SPANSION ${ }^{\text {™ }}$ MCP

Data Sheet

September 2003

This document specifies SPANSION ${ }^{T M}$ memory products that are now offered by both Advanced Micro Devices and Fujitsu. Although the document is marked with the name of the company that originally developed the specification, these products will be offered to customers of both AMD and Fujitsu.

Continuity of Specifications

There is no change to this datasheet as a result of offering the device as a SPANSION ${ }^{\top M}$ product. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

AMD and Fujitsu continue to support existing part numbers beginning with "Am" and "MBM". To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local AMD or Fujitsu sales office for additional information about SPANSION ${ }^{\text {TM }}$ memory solutions.

3 Stacked MCP (Multi-Chip Package) FLASH \& FLASH \& FCRAM CMOS
 128M ($\times 16$) Burst FLASH MEMORY \&
 128M ($\times 16$) Burst FLASH MEMORY \&
 128M ($\times 16$) Page/Burst Mobile FCRAM ${ }^{\text {™ }}$ MB84SF6H6H6L2-70

■ FEATURES

- Power supply voltage

Flash _1 \& 2: Vcof $=1.65 \mathrm{~V}$ to 1.95 V
FCARM: V ccr $=2.5 \mathrm{~V}$ to $3.1 \mathrm{~V}, \mathrm{~V}$ ccor $=1.65 \mathrm{~V}$ to 1.95 V

- High performance

11 ns maximum Burst read access time, 56 ns maximum random access time (Flash_1 \& Flash_2)
11 ns maximum Burst read access time, 70 ns maximum random access time (FCRAM ${ }^{\top M}$)
(Continued)
PRODUCT LINEUP

		Flash_1 \& Flash_2	FCRAM
Supply Voltage (V)		Vccf_1 \& ${ }^{*}=1.8 \mathrm{~V}_{-0.15 \mathrm{~V}}^{+0.15}$	$\mathrm{Vccr}^{*}=3.0 \mathrm{~V}_{-0.50 \mathrm{~V}}^{+0.10 \mathrm{~V}}$
I/O Supply Voltage (V)		V coar $=1.65 \mathrm{~V}$ to 1.95 V	V ccor $=1.65 \mathrm{~V}$ to 1.95 V
Synchronous/ Burst	Max Latency Time (ns)	71	-
	Max Burst Access Time (ns)	11	11
	Max $\overline{\mathrm{OE}}$ Access Time (ns)	11	-
Asynchronous	Max Address Access Time (ns)	56	70
	Max CE Access Time (ns)	56	70
	Max OE Access Time (ns)	11	40
	Max Page Access Time (ns)	-	20

*: All of Vccf_1, Vccf_2 and Vccr must be the same level when either part is being accessed.

PACKAGE

115-ball plastic FBGA
BGA-115P-M03

MB84SF6H6H6L2-70

- Operating Temperature
$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package 115-ball BGA

- FLASH MEMORY_1 \& FLASH MEMORY_2

- $0.13 \mu \mathrm{~m}$ process technology
- Single 1.8 volt read, program and erase (1.65 V to 1.95 V)
- Simultaneous Read/Write operation (Dual Bank)
- FlexBank ${ }^{\text {TM }}{ }^{*}$

Bank A: 16Mbit (4 Kwords $\times 8$ and 32 Kwords $\times 31$)
Bank B: 48Mbit (32 Kwords $\times 96$)
Bank C: 48Mbit (32 Kwords $\times 96$)
Bank D: 16Mbit (4 Kwords $\times 8$ and 32 Kwords $\times 31$)

- High Performance Burst frequency reach at 66 MHz

Burst access times of $11 \mathrm{~ns} @ 30 \mathrm{pF}$ at industrial temperature range
Asynchronous random access times of 56 ns (at 30 pF)

- Programmable Burst Interface

Linear Burst: 8, 16, and 32 words with wrap-around

- Minimum 100,000 program/erase cycles
- Sector Erase Architecture

Eight 4 Kwords, two hundred fifty-four 32 Kwords sectors, eight 4 Kwords sectors.
Any combination of sectors can be concurrently erased. Also supports full chip erase.

- $\overline{W P}$ Input Pin ($\overline{W P}$ _1, $\overline{W P} _2$)

At VIL, allows protection of "outermost" $4 \times 4 \mathrm{~K}$ words on low, high end or both ends of boot sectors, regardless of sector protection/unprotection status.

- Accelerate Pin (ACC)

At $\mathrm{V}_{\text {Acc, }}$ increases program performance. ; all sectors locked when ACC = VIL

- Embedded Erase ${ }^{\mathrm{TM} * 2}$ Algorithms

Automatically preprograms and erases the chip or any sector

- Embedded Program ${ }^{\mathrm{TM} * 2}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready Output (RY/BY)

In Synchronous Mode, indicates the status of the Burst read.
In Asynchronous Mode, indicates the status of the internal program and erase function.

- Automatic sleep mode

When address remain stable, the device automatically switches itself to low power mode

- Erase Suspend/Resume

Suspends the erase operation to allow a read data and/or program in another sector within the same device

- Hardware reset pin (RESET)

Hardware method to reset the device for reading array data

- Please refer to "MBM29BS12DH" Datasheet in deteiled function
(Continued)

(Continued)

- FCRAM ${ }^{\text {TM }}$ *3
- Power dissipation

Operating : 35 mA Max
Standby : $300 \mu \mathrm{~A}$ Max (no CLK)

- Various Partial Power Down mode Sleep : $10 \mu \mathrm{~A}$ Max
16M Partial : $120 \mu \mathrm{~A}$ Max
32M Partial : $150 \mu \mathrm{~A}$ Max
- Power down control by CE2r
- 8 words Page Read Access Capability
- Burst Read/Write Access Capability
- Byte write control: $\overline{\mathrm{LB}}\left(\mathrm{DQ}_{7}\right.$ to $\left.\mathrm{DQ}_{0}\right), \overline{\mathrm{UB}}\left(\mathrm{DQ}_{15}\right.$ to $\left.\mathrm{DQ}_{8}\right)$
*1: FlexBank ${ }^{\top \mathrm{M}}$ is a trademark of Fujitsu Limited, Japan.
*2: Embedded Erase ${ }^{\text {TM }}$ and Embedded Program ${ }^{\text {TM }}$ are trademarks of Advanced Micro Devices, Inc.
*3: FCRAM ${ }^{\text {TM }}$ is a trademark of Fujitsu Limited, Japan.

MB84SF6H6H6L2-70

PIN ASSIGNMENT

(Top View)
Marking side

(BGA-115P-M03)

PIN DESCRIPTION

Pin name	Input/ Output	Description
A_{22} to A_{0}	I	Address Inputs (Common)
DQ15 to DQ 0	1/O	Data Inputs/Outputs (Common)
$\overline{\mathrm{CEf}}$ _1	I	Chip Enable (Flash_1)
CEf_2	1	Chip Enable (Flash_2)
$\overline{\mathrm{CE}} 1 \mathrm{r}$	1	Chip Enable (FCRAM)
CE2r	1	Chip Enable (FCRAM)
$\overline{\mathrm{OE}}$	1	Output Enable (Common)
$\overline{\text { WE }}$	1	Write Enable (Common)
$\mathrm{RY} / \overline{\mathrm{BY}}$	0	Ready Output. (In asynchronous mode, RY/ $\overline{\mathrm{BY}}$ Output) / (Low Active) (Flash_1 \& Flash_2) \& Wait Signal Output (FCRAM)
$\overline{\text { UB }}$	I	Upper Byte Control (FCRAM)
$\overline{\overline{L B}}$	I	Lower Byte Control (FCRAM)
$\overline{\text { ADV }}$	1	Address Data Valid (Common)
CLK	1	CLK Input (Common)
RESET	1	Hardware Reset Pin/Sector Protection Unlock (Flash_1\& Flash_2)
$\overline{W P}$-1	I	Write Protect (Flash_1)
WP_2	1	Write Protect (Flash_2)
ACC	1	Program Acceleration (Flash_1\&2)
N.C.	-	No Internal Connection
Vss	Power	Device Ground (Common)
Vccf_1	Power	Device Power Supply (Flash_1)
Vccf_2	Power	Device Power Supply (Flash_2)
Vccr	Power	Device Power Supply (FCRAM)
Vccor	Power	I/O Power Supply (FCRAM)

MB84SF6H6H6L2-70

BLOCK DIAGRAM

DEVICE BUS OPERATIONS

－Asynchronous Operation

든 은 흥 0		$\begin{aligned} & \mathbf{N}_{1} \\ & \stackrel{\rightharpoonup}{\omega}^{\prime} \end{aligned}$		Ǹ	\|	\|	ロ	ロ		$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \hat{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O̊ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	良	$\left\lvert\, \begin{array}{\|l\|l\|} \underset{\sim}{\boldsymbol{w}} \\ \underset{\sim}{\boldsymbol{u}} \end{array}\right.$	$\sqrt{\frac{1}{3}}$	$\begin{gathered} \mathbf{N}_{1} \\ \vdots \\ 3 \end{gathered}$	U	
Full Standby	H	H	H	H	X	X	X	X	X	High－Z	High－Z	X	H	X	X	X	High
Output Disable＊1	H	H	L	H	H	H	X	X	X＊3	High－Z	High－Z	X	H	X	X	X	High$-Z$
	H	L	H	H	H	H	X	X	X			X					
	L	H	H	H	H	H	X	X	X			X					
Flash 1 or 2 Asynchronous Read－ Addresses Latched＊2	L H	H L	H	H	L	H	X	X	Addr In	Dout	Dout	L	H	X	X	X	High
Flash＿1or 2 Write－WE address latched＊4	L	H	H	H	H	L	X	X	Addr In	Din	Din	L	H	X＊5	X＊5	$\mathrm{H}^{* 5}$	$\begin{aligned} & \text { High } \\ & -Z \end{aligned}$
	H	L															
Flash＿1or 2 Write－ADV address latched＊4	L	H	H	H	H	乙	X	X	Addr In	Din	Din	\square	H	X＊5	X＊5	$\mathrm{H}^{* 5}$	$\begin{aligned} & \text { High } \\ & -Z \end{aligned}$
	H	L															
FCRAM NO Read	H	H	L	H	L	H	H	H	Valid	High－Z	High－Z	＊6	X	X	X	X	High －Z
FCRAM Read （Upper Byte）	H	H	L	H	L	H	H	L	Valid	High－Z	Output Valid	＊6	X	X	X	X	High $-Z$
FCRAM Read （Lower Byte）	H	H	L	H	L	H	L	H	Valid	Output Valid	High－Z	＊6	X	X	X	X	High $-Z$
FCRAM Read （Word）	H	H	L	H	L	H	L	L	Valid	Output	Output Valid	＊6	X	X	X	X	High $-Z$
FCRAM Page Read	H	H	L	H	L	H	L／H	L／H	Valid	＊7	＊7	＊6	X	X	X	X	High $-Z$
FCRAM No Write	H	H	L	$\mathrm{H}^{* 9}$	$\mathrm{H}^{* 9}$	L	H	H	Valid	Invalid	Invalid	＊6	X	X	X	X	High $-Z$
FCRAM Write （Upper Byte）	H	H	L	$\mathrm{H}^{* 9}$	$\mathrm{H}^{* 9}$	L	H	L	Valid	Invalid	Input Valid	＊6	X	X	X	X	High $-Z$
FCRAM Write （Lower Byte）	H	H	L	$\mathrm{H}^{* 9}$	$\mathrm{H}^{* 9}$	L	L	H	Valid	Input Valid	Invalid	＊6	X	X	X	X	High $-Z$
FCRAM Write （Word）	H	H	L	$\mathrm{H}^{* 9}$	$\mathrm{H}^{* 9}$	L	L	L	Valid	Input Valid	Input Valid	＊6	X	X	X	X	High $-Z$
Flash＿1 Boot Sector Write Protection＊5	X	X	X	X	X	X	X	X	X	X	X	X	H	L＊5	X	X	High $-Z$
Flash 2 Boot Sector Write Protection＊5	X	X	X	X	X	X	X	X	X	X	X	X	H	X	L＊5	X	High $-Z$
Flash＿1 \＆2 All Sector Write Protection＊5	X	X	H	H	X	X	X	X	X	X	X	X	H	X	X	L＊5	High $-Z$
$\begin{array}{\|l} \hline \text { Flash_1 \& } \\ \text { Flash_2 } \\ \text { RESET } \end{array}$	X	X	H	H	X	X	X	X	X	High－Z	High－Z	X	L	X	X	X	High $-Z$
FCRAM Power Down＊8	X	X	X	L	X	X	X	X	X	High－Z	High－Z	X	X	X	X	X	High $-Z$

