

FPD4000V 4W POWER PHEMT

• PERFORMANCE (1.8 GHz)

- ♦ 36.5 dBm Linear Output Power
- ♦ 11 dB Power Gain
- ♦ Useable Gain to 9 GHz
- ♦ 47 dBm Output IP3
- ♦ 19 dB Maximum Stable Gain
- ♦ 45% Power-Added Efficiency
- ♦ 10V Operation / Plated Source Thru-Vias

DIE SIZE (μm): 650 x 1300 DIE THICKNESS: 100 μm BONDING PADS (μm): >70 x 65

Revised: 6/22/05

DESCRIPTION AND APPLICATIONS

The FPD4000V is a discrete depletion mode AlGaAs/InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT), optimized for power applications in L- and C-Bands. The FPD4000V includes Source plated thru-vias, and does not require wire bonds to the Source.

Typical applications include drivers or output stages in PCS/Cellular base station transmitter amplifiers, as well as other power applications in WLL/WLAN amplifiers.

ELECTRICAL SPECIFICATIONS AT 22°C

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units					
RF SPECIFICATIONS MEASURED AT $f = 1.8$ GHz USING CW SIGNAL											
Power at 1dB Gain Compression	P_{1dB}	$V_{DS} = 10V; I_{DS} = 720 \text{ mA}$	35.5	36.5		dBm					
		Γ_{S} and Γ_{L} tuned for Optimum IP3									
Power Gain at dB Gain Compression	G_{1dB}	$V_{DS} = 10V; I_{DS} = 720 \text{ mA}$	10.0	11.0							
		Γ_{S} and Γ_{L} tuned for Optimum IP3									
Maximum Stable Gain	MSG	$V_{DS} = 10 \text{ V}; I_{DS} = 720 \text{ mA}$		19		dB					
S_{21}/S_{12}		$P_{IN} = 0 dBm$, 50Ω system									
Power-Added Efficiency	PAE	$V_{DS} = 10V; I_{DS} = 750 \text{ mA}$		45		%					
at 1dB Gain Compression		Γ_{S} and Γ_{L} tuned for Optimum IP3									
3 rd -Order Intermodulation Distortion	IM3	$V_{DS} = 10V; I_{DS} = 720 \text{ mA}$									
Γ_{S} and Γ_{L} tuned for Optimum IP3		$P_{OUT} = 25.5 \text{ dBm (single-tone level)}$		-46		dBc					
Saturated Drain-Source Current	I_{DSS}	$V_{DS} = 1.3 \text{ V}; V_{GS} = 0 \text{ V}$	1.9	2.3	2.65	A					
Maximum Drain-Source Current	I_{MAX}	$V_{DS} = 1.3 \text{ V}; V_{GS} \cong +1 \text{ V}$		3.6		A					
Transconductance	G_{M}	$V_{DS} = 1.3 \text{ V}; V_{GS} = 0 \text{ V}$		2.4		S					
Gate-Source Leakage Current	I_{GSO}	$V_{GS} = -3 \text{ V}$		70	170	μΑ					
Pinch-Off Voltage	$ V_P $	$V_{DS} = 1.3 \text{ V}; I_{DS} = 8 \text{ mA}$	0.7	0.9	1.4	V					
Gate-Source Breakdown Voltage	$ V_{BDGS} $	$I_{GS} = 8 \text{ mA}$	6	8		V					
Gate-Drain Breakdown Voltage	$ V_{BDGD} $	$I_{GD} = 8 \text{ mA}$	20	22		V					
Thermal Resistivity	Θ_{CC}	See Note on following page		10		°C/W					

