16-Mb (1024K x 16) Static RAM #### **Features** Very high speed: 55 ns and 70 nsWide voltage range: 1.65V to 2.2V · Ultra-low active power Typical active current: 1.5 mA @ f = 1 MHz Typical active current: 18 mA @ f = f_{MAX} • Ultra-low standby power Easy memory expansion with CE₁, CE₂, and OE features · Automatic power-down when deselected • CMOS for optimum speed/power Packages offered in a 48-ball FBGA # Functional Description^[1] The CY62167DV20 is a high-performance CMOS static RAM organized as 1024K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 (CE_2) LOW or both BHE and BLE are HIGH. The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 (CE_2) LOW, outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH) or during a write operation ($\overline{\text{Chip}}$ Enable 1 ($\overline{\text{CE}}_1$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH and WE LOW). Writing to the device is accomplished by taking Chip Enable 1 (CE₁) LOW and Chip Enable 2 (CE₂) <u>HIGH</u> and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then das pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the ad Reading from the device is accomplished by taking Chip Enable 1 (CE_1) LOW and Chip Enable 2 (CE_2) HIGH and Output Enable (OE) LOW while forcing the Write Enable (<u>WE</u>) HIGH. If Byte Low Enable ($<>O_7$. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes. Note 1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com. # Pin Configuration^[2, 3.] - DNU pins are to be connected to V_{SS} or left open. NC pins are not connected on the die. ## **Maximum Ratings** (Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage to Ground Potential-0.2V to V_{CCMAX} + 0.2V DC Voltage Applied to Outputs in High-Z State^[4, 5.]-0.2V to V_{CCMAX} + 0.2V # **Operating Range** | Range | Ambient Temperature (T _A) | V cc ^[6] | |------------|---------------------------------------|----------------------------| | Industrial | −40°C to +85°C | 1.65V to 2.2V | ### **Product Portfolio** | | | | | | | | Power Di | ssipation | | | |---------------|--------------------------|------|-------|-----------|-----------------|---------------|-----------------------------|--------------------------------|-----------------|------| | | | | | | | Operating | g, Icc (mA) | | | | | | V _{CC} Range(V) | | Speed | f = 1 MHz | | $f = f_{MAX}$ | | Standby, I _{SB2} (μΑ) | | | | Product | Min. | Тур. | Max. | (ns) | Typ. [7] | Max. | Typ . ^[7] | Max. | Typ. [7] | Max. | | CY62167DV20L | 1.65 | 1.8 | 2.2 | 55 | 1.5 | 5 | 18 | 35 | 2.5 | 40 | | | | | | 70 | | | 15 | 30 | 2.5 | 40 | | CY62167DV20LL | 1.65 | 1.8 | 2.2 | 55 | 1.5 | 5 | 18 | 35 | 2.5 | 30 | | | | | | 70 | | | 15 | 30 | 2.5 | 30 | ### **DC Electrical Characteristics** (over the operating range) | | | | | CY | CY62167DV20-55 | | | CY62167DV20-70 | | | | |------------------|-------------------------------------|--|---------------------------------------|------|---------------------|-----------------------|------|---------------------|-----------------------|------|--| | Parameter | Description | Test Conditions | | Min. | Typ. ^[7] | Max. | Min. | Typ. ^[7] | Max. | Unit | | | V _{OH} | Output HIGH Voltage | $I_{OH} = -0.1 \text{ mA}$ | $V_{CC} = 1.65V$ | 1.4 | | | 1.4 | | | V | | | V_{OL} | Output LOW Voltage | $I_{OL} = 0.1 \text{ mA}$ | $V_{CC} = 1.65V$ | | | 0.2 | | | 0.2 | V | | | V _{IH} | Input HIGH Voltage | | | 1.4 | | V _{CC} + 0.2 | 1.4 | | V _{CC} + 0.2 | V | | | V _{IL} | Input LOW Voltage | | | -0.2 | | 0.4 | -0.2 | | 0.4 | V | | | I _{IX} | Input Leakage Current | $GND \le V_1 \le V_{CC}$ | | -1 | | +1 | -1 | | +1 | μΑ | | | l _{OZ} | Output Leakage
Current | $\begin{array}{l} GND \leq V_O \leq V_CC \\ Disabled \end{array}$ | -1 | | +1 | – 1 | | +1 | μΑ | | | | I _{CC} | V _{CC} Operating Supply | $f = f_{MAX} = 1/t_{RC}$ | | | 18 | 35 | | 15 | 30 | mΑ | | | | Current | f = 1 MHz | I _{OUT} = 0mA,
CMOS level | | 1.5 | 5 | | 1.5 | 5 | | | | I _{SB1} | Automatic CE | $CE_1 \ge V_{CC} - 0.2V$ | /, CE ₂ ≤ L | | 2.5 | 40 | | 2.5 | 40 | μΑ | | | | Power-down Current –
CMOS Inputs | 0.2V, V _{IN} ≥ V _{CC} −(