（Continued）

MB84SF6H6H6L2－70

（Continued）

Legend ： $\mathrm{L}=\mathrm{V}_{⿺ 𠃊}, \mathrm{H}=\mathrm{V}_{\text {ıн }}, \mathrm{X}$ can be either $\mathrm{V}_{⿺ 𠃊}$ or $\mathrm{V}_{⿺ 𠃊}$ ，High－ Z ＝High Impedance．
See＂• DC Characteristics＂in＂■ ELECTRICAL CHARACTERISTICS＂for voltage levels．
＊1：FCRAM Output Disable Mode（ $\overline{\mathrm{CE}} 1 \mathrm{r}=$＂L＂）Should not be kept this logic condition longer than 4 ms. Please contact local FUJITSU representative for the relaxation of 4 ms limitation．
＊2 ：$\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{IH} initiates the write operations．
＊3 ：Can be either Vıı or Vін but must be valid before Read or Write．
＊4：Write Operation：at asynchronous mode，addresses are latched on the last falling edge of $\overline{W E}$ pulse while $\overline{\mathrm{ADV}}$ is held low or rising edge of $\overline{\mathrm{ADV}}$ pulse whichever comes first． Data is latched on the 1st rising edge of $\overline{W E}$ ．
＊5 ：At $\overline{\mathrm{WP}}=\mathrm{V}_{\text {IL，}}$ ，SA0 to SA 3 and SA266 to SA 269 are protected．At $\mathrm{ACC}=\mathrm{V}_{\text {IL }}$ ，all sectors are protected．
＊6：＂L＂for address pass through and＂H＂for address latch on the rising edge of $\overline{\text { ADV．}}$
＊7 ：Output is either Valid or High－Z depending on the level of $\overline{U B}$ and $\overline{\mathrm{LB}}$ input．
＊8 ：Power Down mode can be entered from Standby state and all DQ pins are in High－Z state．
Data retention depends on the selection of Partial Size．
Refer to＂2．Functional Description • Power Down＂in＂■ 128M FCRAM CHARACTERISTICS for MCP＂for the details．
＊9：$\overline{O E}$ can be VIL during Write operation if the following conditions are satisfied；
（1）Write pulse is initiated by CE1r（refer to CE1r Controlled Write timing），or cycle time of the previous operation cycle is satisfied．
（2）$\overline{\mathrm{OE}}$ stays V_{IL} during Write cycle．

$\begin{aligned} & \text { 든 } \\ & \text { 응 } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \mathbf{N}_{1} \\ & \stackrel{\oplus}{\omega} \end{aligned}$	立	N N	$\mathbf{~}$	岁	$\boldsymbol{\square}$	$\boldsymbol{\otimes}$	$\begin{aligned} & \text { \& } \\ & \text { O} \\ & \text { ※ } \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \hat{0} \\ & 0 \end{aligned}$		$\xrightarrow{\frac{7}{3}}$	\|		$\stackrel{\Gamma}{3}$	$\begin{gathered} N_{1} \\ \frac{0}{3} \end{gathered}$	U	$\overline{R Y} / B Y(\overline{\text { WAIT }})$
Flash 1 or 2 Load Starting Burst Address （CLK latch）＊3	L	H	H	H	X	H	X	X	Addr In	X	X	$\stackrel{\leftarrow}{*}$	乙	H	X	X	X	$\begin{gathered} \text { High } \\ -Z \end{gathered}$
	H	L																
Flash 1 or 2 Advance Burst to next address with appropriate Data presented on the Data Bus＊3	L	H	H	H	L	H	X	X	X	Dout	Dout	$\stackrel{\leftarrow}{*}$	H	H	X	X	X	$\begin{gathered} \text { High } \\ -Z \end{gathered}$
	H	L																
Flash 1 or 2 Terminate current Burst read cycle	H	H	H	H	X	H	X	X	X	X	$\begin{gathered} \text { HIGH- } \\ \text { Z } \end{gathered}$	$\frac{\stackrel{F}{*}}{{ }^{2}}$	X	H	X	X	X	High
Flash 1 or 2 Terminate current Burst read cycle and start new Burst read cycle	L	H	H	H	X	H	X	X	Addr In	Dout	Dout	$\stackrel{\leftarrow}{*}$	Ъ	H	X	X	X	$\begin{gathered} \text { High } \\ -Z \end{gathered}$
	H	L																
Flash＿1 or 2 Burst Suspend	L	H	H	H	H	H	X	X	X	High－Z	High－Z	X	H	H	X	X	X	$\begin{aligned} & \text { High } \\ & -Z \end{aligned}$
	H	L																
Flash 1 or 2 Synchronous Write－WE address latched ${ }^{\star 12}$	L	H	H	H	H	L	X	X	Addr In	Din	Din	H／L	L	H	$X^{* 4}$	X＊4	$\mathrm{H}^{* 4}$	$\begin{aligned} & \text { High } \\ & -Z \end{aligned}$
	H	L																
Flash 1 or 2 Synchronous Write－CLK address latched＊＊12	L	H	H	H	H	ఒ	X	X	Addr In	DIN	DIN	$\stackrel{\leftarrow}{*}$	L	H	$X^{* 4}$	X＊4	$\mathrm{H}^{* 4}$	$\begin{gathered} \text { High } \\ -Z \end{gathered}$
	H	L																
Flash 1 or 2 Synchronous Write－ADV address latched＊12	L	H	H	H	H	乙	X		Addr In	Din	Din	H／L	\downarrow い					
	L	L						X						H	X＊4	X＊4	$\mathrm{H}^{* 4}$	$\begin{aligned} & \text { High } \\ & -Z \end{aligned}$
Flash 1\＆ 2 Terminate current Burst read via RESET	X	X	H	H	X	H	X	X	X	$\underset{Z}{\mathrm{HIGH}}-$	$\underset{Z}{\text { HIGH- }}$	X	X	L	X	X	X	$\begin{gathered} \text { High } \\ -Z \end{gathered}$
FCRAM Start Address＊2 Latch	H	H	L	H	X＊5	X＊5	$X^{* 6}$	$\mathrm{X}^{* 6}$	Valid	$\underset{Z^{* 8}}{\mathrm{High}}$	$\underset{\mathbf{Z}^{* 8}}{\text { High- }}$	$\stackrel{\text { ¢ }}{ }{ }^{\text {＊9 }}$	$\downarrow \checkmark$	X	X	X	X	$\begin{aligned} & \text { High } \\ & -Z^{* 14} \end{aligned}$
FCRAM Advance Burst Read to Next Address＊2	H	H	L	H	L	H	$X^{* 6}$	$\mathrm{X}^{* 6}$	X	Output Valid ＊10	Output Valid $* 10$	$\stackrel{\text { T }}{\text {＊}}$	H	X	X	X	X	Out－ put Valid
FCRAM Burst Read Suspend＊2	H	H	L	H	H	H	$X^{* 6}$	$\chi^{* 6}$	X	High－Z	High－Z	${ }^{\text {＊}}$	H	X	X	X	X	$\begin{aligned} & \text { High } \\ & -Z^{* 15} \end{aligned}$

（Continued）

MB84SF6H6H6L2－70

（Continued）

$\begin{aligned} & \text { 든 } \\ & \text { 듕 } \\ & \text { 응 } \end{aligned}$		$\begin{gathered} N_{1} \\ \left.\right\|_{\bar{\omega}} ^{\dagger} \end{gathered}$	\|ע	ัㅡ	\|し	$\left\lvert\, \begin{aligned} & \mathrm{w} \\ & \mathbf{Z} \end{aligned}\right.$	-•	品		$\begin{aligned} & \text { Oi } \\ & 0 \\ & 0 \\ & \text { ó } \end{aligned}$	Oi 0 9 0 0 0		苃	范	$\stackrel{\Gamma}{1}$	$\begin{gathered} \mathbf{N}_{1} \\ \mathbf{n}^{1} \end{gathered}$	U	荡
FCRAM Advance Burst Write to Next Address ${ }^{\star 2}$	H	H	L	H	H	$L^{* 13}$	$\mathrm{X}^{* 6}$	$\mathrm{X}^{* 6}$	X	Input Valid Valid	Input ＊11	$\stackrel{\Gamma}{4}$	H	X	X	X	X	$\begin{gathered} \text { High } \\ -2^{* 16} \end{gathered}$
FCRAM Burst Write Suspend ${ }^{* 2}$	H	H	L	H	H	$\mathrm{H}^{\star 13}$	$\chi^{*} 6$	$\mathrm{X}^{* 6}$	X	Input Invalid	$\begin{aligned} & \text { Input } \\ & \text { Invali } \\ & \text { d } \end{aligned}$	$\frac{\Gamma}{{ }^{*} 9}$	H	X	X	X	X	$\begin{gathered} \text { High } \\ -z^{* 15} \end{gathered}$
FCRAM Terminate Burst Read	H	H	$\boxed{\square}$	H	L	H	$\chi^{*} 6$	$\mathrm{X}^{* 6}$	X	High－	High－	X	H	X	X	X	X	$\begin{gathered} \text { High } \\ - \end{gathered}$
FCRAM Terminate Burst Write	H	H	\underline{I}	H	H	L	$\chi^{* 6}$	$\mathrm{X}^{* 6}$	X	High－	High－	X	H	X	X	X	X	${ }_{\text {High }}^{\text {－z }}$

Legend ： $\mathrm{L}=\mathrm{V}_{\mathrm{LL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}$ can be either V_{IL} or $\mathrm{V}_{\mathrm{H}}, \boldsymbol{A}=$ positive edge，$\overline{\|}=$ positive edge of Low pulse， High－Z＝High Impedance．See＂• DC Characteristics＂in＂■ ELECTRICAL CHARACTERISTICS＂for voltage levels．
＊1 ：Default state is＂X＂after power－up．
＊2 ：FCRAM Output Disable Mode（ $\overline{C E} 1 r=$＂L＂）Should not be kept this logic condition longer than 4 ms ． Please contact local FUJITSU representative for the relaxation of 4 ms limitation．
＊3 ：$\overline{\mathrm{WE}}$ can be V_{IL} if $\overline{\mathrm{OE}}$ is $\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}$ at V_{H} initiates the write operations．
＊4 ：At $\overline{\mathrm{WP}}=\mathrm{V}_{\mathrm{LL}}$ ，SA0 to SA 3 and SA266 to SA 269 are protected．At $\mathrm{ACC}=\mathrm{V}_{\mathrm{L}}$ ，all sectors are protected．
＊5 ：Can be either V_{IL} or $\mathrm{V}_{\mathbb{H}}$ except for the case the both of $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ are V_{IL} ．
It is prohibited to bring the both of $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ to V_{L} ．
＊6 ：Can be either VIL or VIH but must be valid before Read or Write is determined．
And once $\overline{\mathrm{UB}}$ and $\overline{\mathrm{LB}}$ inputs are determined，it must not be changed until the end of burst．
＊7 ：Once valid address is determined，input address must not be changed during $\overline{\mathrm{ADV}}=\mathrm{L}$ ． In case A_{22} ，＂ H ＂must not be changed until end of burst．
＊8 ：If $\overline{\mathrm{OE}}=\mathrm{L}$ ，output is either Invalid or High－Z depending on the level of $\overline{\mathrm{UB}}$ and $\overline{\mathrm{LB}}$ input．If $\overline{\mathrm{WE}}=\mathrm{L}$ ， Input is Invalid．If $\overline{\mathrm{OE}}=\overline{\mathrm{WE}}=\mathrm{H}$ ，output is High－Z．
＊9 ：Valid clock edge shall be set on either positive or negative edge through CR（Configration Register）Set．
＊10 ：Output is either Valid or High－Z depending on the level of $\overline{U B}$ and $\overline{L B}$ input．
＊11：Input is either Valid or Invalid depending on the level of $\overline{U B}$ and $\overline{L B}$ input．
＊12 ：Write Operation：at synchronous mode，addresses are latched on the falling edge of $\overline{\mathrm{WE}}$ while $\overline{\mathrm{ADV}}$ is held low， active edge of CLK while ADV is held low or rising edge of ADV whichever happens first．
Data is latched on the 1st rising edge of WE．
＊13：When device is operationg in＂$\overline{W E}$ Single Clock Pulse Control＂mode，$\overline{W E}$ is don＇t care once write operation is determined by WE Low Pulse at the begginig of write access together with address latcing．Write suspend feature is not supported in＂$\overline{\mathrm{WE}}$ Single Clock Pulse Control＂mode．
＊14：Output is either High－Z or Invalid depending on the level of $\overline{O E}$ and $\overline{W E}$ input．
＊15：Keep the level from previous cycle except for suspending on last data．Refere to＂2．Functional Description －WAIT Output Function＂in＂■ 128M FCRAM CHARACTERISTICS for MCP＂for the details．
＊16 ：WAIT output is driven in High level during write operation．

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit
		Min	Max	
Storage Temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	T_{A}	-30	+85	${ }^{\circ} \mathrm{C}$
Voltage with Respect to Ground All pins except RESET, ACC *1 *2	Vin, Vout	-0.3	Vccf_1 +0.3	V
			Vcct_2 +0.3	V
			V ccor +0.3	V
Vocr Supply *1	Vccr	-0.3	+3.6	V
Vccf_1/ Vccf_2 / Vccor Supply *1	$\begin{gathered} \text { Vocf_1, Vccf_2, } \\ \text { Vccor } \end{gathered}$	-0.3	+2.5	V
ACC *1,*3	$V_{\text {Acc }}$	-0.5	+10.5	V