Phone: +1 408 850-5790 http://www.filtronic.co.uk/semis

Fax: +1 408 850-5766 Email: sales@filcsi.com

RECOMMENDED OPERATING BIAS CONDITIONS

Drain-Source Voltage: From 5V to 10V

Quiescent Current: From 25% I_{DSS} to 55% I_{DSS}

ABSOLUTE MAXIMUM RATINGS¹

Parameter	Symbol	Test Conditions	Min	Max	Units
Drain-Source Voltage	V_{DS}	$-3V < V_{GS} < +0V$		12	V
Gate-Source Voltage	V _{GS}	$0V < V_{\rm DS} < +8V$		-3	V
Drain-Source Current	I_{DS}	For $V_{DS} > 2V$		I_{DSS}	mA
Gate Current	I_G	Forward or reverse current		+25/-4	mA
RF Input Power ²	P _{IN}	Under any acceptable bias state		1.5	W
Channel Operating Temperature	T _{CH}	Under any acceptable bias state		175	°C
Storage Temperature	T_{STG}	Non-Operating Storage	-40	150	°C
Total Power Dissipation	P _{TOT}	See De-Rating Note below		15.0	W
Gain Compression	Comp.	Under any bias conditions		5	dB
Simultaneous Combination of Limits ³		2 or more Max. Limits		80	%

 $^{^{1}}$ T_{Ambient} = 22°C unless otherwise noted 2 Max. RF Input Limit must be further limited if input VSWR > 2.5:1

Notes:

• Operating conditions that exceed the Absolute Maximum Ratings could result in permanent damage to the device.

• Thermal Resitivity specification assumes a Au/Sn eutectic die attach onto a Au-plated copper heatsink or rib.

• Power Dissipation defined as: $P_{TOT} = (P_{DC} + P_{IN}) - P_{OUT}$, where

P_{DC}: DC Bias Power P_{IN}: RF Input Power P_{OUT}: RF Output Power

Absolute Maximum Power Dissipation to be de-rated as follows above 22°C:

 $P_{TOT} = 15.0W - (0.10W/^{\circ}C) \times T_{HS}$

where T_{HS} = heatsink or ambient temperature above 22°C

Example: For a 85°C heatsink temperature: $P_{TOT} = 15.0W - (0.10 \text{ x} (85 - 22)) = 8.7W$

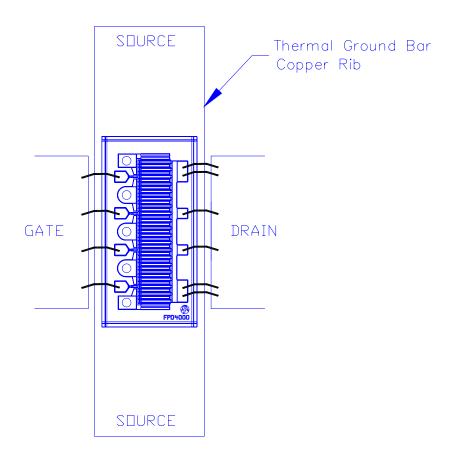
HANDLING PRECAUTIONS

To avoid damage to the devices care should be exercised during handling. Proper Electrostatic Discharge (ESD) precautions should be observed at all stages of storage, handling, assembly, and testing. This product has be tested to Class 1A (> 250V but < 500V) using JESD22 A114, Human Body Model, and to Class A, (< 200V) using JESD22 A115, Machine Model..

ASSEMBLY INSTRUCTIONS

The recommended die attach is gold/tin eutectic solder under a nitrogen atmosphere. Stage temperature should be 280-290°C; maximum time at temperature is one minute. The recommended wire bond method is thermo-compression wedge bonding with 1.0 mil (0.025 mm) gold wire. Stage temperature should be 250-260°C.

Revised: 6/22/05


³Users should avoid exceeding 80% of 2 or more Limits simultaneously

APPLICATIONS NOTES & DESIGN DATA

Applications Notes are available from your local Filtronic Sales Representative or directly from the factory. Complete design data, including S-parameters, noise data, and large-signal models are available on the Filtronic web site.

BONDING DIAGRAM

Note: $25 \mu m$ (0.001 in.) gold wire is recommended. No Source wire bonds are needed, device features Source thru-vias.

All information and specifications are subject to change without notice.

Fax: +1 408 850-5766