≤ 0.2V, f = f _{MAX} (A
and Data Only), f
WE, BHE and BL | Addr <u>ess</u>
<u>=</u> 0 (OE, | | 2.5 | 30 | | 2.5 | 30 | | | | I _{SB2} | Automatic CE | $CE_1 \ge V_{CC} - 0.2V$ | - | | 2.5 | 40 | | 2.5 | 40 | μΑ | | | | Power-down Current –
CMOS Inputs | $0.2V, V_{IN} \ge V_{CC} - V_{IN} \le 0.2V, f = 0, V$ | | | 2.5 | 30 | | 2.5 | 30 | | | ### Capacitance^[8] | Parameter | Description | Test Conditions | Max. | Unit | |------------------|--------------------|------------------------|------|------| | C _{IN} | Input Capacitance | TA = 25°C, f = 1 MHz | 8 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = V_{CC(typ)}$ | 10 | pF | - 4. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns. - 5. $V_{IH(max)} = V_{CC} + 0.75V$ for pulse durations less than 20 ns. - 6. Full device AC operation assumes a 100 μs ramp time from 0 to V_{cc}(min) and 100 μs wait time after V_{cc} stabilization. - 7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C. - B. Tested initially and after any design or process changes that may affect these parameters. ### **Thermal Resistance** | Parameter | Description | Test Conditions | BGA | Unit | |----------------------|--|--|-----|------| | θ_{JA} | | Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit board | 55 | C/W | | θ_{JC} | Thermal Resistance (Junction to Case) ^[8] | | 16 | C/W | # **AC Test Loads and Waveforms** Equivalent to: THÉVENIN EQUIVALENT | Parameters | 1.8 V | UNIT | |-----------------|-------|------| | R1 | 13500 | Ω | | R2 | 10800 | Ω | | R _{TH} | 6000 | Ω | | V _{TH} | 0.80 | V | ### **Data Retention Characteristics** | Parameter | Description | Conditions | Min. | Тур. | Max. | Unit | |---------------------------------|---|--|-----------------|------|------|------| | V_{DR} | V _{CC} for Data Retention | | 1.0 | | 2.2 | V | | I _{CCDR} | Data Retention Current | $V_{CC}=1.0V, CE_1 \ge V_{CC}-0.2V, CE_2 \le L$
0.2V, $V_{IN} \ge V_{CC}-0.2V$ or $V_{IN} \le 0.2V$ | | | 15 | μΑ | | | | $0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$ LL | | | 10 | | | t _{CDR} ^[8] | Chip Deselect to Data
Retention Time | | 0 | | | ns | | t _R ^[9] | Operation Recovery Time | | t _{RC} | | | ns | # **Data Retention Waveform**[10] - 9. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)}$ > 100 μs or stable at $V_{CC(min.)}$ > 100 μs . - 10. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE. # Switching Characteristics (over the operating range)^[11] | | | CY62167 | 7DV20-55 | CY62167 | 7DV20-70 | | | |-----------------------------------|---|---------|----------|---------|----------|------|--| | Parameter | Description | Min. | Max. | Min. | Max. | Unit | | | Read Cycle | | | • | | • | l . | | | t _{RC} | Read Cycle Time | 55 | | 70 | | ns | | | t _{AA} | Address to Data Valid | | 55 | | 70 | ns | | | t _{OHA} | Data Hold from Address Change | 10 | | 10 | | ns | | | t _{ACE} | CE ₁ LOW or CE ₂ HIGH to Data Valid | | 55 | | 70 | ns | | | t _{DOE} | OE LOW to Data Valid | | 25 | | 35 | ns | | | t _{LZOE} | OE LOW to Low Z ^[12] | 5 | | 5 | | ns | | | t _{HZOE} | OE HIGH to High Z ^[12, 13] | | 20 | | 25 | ns | | | t _{LZCE} | CE ₁ LOW or CE ₂ HIGH to Low Z ^[12] | 10 | | 10 | | ns | | | t _{HZCE} | CE ₁ HIGH or CE ₂ LOW to High Z ^[12, 13] | | 20 | | 25 | ns | | | t _{PU} | CE ₁ LOW or CE ₂ HIGH to Power-up | 0 | | 0 | | ns | | | t _{PD} | CE ₁ HIGH or CE ₂ LOW to Power-down | | 55 | | 70 | ns | | | t _{DBE} | BLE/BHE LOW to Data Valid | | 55 | | 70 | ns | | | t _{LZBE} ^[10] | BLE/BHE LOW to Low Z ^[12] | 10 | | 5 | | ns | | | t _{HZBE} | BLE/BHE HIGH to High-Z ^[12, 13] | | 20 | | 25 | ns | | | Write Cycle ^[14] | · | | | | | | | | t _{WC} | Write Cycle Time | 55 | | 70 | | ns | | | t _{SCE} | CE ₁ LOW or CE ₂ HIGH to Write End | 40 | | 60 | | ns | | | t _{AW} | Address Set-up to Write End | 40 | | 60 | | ns | | | t _{HA} | Address Hold from Write End | 0 | | 0 | | ns | | | t _{SA} | Address Set-up to Write Start | 0 | | 0 | | ns | | | t _{PWE} | WE Pulse Width | 40 | | 45 | | ns | | | t _{BW} | BLE/BHE LOW to Write End | 45 | | 60 | | ns | | | t _{SD} | Data Set-up to Write End | 25 | | 30 | | ns | | | t _{HD} | Data Hold from Write End | 0 | | 0 | | ns | | | t _{HZWE} | WE LOW to High Z ^[12, 13] | | 20 | | 25 | ns | | | t _{LZWE} | WE HIGH to Low Z ^[12] | 10 | | 10 | | ns | | # **Switching Waveforms** Read Cycle No. 1 (Address Transition Controlled)^[15, 16] - 11. Test conditions assume signal transition time of 2 ns or less, timing reference levels of V_{CC(typ.)