*1: Voltage is defined on the basis of $\mathrm{Vss}=\mathrm{GND}=0 \mathrm{~V}$.
*2 : Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, input or I/O pins may undershoot Vss to -1.0 V for periods of up to 10 ns . Maximum DC voltage on input or I/O pins is Vccf_1+0.3 V or Vccf_2 +0.3 V or $\mathrm{Vccor}+0.2 \mathrm{~V}$. During voltage transitions, input or I/O pins may overshoot to $\mathrm{Vccf}+1.0 \mathrm{~V}$ or V ccf_2 +1.0 V or V ccor +1.0 V for periods of up to 5 ns .
*3 : Minimum DC input voltage on ACC pin is -0.5 V . During voltage transitions, ACC pin may undershoot $\mathrm{V}_{\text {ss }}$ to -2.0 V for periods of up to 20 ns . Voltage difference between input and supply voltage ($\mathrm{V}_{\mathrm{in}}-\mathrm{V}_{\mathrm{cc}}$) does not exceed +9.0 V . Maximum DC input voltage on ACC pin is +10.5 V which may overshoot to +12.0 V for periods of up to 20 ns .
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value		Unit
		Min	Max	
Ambient Temperature	TA	-30	+85	${ }^{\circ} \mathrm{C}$
Vocr Supply Voltages	Vccr	+2.5	+3.1	V
Vccf/Vccor Supply Voltages	Vccf_1, Vccf_2, Vccor	+1.65	+1.95	V

Note : Operating ranges define those limits between which the functionality of the device is guaranteed.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating conditionranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB84SF6H6H6L2-70

ELECTRICAL CHARACTERISTICS

- DC Characteristics

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Conditions		Value			Unit
				Min	Typ	Max	
Input Leakage Current	ILI	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\text {ccf, }} \mathrm{V}_{\text {ccor }}$		-1.0	-	+1.0	$\mu \mathrm{A}$
Output Leakage Current	ILo	Vout $=\mathrm{V}_{\text {ss }}$ to V ccf, V ccor		-1.0	-	+1.0	$\mu \mathrm{A}$
$\begin{aligned} & \text { Flash Vcof Current } \\ & \text { (Standby) } \\ & \text { (Flash_1\& Flash_2) } \end{aligned}$	Isbif	$\overline{\mathrm{CEf}}=\overline{\mathrm{RESET}}=\mathrm{V}$ ccf $\pm 0.2 \mathrm{~V}$ *9		-	1*7	50*7	$\mu \mathrm{A}$
Flash_1 \& 2 Vccf Current (Standby, Reset) (Flash_1 \& Flash_2)	Isb2f	$\overline{\mathrm{RESET}}=\mathrm{Vss} \pm 0.2 \mathrm{~V}, \mathrm{CLK}=\mathrm{VIL}^{* 9}$		-	1*7	50*7	$\mu \mathrm{A}$
Flash $1 \& 2$ Vocf Current (Automatic Sleep Mode)*3 (Flash_1 \& Flash_2)	Isbsf	$\begin{aligned} & \mathrm{V}_{\mathrm{ccf}}=\mathrm{V} \text { cof } \mathrm{Max}, \mathrm{CEf}=\mathrm{V} \text { ss } \pm 0.2 \mathrm{~V}, \\ & \mathrm{RESET}=\mathrm{Vccf} \pm 0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ccf}} \pm 0.2 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.2 \mathrm{~V} * 9 \end{aligned}$		-	1*7	50*7	$\mu \mathrm{A}$
Flash $\mathrm{V}_{\text {cof }}$ Active Burst Read Current (Flash_1 or Flash_2)	Iccif	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}, 66 \mathrm{MHz}$ *9		-	15	30	mA
Flash V ccf Active Asynchronous Read Current ${ }^{\star 1}$ (Flash_1 or Flash_2)	Iccaf	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{H}}{ }^{* 9}$	10 MHz	-	20	30	mA
			5 MHz		10	15	
Flash Vocf Active Current *2 (Flash_1 or Flash_2)	Iccзf	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{L}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{HH}}, \mathrm{V}_{\mathrm{PP}}=\mathrm{V}_{\mathrm{HH}}{ }^{* 9}$		-	15	40	mA
Flash Vccf Active Current (Read-While-Program) *4 (Flash_1 or Flash_2)	Iccaf	$\overline{\mathrm{CE}} \mathrm{f}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}{ }^{* 9}$		-	25	60	mA
Flash Vccf Active Current (Read-While-Erase) *4 (Flash_1 or Flash_2)	Iccsf	$\overline{\mathrm{CEf}}=\mathrm{V}_{\mathrm{LL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}} * 9$		-	25	60	mA
FCRAM Vccr Power Down Current*5	lodpsr	$\begin{aligned} & \mathrm{V}_{\text {ccr }}=\mathrm{V}_{\text {ccr }} \text { Max, } \\ & \mathrm{V}_{\text {ccar }}=\mathrm{V}_{\text {ccor }} \text { Max, }, \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{L}}, \\ & \mathrm{CE} 2 \mathrm{r} \leq 0.2 \mathrm{~V} \end{aligned}$	Sleep	-	-	10	$\mu \mathrm{A}$
	lodpr		16M Partial	-	-	120	$\mu \mathrm{A}$
	IodP16r		32M Partial	-	-	150	$\mu \mathrm{A}$
FCRAM Vccr Standby Current*5, *8	Isbsr	```V cor \(=\mathrm{V}\) ccr Max, Vccor = Vccor Max, \(\mathrm{V}_{\text {IN }}\) (including CLK) \(=\mathrm{V}_{\mathrm{IH}}\) or \(\mathrm{V}_{\mathrm{IL}}\), \(\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{CE} 2 \mathrm{r}=\mathrm{V}_{\mathrm{IH}}\)```		-	-	1.5	mA
	Isbir			-	-	300	$\mu \mathrm{A}$
	Isb2r	Vccor $=$ Vccor Max, tck $=$ Min, $\mathrm{V}_{\mathbb{I N}} \leq 0.2 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{in}} \geq \mathrm{V}_{\text {ccor }}-0.2 \mathrm{~V}$, $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{CE} 2 \mathrm{r} \geq \mathrm{V}$ ccor -0.2 V		-	-	350	$\mu \mathrm{A}$

(Continued)
(Continued)

Parameter	Symbol	Conditions		Value			Unit
				Min	Typ	Max	
FCRAM Vccr Active Current *5, *8	Icar		trc $/ \mathrm{twc}=\mathrm{Min}$	-	-	35	mA
	Iccer		trc $/ \mathrm{twc}=1 \mu \mathrm{~s}$	-	-	5	mA
FCRAM Vccr Page Read Current *5, *8	Іссзr			-	-	15	mA
FCRAM Vccr Burst Access Current *5, *8	Iccar	```Vccr = Vccr Max, \(\mathrm{V}_{\text {ccor }}=\mathrm{V}_{\text {ccor }} \mathrm{Max}^{\mathrm{V}} \mathrm{V}_{\text {In }}=\mathrm{V}_{\text {IH }}\) or \(\mathrm{V}_{\mathrm{L}}\), \(\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{V}_{\mathrm{IL}}\) and \(\mathrm{CE} 2 \mathrm{r}=\mathrm{V}_{\mathrm{IH}}\), \(\mathrm{tck}=\mathrm{tck}\) Min, \(\mathrm{BL}=\) Continuous, lout \(=0 \mathrm{~mA}\)```		-	-	30	mA
Input Low Level	VIL	-		-0.3	-	$\begin{aligned} & \mathrm{V} \mathrm{cc} \times \\ & 0.2 * 6 \end{aligned}$	V
Input High Level	V ${ }_{\text {H }}$	-		$\begin{aligned} & \mathrm{Vcc}- \\ & 0.4^{* 6} \end{aligned}$	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}+ \\ & 0.2 * 6 \end{aligned}$	V
Output Low Voltage Level	Vouf	$\mathrm{loL}=0.1 \mathrm{~mA}$	Flash_1 or Flash_2	-	-	0.1	V
	Vorr	$\mathrm{loL}=1.0 \mathrm{~mA}$	FCRAM	-	-	0.4	V
Output High Voltage Level	Vorf	$\mathrm{IOH}=-0.1 \mathrm{~mA}$	Flash_1 or Flash_2	$\begin{gathered} \text { Vccf- } \\ 0.1 \end{gathered}$	-	-	V
	Vorr	$\begin{aligned} & \mathrm{V}_{\mathrm{ccor}}=\mathrm{V}_{\mathrm{ccor}} \text { Min, } \\ & \mathrm{loH}=-0.5 \mathrm{~mA} \end{aligned}$	FCRAM	1.4	-	-	V
Voltage for ACC Program Acceleration*10	Vacc	-		8.5	-	9.5	V

*1 : The Icc current listed includes both the DC operating current and the frequency dependent component.
*2 : Icc active while Embedded Algorithm (program or erase) is in progress.
*3 : Automatic sleep mode enables the low power mode when address remains stable for tacc +60 ns .
*4 : Embedded Alogorithm (program or erase) is in progress. (@5 MHz)
*5 : FCRAM DC Current is measured after following POWER-UP timing.
*6 : Vcc means Vccf_1 or Vccf_2 or Vccor.
*7 : Actual Standby Current is twice of what is indicated in the table, due to two Flash chips embedment withn one device.
*8 : lout depemds on the output load comditions.
*9 : $\overline{\mathrm{CEf}}$ means $\overline{\mathrm{CEf}} \mathrm{f}$ 1 or $\overline{\mathrm{CEf}}$ _2.
*10 : Applicable for only Vccf_1 or Vccf_2.

MB84SF6H6H6L2－70

－AC Characteristics
－CE Timing

Parameter	Symbol		Condition	Value		Unit
	JEDEC	Standard		Min	Max	
$\overline{C E}$ Recover Time	－	tccr	－	0	－	ns
CEf Hold Time	－	tсноь	－	3	－	ns
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to $\overline{\mathrm{WE}}$ Invalid time for Standby Entry	－	tchwx	－	10	－	ns

－Timing Diagram for alternating RAM to Flash

－NOR Flash＿1\＆2 Characteristics
Please refer to＂⿴囗口 128M BURST FLASH MEMORY CARACTERISTICS for MCP＂．
－FCRAM Characteristics
Please refer to＂ $\mathbf{\square}$ 128M FCRAM CHARACTERISTICS for MCP＂．

128M BURST FLASH MEMORY CHARACTERISTICS for MCP

1. Flexible Sector-erase Architecture on Flash Memory

- Sixteen 4K words, and one hundred twenty-six 32K words.
- Individual-sector, multiple-sector, or bulk-erase capability.

MB84SF6H6H6L2-70

- FlexBank ${ }^{\text {TM }}$ Architecture

Bank Splits	Bank 1		Bank 2	
	Volume	Combination	Volume	Combination
1	16 Mbit	Bank A	112 Mbit	Remember (Bank B, C, D)
2	48 Mbit	Bank B	96 Mbit	Remember (Bank A, C, D)
3	48 Mbit	Bank C	96 Mbit	Remember (Bank A, B, D)
4	16 Mbit	Bank D	112 Mbit	Remember (Bank A, B, C)

- Simultaneous Operation

Case	Bank 1 Status	Bank 2 Status
1	Read mode	Read mode
2	Read mode	Autoselect mode
3	Read mode	Program mode
4	Read mode	Erase mode
5	Autoselect mode	Read mode
6	Program mode	Read mode
7	Erase mode	Read mode

Note : Bank 1 and Bank 2 are divided for the sake of convenience at Simultaneous Operation. Actually, the Bank consists of 4 banks, Bank A, Bank B, BankC and Bank D. Bank Address (BA) meant to specify each of the Banks.

