Low $\mathrm{V}_{\text {CE(sat) }}$ IGBT High speed IGBT

Symbol	Test Conditions	Maximum Ratings	
$\mathrm{V}_{\text {ces }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000	V
$\mathrm{V}_{\text {cGR }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{GE}}=1 \mathrm{M} \Omega$	1000	V
$\mathrm{V}_{\text {GES }}$	Continuous	± 20	V
$\mathrm{V}_{\text {GEm }}$	Transient	± 30	V
$\mathrm{I}_{\mathrm{c} 25}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	20	A
$\mathrm{I}_{\text {c90 }}$	$\mathrm{T}_{\mathrm{C}}=90^{\circ} \mathrm{C}$	10	A
$\mathrm{I}_{\text {cm }}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}, 1 \mathrm{~ms}$	40	A
$\begin{aligned} & \text { SSOA } \\ & \text { (RBSOA) } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{VJ}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=150 \Omega \\ & \text { Clamped inductive load, } \mathrm{L}=300 \mu \mathrm{H} \end{aligned}$	$\begin{array}{r} \mathrm{l}_{\mathrm{CM}}=20 \\ @ 0.8 \mathrm{~V}_{\mathrm{CES}} \\ \hline \end{array}$	A
P_{c}	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$	100	W
T_{J}		$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {JM }}$		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-55 ... +150	${ }^{\circ} \mathrm{C}$
M_{d}	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		6	g
Maximum $1.6 \mathrm{~mm}(0$	ad temperature for soldering in.) from case for 10 s	300	${ }^{\circ} \mathrm{C}$

Symbol	Test Conditions	Characteristic Values ($\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$, unless otherwise specified)			
		min.	typ.	max.	
$B V_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	1000			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5	V
$\mathrm{I}_{\text {CES }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$		250 1	${ }_{\mu \mathrm{A}}^{\mathrm{A}}$
$I_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\begin{aligned} & \text { 10N100 } \\ & \text { 10N100A } \end{aligned}$		$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	V

IXGH 10 N100 IXGH 10 N100A

$\mathrm{V}_{\mathrm{CES}}$	$\mathrm{I}_{\mathrm{C} 25}$	$\mathrm{~V}_{\mathrm{CE}(\text { sat })}$
$\mathbf{1 0 0 0} \mathrm{V}$	20 A	$\mathbf{3 . 5} \mathrm{~V}$
$\mathbf{1 0 0 0} \mathrm{~V}$	20 A	$\mathbf{4 . 0 ~ V}$

TO-247 AD

$\mathrm{G}=$ Gate,
C = Collector, TAB = Collector

Features

- International standard package JEDEC TO-247 AD
- 2nd generation HDMOS ${ }^{\text {TM }}$ process
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$
- for low on-state conduction losses
- High current handling capability
- MOS Gate turn-on
- drive simplicity
- Voltage rating guaranteed at high temperature $\left(125^{\circ} \mathrm{C}\right)$

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- High power density

Symbol	Test Conditions Characteristic Values $\left(T_{j}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$ min. typ. max.			
$\mathrm{g}_{\text {ts }}$	$I_{C}=I_{\text {cog }} ; V_{C E}=10 \mathrm{~V},$ Pulse test, $\mathrm{t} \leq 300 \mathrm{~s}$, duty cycle		8	S
$\begin{aligned} & \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	\} $V_{C E}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{~N}$		$\begin{array}{r} 750 \\ 150 \\ 30 \end{array}$	pF pF pF
$\begin{aligned} & \mathbf{Q}_{\mathrm{g}} \\ & \mathbf{Q}_{\mathrm{ge}} \\ & \mathbf{Q}_{\mathrm{gc}} \end{aligned}$	$\} \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0$		52 13 24	
$\begin{aligned} & \mathbf{t}_{\mathrm{d}(0 \mathrm{n})} \\ & \mathrm{t}_{\mathrm{if}} \\ & \mathbf{t}_{\mathrm{d}(0 \mathrm{f})} \\ & \mathrm{t}_{\mathrm{if}} \\ & \mathrm{E}_{\mathrm{off}} \end{aligned}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {cog }}, \mathrm{V}_{G E}=15 \mathrm{~V}, \mathrm{~L}=300 \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, R_{G}=\mathrm{R}_{\text {off }}=15 \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}$ (Clamp) $>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	H, 10N100 10N100A 10N100A	100 200 550 800 500 2	
$\mathrm{t}_{\mathrm{d}(\mathrm{On})}$ t_{i} $\mathrm{E}_{\text {on }}$ $\mathrm{t}_{\text {d(off) }}$ $t_{i i}$ $\mathrm{E}_{\text {off }}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{C 90}, V_{G E}=15 \mathrm{~V}, \mathrm{~L}=300 \mu \\ & V_{C E}=0.8 \mathrm{~V}_{C E S}, R_{G}=R_{\text {off }}=150 \end{aligned}$ Remarks: Switching times may increase for V_{CE} (Clamp) $>0.8 \cdot \mathrm{~V}_{\mathrm{CES}}$, higher T_{J} or increased R_{G}	$\begin{aligned} & -1 \\ & \Omega \\ & \text { 10N100 } \\ & \text { 10N100A } \\ & \text { 10N100 } \\ & \text { 10N100A } \end{aligned}$	$\begin{array}{r} 100 \\ 200 \\ 1.1 \\ 600 \\ 1250 \\ 950 \\ 5.0 \\ 2.5 \end{array}$	
$\begin{aligned} & \mathbf{R}_{\mathrm{thuc}} \\ & \mathbf{R}_{\mathrm{thck}} \end{aligned}$			0.25	$\begin{array}{r} 1.2 \mathrm{~K} / \mathrm{W} \\ \mathrm{~K} / \mathrm{W} \end{array}$

IXGH 10N100 and IXGH 10N100A characteristic curves are located on the IXGH 10N100U1 and IXGH 10N100AU1 data sheets.