/2}, input pulse levels of 0 to V_{CC(typ.)/2}, and output loading of the - specified I_{OL}. 12. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZDE}, and t_{HZWE} is less than t_{LZWE} for any given device. - 13. t_{HZOE}, t_{HZDE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a <u>high</u>-impedance state. 14. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}. 15. <u>Device</u> is continuously selected. OE, CE1 = V_{IL}, CE2 = V_{IH} - 16. WE is HIGH for Read cycle. # Switching Waveforms (continued) Read Cycle No. 2 (OE Controlled)^[16, 17] Write Cycle No. 1 (WE Controlled)^[14, 18, 19, 20] - 17. Address valid prior to or coincident with \overline{CE}_1 , \overline{BHE} , \overline{BLE} transition LOW and \overline{CE}_2 transition HIGH. 18. Data I/O is high-impedance if $\overline{OE} = V_{IH}$. - 19. If \overline{CE}_1 goes HIGH or \overline{CE}_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state. - 20. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied. # Switching Waveforms (continued) Write Cycle No. 2 ($\overline{\text{CE1}}$ or CE2 Controlled) $^{[14,\ 18,\ 19,\ 20]}$ Write Cycle No. 3 (WE Controlled, $\overline{\text{OE}}$ LOW) [19, 20] Switching Waveforms (continued) ____ Write Cycle No. 4(BHE/BLE Controlled, OE LOW)^[19] # **Truth Table** | CE ₁ | CE ₂ | WE | OE | BHE | BLE | Input / Outputs | Mode | Power | |-----------------|-----------------|----|----|-----|-----|--|---------------------|----------------------------| | Н | Х | Х | Х | Х | Х | High Z | Deselect/Power-down | Standby (I _{SB}) | | X | L | Х | Х | Х | Χ | High Z | Deselect/Power-down | Standby (I _{SB}) | | X | Х | Х | Х | Н | Н | High Z | Deselect/Power-down | Standby (I _{SB}) | | L | Н | Н | L | L | L | Data Out (I/O0-I/O15) | Read | Active (I _{CC}) | | L | Н | Н | L | Н | L | Data Out (I/O0–I/O7);
High Z (I/O8–I/O15) | Read | Active (I _{CC}) | | L | Н | Н | L | L | Н | High Z (I/O0–I/O7);
Data Out (I/O8–I/O15) | Read | Active (I _{CC}) | | L | Н | Н | Н | L | Н | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | Н | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | Н | Н | L | L | High Z | Output Disabled | Active (I _{CC}) | | L | Н | L | Х | L | L | Data In (I/O0-I/O15) | Write | Active (I _{CC}) | | L | Н | L | Х | Н | L | Data In (I/O0–I/O7);
High Z (I/O8–I/O15) | Write | Active (I _{CC}) | | L | Н | L | Х | L | Н | High Z (I/O0–I/O7);
Data In (I/O8–I/O15) | Write | Active (I _{CC}) | # **Ordering Information** | Speed
(ns) | Ordering Code | Package
Name | Package Type | Operating
Range | |---------------|---------------------|-----------------|---|--------------------| | 55 | CY62167DV20L-55BVI | BV48B | 48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) | Industrial | | | CY62167DV20LL-55BVI | BV48B | 48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) | | | 70 | CY62167DV20L-70BVI | BV48B | 48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) | Industrial | | ı | CY62167DV20LL-70BVI | BV48B | 48-ball Fine Pitch BGA (8.0 x 9.5 x 1.0 mm) | 7 | # **Package Diagrams** MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders. # **Document History Page** | | Document Title: CY62167DV20 MoBL2™ 16-Mb (1024K x 16) Static RAM Document Number: 38-05327 | | | | | | | | | |------|--|---------------|--------------------|--|--|--|--|--|--| | REV. | ECN NO. | Issue
Date | Orig. of
Change | Description of Change | | | | | | | ** | 118407 | 09/30/02 | GUG | New Data Sheet | | | | | | | Α | 123691 | 02/11/03 | DPM | Changed Advance Information to Preliminary Added package diagram | | | | | | | В | 131496 | 11/25/03 | XRJ/LDZ | Changed from Preliminary to Final Added MoBL2™ to title Added package name BV48B | | | | | |