MB84SF6H6H6L2-70

- Sector Address Tables (Bank A)

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank A	SA0	0	0	0	0	0	0	0	0	0	0	0	4	000000h to 000FFFh
	SA1	0	0	0	0	0	0	0	0	0	0	1	4	001000h to 001FFFh
	SA2	0	0	0	0	0	0	0	0	0	1	0	4	002000h to 002FFFh
	SA3	0	0	0	0	0	0	0	0	0	1	1	4	003000h to 003FFFh
	SA4	0	0	0	0	0	0	0	0	1	0	0	4	004000h to 004FFFh
	SA5	0	0	0	0	0	0	0	0	1	0	1	4	005000h to 005FFFh
	SA6	0	0	0	0	0	0	0	0	1	1	0	4	006000h to 006FFFh
	SA7	0	0	0	0	0	0	0	0	1	1	1	4	007000h to 007FFFh
	SA8	0	0	0	0	0	0	0	1	X	X	X	32	008000h to 00FFFFh
	SA9	0	0	0	0	0	0	1	0	X	X	X	32	010000h to 017FFFh
	SA10	0	0	0	0	0	0	1	1	X	X	X	32	018000h to 01FFFFh
	SA11	0	0	0	0	0	1	0	0	X	X	X	32	020000h to 027FFFh
	SA12	0	0	0	0	0	1	0	1	X	X	X	32	028000h to 02FFFFh
	SA13	0	0	0	0	0	1	1	0	X	X	X	32	030000h to 037FFFh
	SA14	0	0	0	0	0	1	1	1	X	X	X	32	038000h to 03FFFFh
	SA15	0	0	0	0	1	0	0	0	X	X	X	32	040000h to 047FFFh
	SA16	0	0	0	0	1	0	0	1	X	X	X	32	048000h to 04FFFFh
	SA17	0	0	0	0	1	0	1	0	X	X	X	32	050000h to 057FFFh
	SA18	0	0	0	0	1	0	1	1	X	X	X	32	058000h to 05FFFFh
	SA19	0	0	0	0	1	1	0	0	X	X	X	32	060000h to 06FFFFh
	SA20	0	0	0	0	1	1	0	1	X	X	X	32	068000h to 06FFFFh
	SA21	0	0	0	0	1	1	1	0	X	X	X	32	070000h to 077FFFh
	SA22	0	0	0	0	1	1	1	1	X	X	X	32	078000h to 07FFFFh
	SA23	0	0	0	1	0	0	0	0	X	X	X	32	080000h to 087FFFh
	SA24	0	0	0	1	0	0	0	1	X	X	X	32	088000h to 08FFFFh
	SA25	0	0	0	1	0	0	1	0	X	X	X	32	090000h to 097FFFh
	SA26	0	0	0	1	0	0	1	1	X	X	X	32	098000h to 09FFFFh
	SA27	0	0	0	1	0	1	0	0	X	X	X	32	0A0000h to 0A7FFFh
	SA28	0	0	0	1	0	1	0	1	X	X	X	32	0A8000h to 0AFFFFh
	SA29	0	0	0	1	0	1	1	0	X	X	X	32	0B0000h to 0B7FFFh
	SA30	0	0	0	1	0	1	1	1	X	X	X	32	0B8000h to 0BFFFFh
	SA31	0	0	0	1	1	0	0	0	X	X	X	32	0C0000h to 0C7FFFh
	SA32	0	0	0	1	1	0	0	1	X	X	X	32	0C8000h to 0CFFFFh
	SA33	0	0	0	1	1	0	1	0	X	X	X	32	0D0000h to 0D7FFFh
	SA34	0	0	0	1	1	0	1	1	X	X	X	32	0D8000h to 0DFFFFh
	SA35	0	0	0	1	1	1	0	0	X	X	X	32	0E0000h to 0E7FFFh
	SA36	0	0	0	1	1	1	0	1	X	X	X	32	0E8000h to 0EFFFFh
	SA37	0	0	0	1	1	1	1	0	X	X	X	32	0F0000h to 0F7FFFh
	SA38	0	0	0	1	1	1	1	1	X	X	X	32	0F8000h to 0FFFFFh

MB84SF6H6H6L2-70

- Sector Address Tables (Bank B)

Bank	Sector	Sector Address											SectorSize (Kwords)	$(\times 16$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A 15	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank B	SA39	0	0	1	0	0	0	0	0	X	X	X	32	100000h to 107FFFh
	SA40	0	0	1	0	0	0	0	1	X	X	X	32	108000h to 10FFFFh
	SA41	0	0	1	0	0	0	1	0	X	X	X	32	110000h to 117FFFh
	SA42	0	0	1	0	0	0	1	1	X	X	X	32	118000h to 11FFFFh
	SA43	0	0	1	0	0	1	0	0	X	X	X	32	120000h to 127FFFh
	SA44	0	0	1	0	0	1	0	1	X	X	X	32	128000h to 12FFFFh
	SA45	0	0	1	0	0	1	1	0	X	X	X	32	130000h to 137FFFh
	SA46	0	0	1	0	0	1	1	1	X	X	X	32	138000h to 13FFFFh
	SA47	0	0	1	0	1	0	0	0	X	X	X	32	140000h to 147FFFh
	SA48	0	0	1	0	1	0	0	1	X	X	X	32	148000h to 14FFFFh
	SA49	0	0	1	0	1	0	1	0	X	X	X	32	150000h to 157FFFh
	SA50	0	0	1	0	1	0	1	1	X	X	X	32	158000h to 15FFFFh
	SA51	0	0	1	0	1	1	0	0	X	X	X	32	160000h to 167FFFh
	SA52	0	0	1	0	1	1	0	1	X	X	X	32	168000h to 16FFFFh
	SA53	0	0	1	0	1	1	1	0	X	X	X	32	170000h to 177FFFh
	SA54	0	0	1	0	1	1	1	1	X	X	X	32	178000h to 17FFFFh
	SA55	0	0	1	1	0	0	0	0	X	X	X	32	180000h to 187FFFh
	SA56	0	0	1	1	0	0	0	1	X	X	X	32	188000h to 18FFFFh
	SA57	0	0	1	1	0	0	1	0	X	X	X	32	190000h to 197FFFh
	SA58	0	0	1	1	0	0	1	1	X	X	X	32	198000h to 19FFFFh
	SA59	0	0	1	1	0	1	0	0	X	X	X	32	1A0000h to 1A7FFFh
	SA60	0	0	1	1	0	1	0	1	X	X	X	32	1A8000h to 1AFFFFh
	SA61	0	0	1	1	0	1	1	0	X	X	X	32	1B0000h to 1B7FFFh
	SA62	0	0	1	1	0	1	1	1	X	X	X	32	1B8000h to 1BFFFFh
	SA63	0	0	1	1	1	0	0	0	X	X	X	32	1C0000h to 1C7FFFh
	SA64	0	0	1	1	1	0	0	1	X	X	X	32	1C8000h to 1CFFFFh
	SA65	0	0	1	1	1	0	1	0	X	X	X	32	1D0000h to 1D7FFFh
	SA66	0	0	1	1	1	0	1	1	X	X	X	32	1D8000h to 1DFFFFh
	SA67	0	0	1	1	1	1	0	0	X	X	X	32	1E0000h to 1E7FFFh
	SA68	0	0	1	1	1	1	0	1	X	X	X	32	1E8000h to 1EFFFFh
	SA69	0	0	1	1	1	1	1	0	X	X	X	32	1F0000h to 1F7FFFh
	SA70	0	0	1	1	1	1	1	1	X	X	X	32	1F8000h to 1FFFFFFh
	SA71	0	1	0	0	0	0	0	0	X	X	X	32	200000h to 207FFFh
	SA72	0	1	0	0	0	0	0	1	X	X	X	32	208000h to 20FFFFh
	SA73	0	1	0	0	0	0	1	0	X	X	X	32	210000h to 217FFFh
	SA74	0	1	0	0	0	0	1	1	X	X	X	32	218000h to 21FFFFh
	SA75	0	1	0	0	0	1	0	0	X	X	X	32	220000h to 227FFFh
	SA76	0	1	0	0	0	1	0	1	X	X	X	32	228000h to 22FFFFh
	SA77	0	1	0	0	0	1	1	0	X	X	X	32	230000h to 237FFFh

(Continued)

MB84SF6H6H6L2-70

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A 15	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank B	SA78	0	1	0	0	0	1	1	1	X	X	X	32	238000h to 23FFFFh
	SA79	0	1	0	0	1	0	0	0	X	X	X	32	240000h to 247FFFh
	SA80	0	1	0	0	1	0	0	1	X	X	X	32	248000h to 24FFFFh
	SA81	0	1	0	0	1	0	1	0	X	X	X	32	250000h to 257FFFh
	SA82	0	1	0	0	1	0	1	1	X	X	X	32	258000h to 25FFFFh
	SA83	0	1	0	0	1	1	0	0	X	X	X	32	260000h to 267FFFh
	SA84	0	1	0	0	1	1	0	1	X	X	X	32	268000h to 26FFFFh
	SA85	0	1	0	0	1	1	1	0	X	X	X	32	270000h to 277FFFh
	SA86	0	1	0	0	1	1	1	1	X	X	X	32	278000h to 27FFFFh
	SA87	0	1	0	1	0	0	0	0	X	X	X	32	280000h to 287FFFh
	SA88	0	1	0	1	0	0	0	1	X	X	X	32	288000h to 28FFFFh
	SA89	0	1	0	1	0	0	1	0	X	X	X	32	290000h to 297FFFh
	SA90	0	1	0	1	0	0	1	1	X	X	X	32	298000h to 29FFFFh
	SA91	0	1	0	1	0	1	0	0	X	X	X	32	2A0000h to 2A7FFFh
	SA92	0	1	0	1	0	1	0	1	X	X	X	32	2A8000h to 2AFFFFh
	SA93	0	1	0	1	0	1	1	0	X	X	X	32	2B0000h to 2B7FFFh
	SA94	0	1	0	1	0	1	1	1	X	X	X	32	2B8000h to 2BFFFFh
	SA95	0	1	0	1	1	0	0	0	X	X	X	32	2C0000h to 2C7FFFh
	SA96	0	1	0	1	1	0	0	1	X	X	X	32	2C8000h to 2CFFFFh
	SA97	0	1	0	1	1	0	1	0	X	X	X	32	2D0000h to 2D7FFFh
	SA98	0	1	0	1	1	0	1	1	X	X	X	32	2D8000h to 2DFFFFh
	SA99	0	1	0	1	1	1	0	0	X	X	X	32	2E0000h to 2E7FFFh
	SA100	0	1	0	1	1	1	0	1	X	X	X	32	2E8000h to 2EFFFFh
	SA101	0	1	0	1	1	1	1	0	X	X	X	32	2F0000h to 2F7FFFh
	SA102	0	1	0	1	1	1	1	1	X	X	X	32	2F8000h to 2FFFFFh
	SA103	0	1	1	0	0	0	0	0	X	X	X	32	300000h to 307FFFh
	SA104	0	1	1	0	0	0	0	1	X	X	X	32	308000h to 30FFFFh
	SA105	0	1	1	0	0	0	1	0	X	X	X	32	310000h to 317FFFh
	SA106	0	1	1	0	0	0	1	1	X	X	X	32	318000h to 31FFFFh
	SA107	0	1	1	0	0	1	0	0	X	X	X	32	320000h to 327FFFh
	SA108	0	1	1	0	0	1	0	1	X	X	X	32	328000h to 32FFFFh
	SA109	0	1	1	0	0	1	1	0	X	X	X	32	330000h to 337FFFh
	SA110	0	1	1	0	0	1	1	1	X	X	X	32	338000h to 33FFFFh
	SA111	0	1	1	0	1	0	0	0	X	X	X	32	340000h to 347FFFh
	SA112	0	1	1	0	1	0	0	1	X	X	X	32	348000h to 34FFFFh
	SA113	0	1	1	0	1	0	1	0	X	X	X	32	350000h to 357FFFh
	SA114	0	1	1	0	1	0	1	1	X	X	X	32	358000h to 35FFFFh
	SA115	0	1	1	0	1	1	0	0	X	X	X	32	360000h to 367FFFh
	SA116	0	1	1	0	1	1	0	1	X	X	X	32	368000h to 36FFFFh

(Continued)

MB84SF6H6H6L2-70

(Continued)

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A19	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank B	SA117	0	1	1	0	1	1	1	0	X	X	X	32	370000h to 377FFFh
	SA118	0	1	1	0	1	1	1	1	X	X	X	32	378000h to 37FFFFh
	SA119	0	1	1	1	0	0	0	0	X	X	X	32	380000h to 387FFFh
	SA120	0	1	1	1	0	0	0	1	X	X	X	32	388000h to 38FFFFh
	SA121	0	1	1	1	0	0	1	0	X	X	X	32	390000h to 397FFFh
	SA122	0	1	1	1	0	0	1	1	X	X	X	32	398000h to 39FFFFh
	SA123	0	1	1	1	0	1	0	0	X	X	X	32	3A0000h to 3A7FFFh
	SA124	0	1	1	1	0	1	0	1	X	X	X	32	3A8000h to 3AFFFFh
	SA125	0	1	1	1	0	1	1	0	X	X	X	32	3B0000h to 3B7FFFh
	SA126	0	1	1	1	0	1	1	1	X	X	X	32	3B8000h to 3BFFFFh
	SA127	0	1	1	1	1	0	0	0	X	X	X	32	3C0000h to 3C7FFFh
	SA128	0	1	1	1	1	0	0	1	X	X	X	32	3C8000h to 3CFFFFh
	SA129	0	1	1	1	1	0	1	0	X	X	X	32	3D0000h to 3D7FFFh
	SA130	0	1	1	1	1	0	1	1	X	X	X	32	3D8000h to 3DFFFFh
	SA131	0	1	1	1	1	1	0	0	X	X	X	32	3E0000h to 3E7FFFh
	SA132	0	1	1	1	1	1	0	1	X	X	X	32	3E8000h to 3EFFFFh
	SA133	0	1	1	1	1	1	1	0	X	X	X	32	3F0000h to 3F7FFFh
	SA134	0	1	1	1	1	1	1	1	X	X	X	32	3F8000h to 3FFFFFh

MB84SF6H6H6L2-70

- Sector Address Tables (Bank C)

