3.0V <v<sub>OUT</v<sub>	-0.3	0.06	0.3	%	
Load Regulation	REG _{LOAD}	I _O =1mA t	to 30	00mA		0.2	1	%	
Over Temperature Shutdown	OTS				135	150		$^{\circ}\mathbb{C}$	
Over Temperature Hysteresis	OTH					30		$^{\circ}\mathbb{C}$	
V _{OUT} Temperature Coefficient	TC					25		ppm/°C	
		f=1kHz			60				
Power Supply Rejection	PSRR	$I_0 = 100 \text{mA}$	_	f=10kHz		50		dB	
		C _O =2.2µF ceramic	C	f=100kHz		40			
Output Valtage Naige	-NI	f=10Hz to 100kHz	<u>z</u>	0 22.5		20		\/###	
Output Voltage Noise	eN	$I_O = 10mA$		C _O =2.2µF		30		μ Vrms	
EN Input Pigg Current	I _{EH}	V _{EN} =V _{IN} , V _{IN}	_v =2.7	V to 7V			0.1	μ A	
EN Input Bias Current	I _{EL}	V _{EN} =0V, V _{IN}	=2.7	V to 7V		1.0	3.0	μ A	
EN Input Throshold	V_{EH}	V _{IN} =2.7	'V to	7V		V _{IN} /2+0.8V	V_{IN}	V	
EN Input Threshold	V_{EL}	V _{IN} =2.7	'V to	7V	0	V _{IN} /2-0.8V		V	
Shutdown Supply Current	I _{SD}	V_{IN} =5.0V, V_{OUT} =0V, V_{EN} < V_{EL}			2.0	3.0	μ A		
Shutdown Output Voltage	$V_{O, SD}$	I _O =30	00m	4	0		0.1	V	
Output Under Voltage	V	2.5V<=V _{OU}	UT <:	= 5.0V			85	0/ \/	
	V _{UV}	1.2V<=V _{OUT} <= 2.5V				85	%V _{O(NOM}		
PG Leakage Current	I _{LC}	V_{PG}	= 7\	'			1	μ A	
PG Voltage Rating	V_{PG}	V _{OUT} in r	egul	ation			7	V	
PG Voltage Low	V _{OL}	I _{SINK} = 2mA				0.1	V		
Delay Time to PG Note 1. V _{IN(MIN)} = V _{OUT} + V _{DROPOUT}	t _{DELAY}	V _{IN} =2.5V to 6.0V (Note 2)		1		7	ms		

Note 1. $V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}$

Note 2: Delay time will be varied by input voltage, but the delay time will still be in the spec from 1ms to 7ms when VIN rise time <2ms.

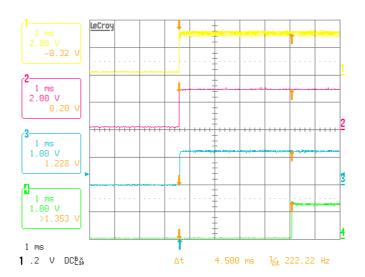
DETAILED DESCRIPTION

The CM2852 family of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, output short circuit protection, thermal shutdown, and power good function.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, short output protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

The CM2852 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The CM2852 also incorporates current fold-back to reduce power dissipation when the output is short-circuited. This feature becomes active when the output drops below 0.95V, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.95V.

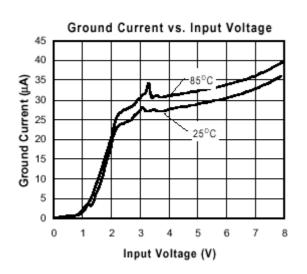
EXTERNAL CAPACITOR

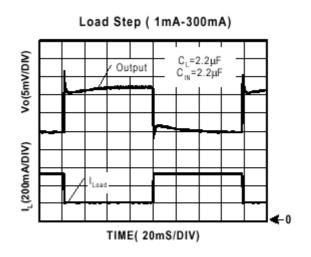

The CM2852 is stable with an output capacitor to ground of 2.2µF or greater. It can keep stable even with higher or poor ESR capacitors. A second capacitor is recommended between the input and ground to stabilize VIN. The input capacitor should be larger than 0.1µF to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.

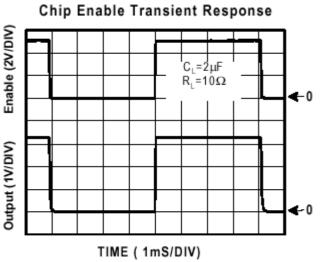
ENABLE

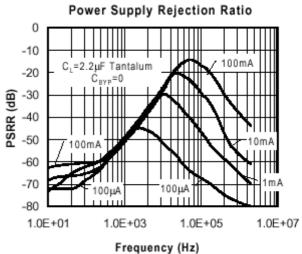
The Enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shut off, and all internal circuits are powered down. In this state, the quiescent current is less than 1µA. This pin behaves much like an electronic switch.