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank C	SA135	1	0	0	0	0	0	0	0	X	X	X	32	400000h to 407FFFh
	SA136	1	0	0	0	0	0	0	1	X	X	X	32	408000h to 40FFFFh
	SA137	1	0	0	0	0	0	1	0	X	X	X	32	410000h to 417FFFh
	SA138	1	0	0	0	0	0	1	1	X	X	X	32	418000h to 41FFFFh
	SA139	1	0	0	0	0	1	0	0	X	X	X	32	420000 h to 427FFFh
	SA140	1	0	0	0	0	1	0	1	X	X	X	32	428000 h to 42FFFFh
	SA141	1	0	0	0	0	1	1	0	X	X	X	32	430000 h to 437FFFh
	SA142	1	0	0	0	0	1	1	1	X	X	X	32	438000h to 43FFFFh
	SA143	1	0	0	0	1	0	0	0	X	X	X	32	440000 h to 447FFFh
	SA144	1	0	0	0	1	0	0	1	X	X	X	32	448000 h to 44FFFFh
	SA145	1	0	0	0	1	0	1	0	X	X	X	32	450000 h to 457FFFh
	SA146	1	0	0	0	1	0	1	1	X	X	X	32	458000h to 45FFFFh
	SA147	1	0	0	0	1	1	0	0	X	X	X	32	460000h to 467FFFh
	SA148	1	0	0	0	1	1	0	1	X	X	X	32	468000h to 46FFFFh
	SA149	1	0	0	0	1	1	1	0	X	X	X	32	470000h to 477FFFh
	SA150	1	0	0	0	1	1	1	1	X	X	X	32	478000h to 47FFFFh
	SA151	1	0	0	1	0	0	0	0	X	X	X	32	480000 h to 487FFFh
	SA152	1	0	0	1	0	0	0	1	X	X	X	32	488000 h to 48FFFFh
	SA153	1	0	0	1	0	0	1	0	X	X	X	32	490000 h to 497FFFh
	SA154	1	0	0	1	0	0	1	1	X	X	X	32	498000h to 49FFFFh
	SA155	1	0	0	1	0	1	0	0	X	X	X	32	4A0000h to 4A7FFFh
	SA156	1	0	0	1	0	1	0	1	X	X	X	32	4A8000h to 4AFFFFFh
	SA157	1	0	0	1	0	1	1	0	X	X	X	32	4B0000h to 4B7FFFh
	SA158	1	0	0	1	0	1	1	1	X	X	X	32	4B8000h to 4BFFFFh
	SA159	1	0	0	1	1	0	0	0	X	X	X	32	4C0000h to 4C7FFFh
	SA160	1	0	0	1	1	0	0	1	X	X	X	32	4C8000h to 4CFFFFh
	SA161	1	0	0	1	1	0	1	0	X	X	X	32	4D0000h to 4D7FFFh
	SA162	1	0	0	1	1	0	1	1	X	X	X	32	4D8000h to 4DFFFFh
	SA163	1	0	0	1	1	1	0	0	X	X	X	32	4E0000h to 4E7FFFh
	SA164	1	0	0	1	1	1	0	1	X	X	X	32	4E8000h to 4EFFFFh
	SA165	1	0	0	1	1	1	1	0	X	X	X	32	4F0000h to 4F7FFFh
	SA166	1	0	0	1	1	1	1	1	X	X	X	32	4F8000h to 4FFFFFh
	SA167	1	0	1	0	0	0	0	0	X	X	X	32	500000h to 507FFFh
	SA168	1	0	1	0	0	0	0	1	X	X	X	32	508000h to 50FFFFh
	SA169	1	0	1	0	0	0	1	0	X	X	X	32	510000h to 517FFFh
	SA170	1	0	1	0	0	0	1	1	X	X	X	32	518000h to 51FFFFh
	SA171	1	0	1	0	0	1	0	0	X	X	X	32	520000h to 527FFFh
	SA172	1	0	1	0	0	1	0	1	X	X	X	32	528000h to 52FFFFh
	SA173	1	0	1	0	0	1	1	0	X	X	X	32	530000h to 537FFFh

(Continued)

MB84SF6H6H6L2-70

Bank	Sector	Sector Address											$\begin{aligned} & \text { Sector Size } \\ & \text { (Kwords) } \end{aligned}$	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank C	SA174	1	0	1	0	0	1	1	1	X	X	X	32	538000h to 53FFFFh
	SA175	1	0	1	0	1	0	0	0	X	X	X	32	540000h to 547FFFh
	SA176	1	0	1	0	1	0	0	1	X	X	X	32	548000h to 54FFFFh
	SA177	1	0	1	0	1	0	1	0	X	X	X	32	550000h to 557FFFh
	SA178	1	0	1	0	1	0	1	1	X	X	X	32	558000h to 55FFFFh
	SA179	1	0	1	0	1	1	0	0	X	X	X	32	560000h to 567FFFh
	SA180	1	0	1	0	1	1	0	1	X	X	X	32	568000h to 56FFFFh
	SA181	1	0	1	0	1	1	1	0	X	X	X	32	570000h to 577FFFh
	SA182	1	0	1	0	1	1	1	1	X	X	X	32	578000h to 57FFFFh
	SA183	1	0	1	1	0	0	0	0	X	X	X	32	580000h to 587FFFh
	SA184	1	0	1	1	0	0	0	1	X	X	X	32	588000h to 58FFFFh
	SA185	1	0	1	1	0	0	1	0	X	X	X	32	590000h to 597FFFh
	SA186	1	0	1	1	0	0	1	1	X	X	X	32	598000h to 59FFFFh
	SA187	1	0	1	1	0	1	0	0	X	X	X	32	5A0000h to 5A7FFFh
	SA188	1	0	1	1	0	1	0	1	X	X	X	32	5A8000h to 5AFFFFh
	SA189	1	0	1	1	0	1	1	0	X	X	X	32	5B0000h to 5B7FFFh
	SA190	1	0	1	1	0	1	1	1	X	X	X	32	5B8000h to 5BFFFFh
	SA191	1	0	1	1	1	0	0	0	X	X	X	32	5C0000h to 5C7FFFh
	SA192	1	0	1	1	1	0	0	1	X	X	X	32	5C8000h to 5CFFFFh
	SA193	1	0	1	1	1	0	1	0	X	X	X	32	6D0000h to 5D7FFFh
	SA194	1	0	1	1	1	0	1	1	X	X	X	32	6D8000h to 5DFFFFh
	SA195	1	0	1	1	1	1	0	0	X	X	X	32	5E0000h to 5E7FFFh
	SA196	1	0	1	1	1	1	0	1	X	X	X	32	5E8000h to 5EFFFFh
	SA197	1	0	1	1	1	1	1	0	X	X	X	32	5F0000h to 5F7FFFh
	SA198	1	0	1	1	1	1	1	1	X	X	X	32	5F8000h to 5FFFFFh
	SA199	1	1	0	0	0	0	0	0	X	X	X	32	600000h to 607FFFh
	SA200	1	1	0	0	0	0	0	1	X	X	X	32	608000h to 60FFFFh
	SA201	1	1	0	0	0	0	1	0	X	X	X	32	610000h to 617FFFh
	SA202	1	1	0	0	0	0	1	1	X	X	X	32	618000h to 61FFFFh
	SA203	1	1	0	0	0	1	0	0	X	X	X	32	620000h to 627FFFh
	SA204	1	1	0	0	0	1	0	1	X	X	X	32	628000h to 62FFFFh
	SA205	1	1	0	0	0	1	1	0	X	X	X	32	630000h to 637FFFh
	SA206	1	1	0	0	0	1	1	1	X	X	X	32	638000h to 63FFFFh
	SA207	1	1	0	0	1	0	0	0	X	X	X	32	640000h to 647FFFh
	SA208	1	1	0	0	1	0	0	1	X	X	X	32	648000h to 64FFFFh
	SA209	1	1	0	0	1	0	1	0	X	X	X	32	650000h to 657FFFh
	SA210	1	1	0	0	1	0	1	1	X	X	X	32	658000h to 65FFFFh
	SA211	1	1	0	0	1	1	0	0	X	X	X	32	660000h to 667FFFh
	SA212	1	1	0	0	1	1	0	1	X	X	X	32	668000h to 66FFFFh

(Continued)

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank C	SA213	1	1	0	0	1	1	1	0	X	X	X	32	670000h to 677FFFh
	SA214	1	1	0	0	1	1	1	1	X	X	X	32	678000h to 67FFFFh
	SA215	1	1	0	1	0	0	0	0	X	X	X	32	680000h to 687FFFh
	SA216	1	1	0	1	0	0	0	1	X	X	X	32	688000h to 68FFFFh
	SA217	1	1	0	1	0	0	1	0	X	X	X	32	690000h to 697FFFh
	SA218	1	1	0	1	0	0	1	1	X	X	X	32	698000h to 69FFFFh
	SA219	1	1	0	1	0	1	0	0	X	X	X	32	6A0000h to 6A7FFFh
	SA220	1	1	0	1	0	1	0	1	X	X	X	32	6A8000h to 6AFFFFh
	SA221	1	1	0	1	0	1	1	0	X	X	X	32	6B0000h to 6B7FFFh
	SA222	1	1	0	1	0	1	1	1	X	X	X	32	8B8000h to 6BFFFFh
	SA223	1	1	0	1	1	0	0	0	X	X	X	32	6C0000h to 6C7FFFh
	SA224	1	1	0	1	1	0	0	1	X	X	X	32	6C8000h to 6CFFFFh
	SA225	1	1	0	1	1	0	1	0	X	X	X	32	6D0000h to 6D7FFFh
	SA226	1	1	0	1	1	0	1	1	X	X	X	32	6D8000h to 6DFFFFh
	SA227	1	1	0	1	1	1	0	0	X	X	X	32	6E0000h to 6E7FFFh
	SA228	1	1	0	1	1	1	0	1	X	X	X	32	6E8000h to 6EFFFFh
	SA229	1	1	0	1	1	1	1	0	X	X	X	32	6F0000h to 6F7FFFh
	SA230	1	1	0	1	1	1	1	1	X	X	X	32	6F8000h to 6FFFFFh

MB84SF6H6H6L2-70

- Sector Address Tables (Bank D)

Bank	Sector	Sector Address											Sector Size (Kwords)	$(\times 16)$ Address Range
		Bank Address			A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}		
		A_{22}	A_{21}	A_{20}										
Bank D	SA231	1	1	1	0	0	0	0	0	X	X	X	32	700000h to 707FFFh
	SA232	1	1	1	0	0	0	0	1	X	X	X	32	708000h to 70FFFFh
	SA233	1	1	1	0	0	0	1	0	X	X	X	32	710000h to 717FFFh
	SA234	1	1	1	0	0	0	1	1	X	X	X	32	718000h to 71FFFFh
	SA235	1	1	1	0	0	1	0	0	X	X	X	32	720000h to 727FFFh
	SA236	1	1	1	0	0	1	0	1	X	X	X	32	728000h to 72FFFFh
	SA237	1	1	1	0	0	1	1	0	X	X	X	32	730000h to 737FFFh
	SA238	1	1	1	0	0	1	1	1	X	X	X	32	738000h to 73FFFFh
	SA239	1	1	1	0	1	0	0	0	X	X	X	32	740000h to 747FFFh
	SA240	1	1	1	0	1	0	0	1	X	X	X	32	748000h to 74FFFFh
	SA241	1	1	1	0	1	0	1	0	X	X	X	32	750000h to 757FFFh
	SA242	1	1	1	0	1	0	1	1	X	X	X	32	758000h to 75FFFFh
	SA243	1	1	1	0	1	1	0	0	X	X	X	32	760000h to 767FFFh
	SA244	1	1	1	0	1	1	0	1	X	X	X	32	768000h to 76FFFFh
	SA245	1	1	1	0	1	1	1	0	X	X	X	32	770000h to 777FFFh
	SA246	1	1	1	0	1	1	1	1	X	X	X	32	778000h to 77FFFFh
	SA247	1	1	1	1	0	0	0	0	X	X	X	32	780000h to 787FFFh
	SA248	1	1	1	1	0	0	0	1	X	X	X	32	788000h to 78FFFFh
	SA249	1	1	1	1	0	0	1	0	X	X	X	32	790000h to 797FFFh
	SA250	1	1	1	1	0	0	1	1	X	X	X	32	798000h to 79FFFFh
	SA251	1	1	1	1	0	1	0	0	X	X	X	32	7A0000h to 7A7FFFh
	SA252	1	1	1	1	0	1	0	1	X	X	X	32	7A8000h to 7AFFFFh
	SA253	1	1	1	1	0	1	1	0	X	X	X	32	7B0000h to 7B7FFFh
	SA254	1	1	1	1	0	1	1	1	X	X	X	32	7B8000h to 7BFFFFh
	SA255	1	1	1	1	1	0	0	0	X	X	X	32	7C0000h to 7C7FFFh
	SA256	1	1	1	1	1	0	0	1	X	X	X	32	7C8000h to 7CFFFFh
	SA257	1	1	1	1	1	0	1	0	X	X	X	32	7D0000h to 7D7FFFh
	SA258	1	1	1	1	1	0	1	1	X	X	X	32	7D8000h to 7DFFFFh
	SA259	1	1	1	1	1	1	0	0	X	X	X	32	7E0000h to 7E7FFFh
	SA260	1	1	1	1	1	1	0	1	X	X	X	32	7E8000h to 7EFFFFh
	SA261	1	1	1	1	1	1	1	0	X	X	X	32	7F0000h to 7F7FFFh
	SA262	1	1	1	1	1	1	1	1	0	0	0	4	7F8000h to 7F8FFFh
	SA263	1	1	1	1	1	1	1	1	0	0	1	4	7F9000h to 7F9FFFh
	SA264	1	1	1	1	1	1	1	1	0	1	0	4	7FA000h to 7FAFFFh
	SA265	1	1	1	1	1	1	1	1	0	1	1	4	7FB000h to 7FBFFFh
	SA266	1	1	1	1	1	1	1	1	1	0	0	4	7FC000h to 7FCFFFh
	SA267	1	1	1	1	1	1	1	1	1	0	1	4	7FD000h to 7FDFFFh
	SA268	1	1	1	1	1	1	1	1	1	1	0	4	7FE000h to 7FEFFFh
	SA269	1	1	1	1	1	1	1	1	1	1	1	4	7FF000h to 7FFFFFh

MB84SF6H6H6L2-70

Sector Group	A_{22}	A_{21}	A_{20}	A_{19}	A_{18}	A 17	A_{16}	A 15	A_{14}	A_{13}	A_{12}	Sectors
SGA0	0	0	0	0	0	0	0	0	0	0	0	SA0
SGA1	0	0	0	0	0	0	0	0	0	0	1	SA1
SGA2	0	0	0	0	0	0	0	0	0	1	0	SA2
SGA3	0	0	0	0	0	0	0	0	0	1	1	SA3
SGA4	0	0	0	0	0	0	0	0	1	0	0	SA4
SGA5	0	0	0	0	0	0	0	0	1	0	1	SA5
SGA6	0	0	0	0	0	0	0	0	1	1	0	SA6
SGA7	0	0	0	0	0	0	0	0	1	1	1	SA7
SGA8	0	0	0	0	0	0	0	1	X	X	X	SA8
SGA9	0	0	0	0	0	0	1	0	X	X	X	SA9
SGA10	0	0	0	0	0	0	1	1	X	X	X	SA10
SGA11	0	0	0	0	0	1	X	X	X	X	X	SA11 to SA14
SGA12	0	0	0	0	1	0	X	X	X	X	X	SA15 to SA18
SGA13	0	0	0	0	1	1	X	X	X	X	X	SA19 to SA22
SGA14	0	0	0	1	0	0	X	X	X	X	X	SA23 to SA26
SGA15	0	0	0	1	0	1	X	X	X	X	X	SA27 to SA30
SGA16	0	0	0	1	1	0	X	X	X	X	X	SA31 to SA34
SGA17	0	0	0	1	1	1	X	X	X	X	X	SA35 to SA38
SGA18	0	0	1	0	0	0	X	X	X	X	X	SA39 to SA42
SGA19	0	0	1	0	0	1	X	X	X	X	X	SA43 to SA46
SGA20	0	0	1	0	1	0	X	X	X	X	X	SA47 to SA50
SGA21	0	0	1	0	1	1	X	X	X	X	X	SA51 to SA54
SGA22	0	0	1	1	0	0	X	X	X	X	X	SA55 to SA58
SGA23	0	0	1	1	0	1	X	X	X	X	X	SA59 to SA62
SGA24	0	0	1	1	1	0	X	X	X	X	X	SA63 to SA66
SGA25	0	0	1	1	1	1	X	X	X	X	X	SA67 to SA70
SGA26	0	1	0	0	0	0	X	X	X	X	X	SA71 to SA74
SGA27	0	1	0	0	0	1	X	X	X	X	X	SA75 to SA78

(Continued)

MB84SF6H6H6L2-70

Sector Group	A_{22}	A_{21}	A_{20}	A_{19}	A18	A17	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Sectors
SGA28	0	1	0	0	1	0	X	X	X	X	X	SA79 to SA82
SGA29	0	1	0	0	1	1	X	X	X	X	X	SA83 to SA86
SGA30	0	1	0	1	0	0	X	X	X	X	X	SA87 to SA90
SGA31	0	1	0	1	0	1	X	X	X	X	X	SA91 to SA94
SGA32	0	1	0	1	1	0	X	X	X	X	X	SA95 to SA98
SGA33	0	1	0	1	1	1	X	X	X	X	X	SA99 to SA102
SGA34	0	1	1	0	0	0	X	X	X	X	X	SA103 to SA106
SGA35	0	1	1	0	0	1	X	X	X	X	X	SA107 to SA110
SGA36	0	1	1	0	1	0	X	X	X	X	X	SA111 to SA114
SGA37	0	1	1	0	1	1	X	X	X	X	X	SA115 to SA118
SGA38	0	1	1	1	0	0	X	X	X	X	X	SA119 to SA122
SGA39	0	1	1	1	0	1	X	X	X	X	X	SA123 to SA126
SGA40	0	1	1	1	1	0	X	X	X	X	X	SA127 to SA130
SGA41	0	1	1	1	1	1	X	X	X	X	X	SA131 to SA134
SGA42	1	0	0	0	0	0	X	X	X	X	X	SA135 to SA138
SGA43	1	0	0	0	0	1	X	X	X	X	X	SA139 to SA142
SGA44	1	0	0	0	1	0	X	X	X	X	X	SA143 to SA146
SGA45	1	0	0	0	1	1	X	X	X	X	X	SA147 to SA150
SGA46	1	0	0	1	0	0	X	X	X	X	X	SA151 to SA154
SGA47	1	0	0	1	0	1	X	X	X	X	X	SA155 to SA158
SGA48	1	0	0	1	1	0	X	X	X	X	X	SA159 to SA162
SGA49	1	0	0	1	1	1	X	X	X	X	X	SA163 to SA166
SGA50	1	0	1	0	0	0	X	X	X	X	X	SA167 to SA170
SGA51	1	0	1	0	0	1	X	X	X	X	X	SA171 to SA174

(Continued)

MB84SF6H6H6L2-70

(Continued)

Sector Group	\mathbf{A}_{22}	\mathbf{A}_{21}	\mathbf{A}_{20}	\mathbf{A}_{19}	\mathbf{A}_{18}	\mathbf{A}_{17}	\mathbf{A}_{16}	\mathbf{A}_{15}	\mathbf{A}_{14}	\mathbf{A}_{13}	\mathbf{A}_{12}	Sectors
SGA52	1	0	1	0	1	0	X	X	X	X	X	SA175 to SA178
SGA53	1	0	1	0	1	1	X	X	X	X	X	SA179 to SA182
SGA54	1	0	1	1	0	0	X	X	X	X	X	SA183 to SA186
SGA55	1	0	1	1	0	1	X	X	X	X	X	SA187 to SA190
SGA56	1	0	1	1	1	0	X	X	X	X	X	SA191 to SA194
SGA57	1	0	1	1	1	1	X	X	X	X	X	SA195 to SA198
SGA58	1	1	0	0	0	0	X	X	X	X	X	SA199 to SA202
SGA59	1	1	0	0	0	1	X	X	X	X	X	SA203 to SA206
SGA60	1	1	0	0	1	0	X	X	X	X	X	SA207 to SA210
SGA61	1	1	0	0	1	1	X	X	X	X	X	SA211 to SA214
SGA62	1	1	0	1	0	0	X	X	X	X	X	SA215 to SA218
SGA63	1	1	0	1	0	1	X	X	X	X	X	SA219 to SA222
SGA64	1	1	0	1	1	0	X	X	X	X	X	SA223 to SA226
SGA65	1	1	0	1	1	1	X	X	X	X	X	SA227 to SA230
SGA66	1	1	1	0	0	0	X	X	X	X	X	SA231 to SA234
SGA67	1	1	1	0	0	1	X	X	X	X	X	SA235 to SA238
SGA68	1	1	1	0	1	0	X	X	X	X	X	SA239 to SA242
SGA69	1	1	1	0	1	1	X	X	X	X	X	SA243 to SA246
SGA70	1	1	1	1	0	0	X	X	X	X	X	SA247 to SA250
SGA71	1	1	1	1	0	1	X	X	X	X	X	SA251 to SA254
SGA72	1	1	1	1	1	0	X	X	X	X	X	SA255 to SA258
SGA73	1	1	1	1	1	1	0	0	X	X	X	SA259
SGA74	1	1	1	1	1	1	0	1	X	X	X	SA260
SGA75	1	1	1	1	1	1	1	0	X	X	X	SA261
SGA76	1	1	1	1	1	1	1	1	0	0	0	SA262
SGA77	1	1	1	1	1	1	1	1	0	0	1	SA263
SGA78	1	1	1	1	1	1	1	1	0	1	0	SA264
SGA79	1	1	1	1	1	1	1	1	0	1	1	SA265
SGA80	1	1	1	1	1	1	1	1	1	0	0	SA266
SGA81	1	1	1	1	1	1	1	1	1	0	1	SA267
SGA82	1	1	1	1	1	1	1	1	1	1	0	SA268
SGA83	1	1	1	1	1	1	1	1	1	1	1	SA269

MB84SF6H6H6L2-70

- Sector Protection Verify Autoselect Codes Table

Type	A_{22} to A_{12}	A_{7}	A6	A5	A_{4}	A_{3}	A_{2}	A_{1}	A0	Code (HEX)
Manufacture's Code	BA	L	L	L	L	L	L	L	L	04h
Device Code	BA	L	L	L	L	L	L	L	H	227Eh
Extended Device Code *2	BA	L	L	L	L	H	H	H	L	2218h
	BA	L	L	L	L	H	H	H	H	2200h
Sector Group Protection	Sector Group Addresses	L	L	L	L	L	L	H	L	01 ${ }^{* 1}$
Indicator Bits	BA	L	L	L	L	L	L	H	H	DQ7 - Factory Lock Bit 1 = Locked, $0=$ Not Locked DQ6-Customer Lock Bit $1=$ Locked, $0=$ Not Locked

Legend : L = V/L, H = Vif. See DC Characteristics for voltage levels.
*1: Outputs 01 h at protected sector group addresses and outputs 00 h at unprotected sector group addresses.
*2 : A read cycle at address (BA) 01h outputs device code. When 227Eh is output, it indicates that two additional codes, called Extended Device Codes, will be required. Therefore the system may continue reading out these Extended Device Codes at the address of (BA) 0Eh, as well as at (BA) OFh.

- Flash Memory Command Definitions

Command Sequence	BusWriteCy-clesReq'd	First BusWrite Cycle		Second Write Cycle		Third Write Cycle		FourthWriteCycle		Fifth WriteCycle		Sixth WriteCycle		SeventhWrite Cycle	
		Addr.	Data												
Read / Reset	1	XXXh	FOh	RA	RD	-	-	-	-	-	-	-	-	-	-
Read / Reset	3	555h	AAh	2AAh	55h	555h	F0h	RA	RD	-	-	-	-	-	-
Autoselect	3	555h	AAh	2AAh	55h	$\begin{aligned} & \hline \text { (BA) } \\ & 555 \mathrm{~h} \end{aligned}$	90h	-	-	-	-	-	-	-	-
Program	4	555h	AAh	2AAh	55h	555h	A0h	PA	PD	-	-	-	-	-	-
Chip Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	555h	10h	-	-
Sector Erase	6	555h	AAh	2AAh	55h	555h	80h	555h	AAh	2AAh	55h	SA	30h	-	-
Erase Suspend	1	BA	BOh	-	-	-	-	-	-	-	-	-	-	-	-
Erase Resume	1	BA	30h	-	-	-	-	-	-	-	-	-	-	-	-
Set to Fast Mode	3	555h	AAh	2AAh	55h	555h	20h	-	-	-	-	-	-	-	-
Fast Program	2	XXXh	A0	PA	PD									-	-
Reset from Fast Mode *1	2	BA	90h	XXXh	FOh*2	-	-	-	-	-	-	-	-	-	-
Set Burst Mode Configuration Register	3	555h	AAh	2AAh	55h	$\begin{aligned} & \text { (CR) } \\ & 555 \mathrm{~h} \end{aligned}$	COh	-	-	-	-	-	-	-	-
Query	1	$\begin{aligned} & (\mathrm{BA}) \\ & 55 \mathrm{~h} \end{aligned}$	98h	-	-	-	-	-	-	-	-	-	-	-	-
HiddenROM Entry	3	555h	AAh	2AAh	55h	555h	88h	-	-	-	-	-	-	-	-
HiddenROM Program*3	4	555h	AAh	2AAh	55h	555h	AOh	$\begin{array}{\|c} \text { (HRA) } \\ \text { PA } \end{array}$	PD	-	-	-	-	-	-
HiddenROM Exit*3	4	555h	AAh	2AAh	55h	555h	90h	XXXh	00h	-	-	-	-	-	-
HiddenROM Protect*3	6	555h	AAh	2AAh	55h	555h	60h	OPBP	68h	OPBP	48h	XXXh	RD(0)	-	-