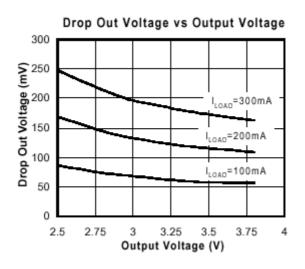
POWER GOOD

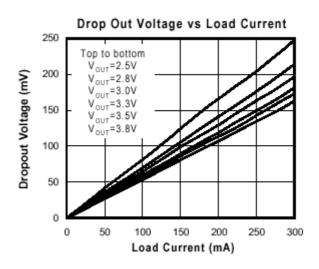

The CM2852 includes the Power Good feature. Under normal operating condition which means output voltage is within the SPEC, PG should be high. If Vout is less than 85% VOUT SPEC, PG will go low. As VOUT comes back and reaches to the 95% VOUT SPEC, the PG will go high after 1ms~7ms again. (See Timing Diagram as below)

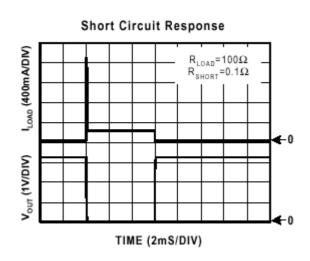


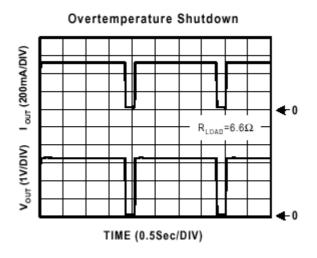

VIN = VEN= 3.3V, Iload = 120mA, VOUT = 1.2V, Delay time = 4.5ms

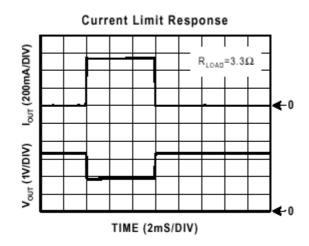


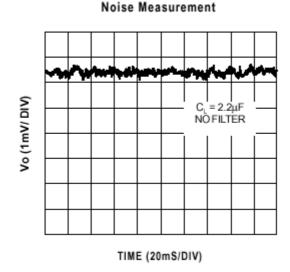

TYPICAL ELECTRICAL CHARACTERISTICS

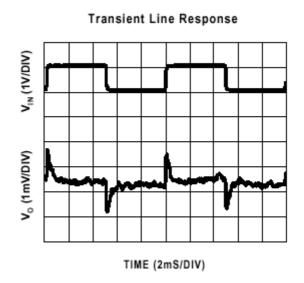


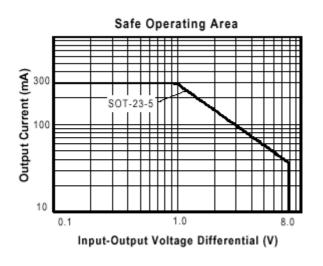


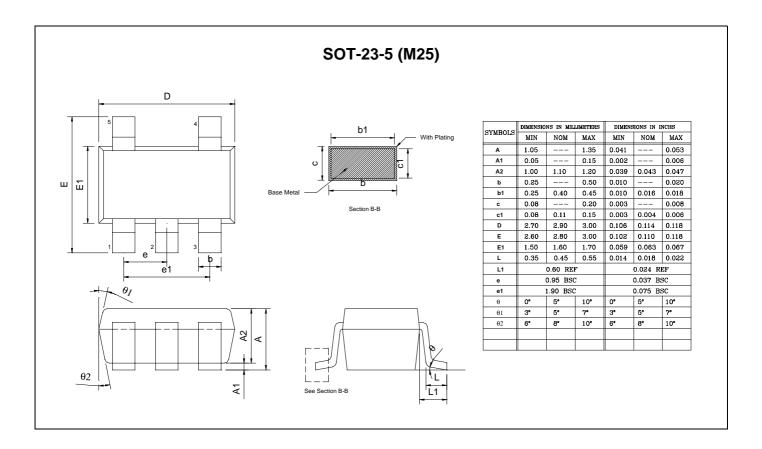












PACKAGE DIMENSION

NUMBERING SCHEME

Ordering Number: CM2852XYZ (note1)

note1:

CM2852: 300mA CMOS LDO \underline{X} : Suffix for voltage output (note 2) \underline{Y} : Suffix for Temperature Range (note 3) \underline{Z} : Suffix for Package Type (note 4)

note 2: see CMOS LDO Voltage Suffix Table CM2852 will provide options of AC(1.2V), S(3.3V)

note 3:

Y= I: -40° C ~+85 $^{\circ}$ C (only I grade support for all CMOS LDOs)

note 4:

Z is single alphabet with or without digits

M25 : SOT-23-5 (TR only)

CMOS LDO Voltage Suffix Table

Output Voltage	Suffix	Output Voltage	Suffix
1.2V	AC	2.7V	М
1.3V	AB	2.8V	N
1.4V	AA	2.9V	0
1.5V	Α	3.0V	Р
1.6V	В	3.1V	Ю
1.7V	С	3.2V	R
1.8V	D	3.3V	S
1.9V	Е	3.4V	T
2.0V	F	3.5V	C
2.1V	G	3.6V	V
2.2V	Н	3.7V	W
2.3V	I	3.8V	X
2.4V	J	3.9V	Y
2.5V	K	4.0V	Z
2.6V	L		

CM2852 300mA CMOS LDO WITH EN & PG

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596