Legend:

RA = Address of the memory location to be read.
$\mathrm{PA}=$ Address of the memory location to be programmed. Addresses latch on the rising edge of the $\overline{\mathrm{ADV}}$ pulse or active edge of CLK while $\overline{A D V}=V_{I L}$ whichever comes first or falling edge of wirte pulse while $\overline{A D V}=V_{I L}$.
$S A=$ Address of the sector to be erased. The combination of $\mathrm{A}_{22}, \mathrm{~A}_{21}, \mathrm{~A}_{20}, \mathrm{~A}_{19}, \mathrm{~A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12} will uniquely select any sector.
$B A=$ Bank Address. Address setted by A_{22}, A_{21}, A_{20} will select Bank A, Bank B, Bank C and Bank D.
$R D=$ Data read from location RA during read operation.
PD = Data to be programmed at location PA. Data latches on the rising edge of write pulse.
SGA = Sector group address to be protected.
HRA = Address of the HiddenROM area 000000h to 00007Fh
HRBA $=$ Bank Address of the HiddenROM area $\left(\mathrm{A}_{22}=\mathrm{A}_{21}=\mathrm{A}_{20}=\mathrm{A}_{19}=\mathrm{A}_{18}=\mathrm{V}_{\mathrm{LL}}\right)$
(Continued)

MB84SF6H6H6L2-70

(Continued)
$R D(0)=$ Read Data bit. If programmed, $\mathrm{DQ}_{0}=1$, if erase, $\mathrm{DQ}_{0}=0$
OPBP $=\left(A_{7}, A_{6}, A_{5}, A_{4}, A_{3}, A_{2}, A_{1}, A_{0}\right)$ is $(0,0,0,1,1,0,1,0)$
CR = Configuration Register address bits A_{19} to A_{12}.
*1: This command is valid during Fast Mode.
*2: This command is valid during HiddenROM mode.
*3: The data "00h" is also acceptable.
Notes : • Address bits A_{22} to $\mathrm{A}_{11}=\mathrm{X}=$ "H" or " L " for all address commands except for PA, SA, BA, SGA, OPBP.

- Bus operations are defined in "■ DEVICE BUS OPERATIONS".
- Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

2. AC Characteristics

- Synchronous/Burst Read

Parameter	Symbol		Value		Unit
	JEDEC	Standard	Min	Max	
Latency	-	tiacc	-	71	ns
Burst Access Time Valid Clock to Output Delay	-	tbacc	-	11	ns
Address Setup Time to CLK*1	-	tacs	4	-	ns
Address Hold Time from CLK*2	-	$\mathrm{taCH}^{\text {a }}$	6	-	ns
Data Hold Time from Next Clock Cycle	-	tbDH	3	-	ns
Chip Enable to RY/ $\overline{B Y}$ Valid	-	tcr	-	11	ns
Output Enable to Output Valid	-	toe	-	11	ns
Chip Enable to High-Z	-	tcez	-	8	ns
Output Enable to High-Z	-	toez	-	8	ns
$\overline{\text { CEf Setup Time to CLK }}$	-	tces	4	-	ns
Ready Access Time from CLK	-	tracc	-	11	ns
$\overline{\mathrm{CE}} \mathrm{f}$ Setup Time to $\overline{\text { ADV }}$	-	tcas	0	-	ns
$\overline{\text { ADV Set Up Time to CLK }}$	-	tavsc	4	-	ns
ADV Hold Time to CLK	-	tavhc	6	-	ns
CLK to access resume	-	tcka	-	11	ns
CLK to High-Z	-	tckz	-	8	ns
Output Enable Setup Time	-	toes	4	-	ns
Read Cycle for Continuous suspend	-	trcc	-	1	ms
Read Cycle Time	-	trc	56	-	ns

*1 : Access Time is from the last of either stable addresses .
*2 : Addresses are latched on the active edge of CLK.
Note : Test Conditions
Output Load : Vccor $=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}: 30 \mathrm{pF}$
Input rise and fall times : 5 ns
Input pulse levels : 0.0 V to Vccf
Timing measurement reference level : Input : $0.5 \times$ Vccf, Output : $0.5 \times \mathrm{V}$ ccf

- Asynchronous Read

Parameter		Symbol		Value		Unit
		JEDEC	Standard	Min	Max	
Read Cycle Time		-	trc	56	-	ns
Access Time from $\overline{\mathrm{CE}} \mathrm{f}$ Low		-	tce	-	56	ns
Asynchronous Access Time*		-	tacc	-	56	ns
Output Enable to Output Valid		-	toe	-	11	ns
Output Enable Hold Time	Read	-	toen	0	-	ns
	Toggle and $\overline{\text { Data }}$ Polling			8	-	ns
Chip Enable to High-Z		-	tcez	-	8	ns
$\overline{\mathrm{CE}} \mathrm{f}$ High During Toggle Bit Polling		-	tcepr	20	-	ns
Output Enable to High-Z		-	toez	-	8	ns

* : Asynchronous Access Time is from the last of either stable addresses or the falling edge of $\overline{\text { ADV }}$.
- Hardware Reset ($\overline{\text { RESET }}$)

Parameter	Symbol		Value		Unit
	JEDEC	Standard	Min	Max	
$\overline{\text { RESET Pin Low (During Embedded Algorithms) to }}$ Read Mode *1	-	tready	-	20	$\mu \mathrm{s}$
RESET Pulse Width	-	trp	500	-	ns
Reset High Time Before Read *2	-	trH	200	-	ns
Power On/Off Time	-	tps	0	-	ns

${ }^{*} 1$: Access Time is from the last of either stable addresses.
*2 : Addresses are latched on the active edge of CLK.
Note : Test Conditions :
Output Load : Vccor $=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}: 30 \mathrm{pF}$
Input rise and fall times : 5 ns
Input pulse levels : 0.0 V to V cof
Timing measurement reference level : Input : $0.5 \times \mathrm{V}$ ccf, Output : $0.5 \times \mathrm{V}$ ccf

- Write (Erase/Program) Operations

Parameter	Symbol		Value			Unit
	JEDEC	Standard	Min	Typ	Max	
Write Cycle Time	tavav	twc	56	-	-	ns
Address Setup Time	tavwL	tas	0	-	-	ns
Address Hold Time	twlax	taH	20	-	-	ns
$\overline{\text { ADV Low Time }}$	-	tavdp	10	-	-	ns
$\overline{\mathrm{CEf}}$ Low to $\overline{\text { ADV High }}$	-	tclah	10	-	-	ns
Data Setup Time	tovwh	tos	20	-	-	ns
Data Hold Time	twhox	toh	0	-	-	ns
Read Recovery Time Before Write	tahwL	tahwi	0	-	-	ns
$\overline{\text { CEf Hold Time }}$	twher	tch	0	-	-	ns
Write Pulse Width	tehwh	twp	20	-	-	ns
Write Pulse Width High	twhwL	twph	20	-	-	ns
Latency Between Read and Write Operations	-	tspw	0	-	-	ns
Programming Operation ${ }^{* 1}$	twHWH1	twHWH1	-	6	-	$\mu \mathrm{s}$
Sector Erase Operation*1, *2	twhwhz	twhwH2	-	0.5	-	s
Vcof Setup Time	-	tvcs	50	-	-	$\mu \mathrm{s}$
$\overline{\mathrm{CE}} \mathrm{f}$ Setup Time to $\overline{\mathrm{WE}}$	telw	tcs	0	-	-	ns
$\overline{\text { ADV Set Up Time to CLK }}$	-	tavsc	4	-	-	ns
$\overline{\text { ADV }}$ Hold Time to CLK	-	tavhc	6	-	-	ns
	-	tavsw	4	-	-	ns
$\overline{\text { ADV Hold Time to } \overline{W E} \text { (}}$	-	tavhw	6	-	-	ns
Address Setup Time to CLK	-	tacs	4	-	-	ns
Address Hold Time to CLK	-	tach	6	-	-	ns
Address Setup Time to $\overline{\text { ADV }}$	-	taAs	4	-	-	ns
Address Hold Time to ADV		taA	6	-	-	ns
$\overline{\text { WE Low to CLK }}$	-	twLc	0	-	-	ns
$\overline{\text { ADV }}$ High to $\overline{\mathrm{WE}}$ Low	-	taHwL	5	-	-	ns
CLK to WE Low	-	tcw	5	-	-	ns
Erase Time-out TIme	-	trow	50	-	-	$\mu \mathrm{s}$

*1 : Not 100\% tested.
*2 : See the "Erase and Programming Performance" section in "BS12DH" datasheet for more information.
Notes: - Does not include the preprogramming time.

- Access Time is from the last of either stable addresses.
- Addresses are latched on the active edge of CLK.

MB84SF6H6H6L2-70

- Erase and Programming Performance

Parameter	Value			Unit	Remarks
	Min	Typ	Max		
Sector Erase Time	-	0.5	2	s	Excludes programming prior to erasure
Word Programming Time	-	6.0	100	$\mu \mathrm{~s}$	Excludes system level overhead
Chip Programming Time	-	50.3	200	s	Excludes system level overhead
Erase/Program Cycle	100,000	-	-	cycle	

Notes: - Typical Erase Conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\text {ccf }}=1.8 \mathrm{~V}$

- Typical Program Conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vccf}=1.8 \mathrm{~V}$, Data $=$ checker
- Test Conditions :

Output Load : Vccor $=1.65 \mathrm{~V}$ to $1.95 \mathrm{~V}: 30 \mathrm{pF}$
Input rise and fall times : 5 ns
Input pulse levels : 0.0 V to Vccf
Timing measurement reference level : Input: $0.5 \times$ Vccf, Output : $0.5 \times \mathrm{Vccf}$

MB84SF6H6H6L2-70

- Synchronous Burst Mode Read (Latched By Rising Active CLK)

MB84SF6H6H6L2-70

- Synchronous Burst Mode Read (Latched By Falling Active CLK)

MB84SF6H6H6L2-70

- 8-word Linear Burst

Note : Figure assumes 7 wait states for initial access, synchronous read. D_{0} to D_{7} in data waveform indicate the order of data within a given 8 -word address range, from lowest to highest. See "Requirements for Synchronous (Burst) Read Operation". The Set Configuration Register command sequence has been written with $A_{18}=1$; device will output $\mathrm{RY} / \overline{\mathrm{BY}}$ with valid data.

MB84SF6H6H6L2-70

- 8-word Linear Burst with Wrap Around

Note : Figure assumes 7 wait states for initial access, synchronous read. D_{0} to D_{7} in data waveform indicate the order of data within a given 8 -word address range, from lowest to highest. Starting address in figure is the 7 th address in range (A_{6}). See "Requirements for Synchronous (Burst) Read Operation". The Set Configuration Register command sequence has been written with $A_{18}=1$; device will output RY/ $\overline{B Y}$ with valid data.

MB84SF6H6H6L2-70

- Linear Burst with RY/BY Set One Cycle Before Data

Note : Figure assumes 6 wait states for initial access, 66 MHz clock, and synchronous read.
The Set Configuration Register command sequence has been written with $\mathrm{A}_{18}=0$; device will output RY/BY one cycle before valid data.

MB84SF6H6H6L2-70

- Burst Suspend

MB84SF6H6H6L2-70

- Burst Suspend prior to Initial Access

Note: Figure assumes 6 wait states for initial access and synchronous read. The Set Configuration Register command sequence must be written with $\mathrm{A}_{18}=1$; device will output RY/BY with valid data. The clock during Burst Suspend is "Don't care".

MB84SF6H6H6L2-70

- Read Cycle for Continuous Suspend

Notes : - Figure assumes 6 wait states for initial access and synchronous read. The Set Configuration Register command sequence must be written with $\mathrm{A}_{18}=1$; device will output RY/ $\overline{\mathrm{BY}}$ with valid data. The clock during Burst Suspend is "Don't care".

- Burst plus Burst Suspend should not last longer than trac without relaching an address. After the period of trac the device will output invalid data.

MB84SF6H6H6L2-70

- Asynchronous Mode Read

Notes: • $\overline{A D V}$ is assumed to be VIL.

- Configuration Register is set to Asynchronous mode.

MB84SF6H6H6L2-70

- Reset Timings

- Power On/Off Timings (128M Burst Flash)

- Program Operation Timings at Asynchronous Mode (产E latch)

MB84SF6H6H6L2-70

- Program Operation Timings at Asynchronous Mode ($\overline{\text { ADV }}$ latch)

MB84SF6H6H6L2-70

- Program Operation Timings at Synchronous Mode (WE latch)

Notes : • PA = Program Address, PD = Program Data, VA = Valid Address for reading status bits.

- "In progress" and "complete" refer to status of program operation.
- A ${ }_{22}$ to A_{12} are "don't care" during command sequence unlock cycles.
- Configuration Register is set to Synchronous mode.
- Addresses are latched on the first of either the falling edge of $\overline{\mathrm{WE}}$ or active edge of CLK. When "twcc" is not met then $\overline{\text { ADV/address set up and hold time to CLK will be required. }}$

MB84SF6H6H6L2-70

- Program Operation Timings at Synchronous Mode (CLK latch)

MB84SF6H6H6L2-70

- Chip/Sector Erase Command Sequence

Notes :- SA is the sector address for Sector Erase.

- Address bits A_{22} to A_{12} are don't cares during unlock cycles in the command sequence.
- This timing is for Synchronous mode.

MB84SF6H6H6L2-70

- Data Polling Timings/Toggle Bit Timings (During Embedded Algorithm)

MB84SF6H6H6L2-70

- Synchronous Data Polling Timings/Toggle Bit Timings

MB84SF6H6H6L2-70

- Example of Wait States Insertion (Non-Handshaking Device)

MB84SF6H6H6L2-70

- Bank-to-Bank Read/Write Cycle Timings

MB84SF6H6H6L2-70

128M FCRAM CHARACTERISTICS for MCP

1. State Diagram

Note : Assuming all the parameters specified in "3. AC Characteristics" in "■ 128M FCRAM CHARACTERISTICS for MCP" are satisfied. Refer to "2. Functial Description" and "3. AC Characteristics" for details.

2. Functional Description

This device supports asynchronous page read \& normal write operation and synchronous burst read \& burst write operation for faster memory access and features three kinds of power down modes for power saving as user configuable option.

- Power-up

It is required to follow the power-up timing to start executing proper device operation. Refer to POWER-UP Timing. After Power-up, the device defaults to asynchronous page read \& normal write operation mode with sleep power down feature.

- Configuration Register

The Configuration Register (CR) is used to configure the type of device function among optional features. Each selection of features is set through CR Set sequence after Power-up. If CR Set sequence is not performed after power-up, the device is configured for asynchronous operation with sleep power down feature as default configuration.

- CR Set Sequence

The CR Set requires total 6 read/write operation with unique address. Between each read/write operation requires that device being in standby mode. Following table shows the detail sequence.

Cycle \#	Operation	Address	Data
1st	Read	7FFFFFh (MSB)	Read Data (RDa)
2nd	Write	7FFFFFh	RDa
3rd	Write	7FFFFFh	RDa
4th	Write	7FFFFFh	X
5th	Write	7FFFFFh	X
6th	Read	Address Key	Read Data (RDb)

The first cycle is to read from most significant address (MSB).
The second and third cycle are to write back the data (RDa) read by first cycle. If the second or third cycle is written into the different address, the CR Set is cancelled and the data written by the second or third cycle is valid as a normal write operation.
The forth and fifth cycle is to write to MSB. The data of forth and fifth cycle is don't-care. If the forth or fifth cycle is written into different address, the CR Set is also cancelled but write data may not be written as normal write operation.
The last cycle is to read from specific address key for mode selection. And read data (RDb) is invalid.
Once this CR Set sequence is performed from an initial CR set to the other new CR set, the written data stored in memory cell array may be lost. So, it should perform the CR Set sequence prior to regular read/write operation if necessary to change from default configuration.

MB84SF6H6H6L2-70

- Address Key

The address key has the following format.

Address Pin	Register Name	Function	Key	Description	Note
A_{22} to A_{21}	-	-	1	Unused bits must be 1	*1
A_{20} to A_{19}	PS	Partial Size	00	32M Partial	
			01	16M Partial	
			10	Reserved for future use	*2
			11	Sleep [Default]	
A_{18} to A_{16}	BL	Burst Length	000	Reserved for future use	*2
			001	Reserved for future use	*2
			010	8 words	
			011	16 words	
			100	Reserved for future use	*2
			101	Reserved for future use	*2
			110	Reserved for future use	*2
			111	Continuous	
A_{15}	M	Mode	0	Synchronous Mode (Burst Read / Write)	*3
			1	Asynchronous Mode[Default] (Page Read / Normal Write)	*4
A_{14} to A_{12}	RL	Read Latency	000	Reserved for future use	*2
			001	3 clocks	
			010	4 clocks	
			011	5 clocks	
			1xx	Reserved for future use	*2
A_{11}	BS	Burst Sequence	0	Reserved for future use	*2
			1	Sequential	
A_{10}	SW	Single Write	0	Burst Read \& Burst Write	
			1	Burst Read \& Single Write	*5
A9	VE	Valid Clock Edge	0	Falling Clock Edge	
			1	Rising Clock Edge	
A_{8}	-	-	1	Unused bits muse be 1	*1
A_{7}	WC	Write Control	0	$\overline{\mathrm{WE}}$ Single Clock Pulse Control without Write Suspend Function	*5
			1	$\overline{\text { WE }}$ Level Control with Write Suspend Function	
A_{6} to A_{0}	-	-	1	Unused bits must be 1	*1

*1: A_{22}, A_{21}, A_{8}, and A_{6} to A_{0} must be all " 1 " in any cases.
*2 : It is prohibited to apply this key.
*3: If $M=0$, all the registers must be set with appropriate Key input at the same time.
*4 : If $\mathrm{M}=1$, PS must be set with appropriate Key input at the same time. Except for PS, all the other key inputs must be "1".
*5 : Burst Read \& Single Write is not supported at WE Single Clock Pulse Control.

MB84SF6H6H6L2-70

- Power Down

The Power Down is low power idle state controlled by CE2r. CE2r Low drives the device in power down mode and mains low power idle state as long as CE2r is kept low. CE2r High resume the device from power down mode.
This device has three power down modes, Sleep, 16M Partial, and 32M Partial.
The selection of power down mode is set through CR Set sequence. Each mode has following data retention features.

Mode	Data Retention Size	Retention Address
Sleep [default]	No	N/A
16M Partial	16 M bit	000000 h to 0FFFFFh
32M Partial	32 M bit	000000 h to 1 FFFFFh

The default state is Sleep and it is the lowest power consumption but all data will be lost once CE2 is brought to Low for Power Down. It is not required to perform CR Set sequence to set to Sleep mode after power-up in case of asynchronous operation.

MB84SF6H6H6L2-70

- Burst Read/Write Operation

Synchronous burst read/write operation provides faster memory access that synchronized to microcontroller or system bus frequency. Configuration Register Set is required to perform burst read \& write operation after powerup. Once CR Set sequence is performed to select synchronous burst mode, the device is configured to synchronous burst read/write operation mode with corresponding RL and BL that is set through CR Set sequence together with operation mode. In order to perform synchronous burst read \& write operation, it is required to control new signals, CLK, $\overline{\text { ADV }}$ and $\overline{\text { WAIT }}$ that Low Power SRAMs don't have.

- CLK Input Function

The CLK is input signal to synchronize memory to microcontroller or system bus frequency during synchronous burst read \& write operation. The CLK input increments device internal address counter and the valid edge of CLK is referred for latency counts from address latch, burst write data latch, and burst read data out. During synchronous operation mode, CLK input must be supplied except for standby state and power down state. CLK is don't care during asynchronous operation.

- $\overline{\text { ADV }}$ Input Function

The $\overline{\text { ADV }}$ is input signal to indicate valid address presence on address inputs. It is applicable to synchronous operation as well as asynchronous operation. $\overline{\text { ADV }}$ input is active during $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{L}$ and $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{H}$ disables $\overline{\mathrm{ADV}}$ input. All the address are determined on the positive edge of ADV.
During synchronous burst read/write operation, $\overline{\mathrm{ADV}}=\mathrm{H}$ disables all address inputs. Once $\overline{\mathrm{ADV}}$ is brought to High after valid address latch, it is inhibited to bring $\overline{\text { ADV }}$ Low until the end of burst or until burst operation is terminated. $\overline{\text { ADV }}$ Low pulse is mandatory for synchronous burst read/write operation mode to latch the valid address input.
During asynchronous operation, $\overline{\text { ADV }}=\mathrm{H}$ also disables all address inputs. $\overline{\text { ADV }}$ can be tied to Low during asynchronous operation and it is not necessary to control $\overline{\text { ADV }}$ to High.

- WAIT Output Function

The WAIT is output signal to indicate data bus status when the device is operating in synchronous burst mode.
During burst read operation, $\overline{\text { WAIT }}$ output is enabled after specified time duration from $\overline{\mathrm{OE}}=\mathrm{L}$. $\overline{\text { WAIT }}$ output Low indicates data out at next clock cycle is invalid, and WAIT output becomes High one clock cycle prior to valid data out. During OE read suspend, WAIT output doesn't indicate data bus status but carries the same level from previous clock cycle (kept High) except for read suspend on the final data output. If final read data out is suspended, WAIT output become high impedance after specified time duration from $\overline{\mathrm{OE}}=\mathrm{H}$.
During burst write operation, $\overline{\text { WAIT }}$ output is enabled to High level after specified time duration from $\overline{\mathrm{WE}}=\mathrm{L}$ and kept High for entire write cycles including WE write suspend. The actual write data latching starts on the appropriate clock edge with respect to Valid Click Edge, Read Latency and Burst Length. During WE write suspend, WAIT output doesn't indicate data bus status but carries the same level from previous clock cycle (kept High) except for write suspend on the final data input. If final write data in is suspended, WAIT output become high impedance after specified time duration from $\overline{\mathrm{WE}}=\mathrm{H}$.

This device doesn't incur additional delay against accrossing device-row boundary or internal refresh orepation. Therefore, the burst operation is always started after fixed latency with respect to Read Latency. And there is no WAITting cycle asserted in the middle of burst operation except for burst suspend by $\overline{\mathrm{OE}}$ brought to High or $\overline{\text { WE }}$ brought to High. Thus, once WAIT output is enabled and brought to High, WAIT output keep High level until the end of burst or until the burst operation is terminated.

When the device is operating in asynchronous mode, WAIT output is always in High Impedance.

MB84SF6H6H6L2-70

- Latency

Read Latency (RL) is the number of clock cycles between the address being latched and first read data becoming available during synchronous burst read operation. It is set through CR Set sequence after power-up. Once specific RL is set through CR Set sequence, write latency, that is the number of clock cycles between address being latched and first write data being latched, is automatically set to RL-1. The burst operation is always started after fixed latency with respect to Read Latency set in CR.

MB84SF6H6H6L2-70

- Address Latch by $\overline{\text { ADV }}$

The $\overline{\text { ADV }}$ indicates valid address presence on address inputs. During synchronous burst read/write operation mode, all the address are determined on the positive edge of ADV when CE1r $=L$. The specified minimum value of $\overline{\mathrm{ADV}}=\mathrm{L}$ setup time and hold time against valid edge of clock where RL count begin must be satisfied for appropriate RL counts. Valid address must be determined with specified setup time against either the negative edge of $\overline{\text { ADV }}$ or negative edge of $\overline{\mathrm{CE}} 1 \mathrm{r}$ whichever comes late. And the determined valid address must not be changed during $\overline{\mathrm{ADV}}=\mathrm{L}$ period.

- Burst Length

Burst Length is the number of word to be read or write during synchronous burst read/write operation as the result of a single address latch cycle. It can be set on 8 , 16 words boundary or continuous for entire address through CR Set sequence. The burst type is sequential that is incremental decoding scheme within a boundary address. Starting from initial address being latched, device internal address counter assign +1 to the previous address until reaching the end of boundary address and then wrap round to least significant address ($=0$). After completing read data out or write data latch for the set burst length, operation automatically ended except for continuous burst length. When continuous burst length is set, read/write is endless unless it is terminated by the positive edge of CE1r.

- Single Write

Single Write is synchronous write operation with Burst Length $=1$. The device can be configured either to "Burst Read \& Single Write" or to "Burst Read \& Burst Write" through CR set sequence. Once the device is configured to "Burst Read \& Single Write" mode, the burst length for syncronous write operation is always fixed 1 regardless of BL values set in CR, while burst length for read is in accordance with BL values set in CR.

- Write Control

The device has two type of $\overline{W E}$ singal control method, " $\overline{W E}$ Level Control" and "WE Single Clock Pulse Control", for synchronous write operation. It is configured through CR set sequence.

MB84SF6H6H6L2-70

- Burst Read Suspend

Burst read operation can be suspended by $\overline{\mathrm{OE}}$ High pulse. During burst read operation, $\overline{\mathrm{OE}}$ brought to High suspends burst read operation. Once $\overline{\mathrm{OE}}$ is brought to High with the specified set up time against clock where the data being suspended, the device internal counter is suspended, and the data output become high impedance after specified time duration. It is inhibited to suspend the first data out at the beginning of burst read.
$\overline{\mathrm{OE}}$ brought to Low resumes burst read operation. Once $\overline{\mathrm{OE}}$ is brought to Low, data output become valid after specified time duration, and internal address counter is reactivated. The last data out being suspended as the result of $\overline{\mathrm{OE}}=\mathrm{H}$ and first data out as the result of $\overline{\mathrm{OE}}=\mathrm{L}$ are the from the same address.

- Burst Write Suspend

Burst write operation can be suspended by WE High pulse. During burst write operation, $\overline{\text { WE }}$ brought to High suspends burst write operation. Once WE is brought to High with the specified set up time against clock where the data being suspended, device internal counter is suspended, data input is ignored. It is inhibited to suspend the first data input at the beginning of burst write.
$\overline{W E}$ brought to Low resumes burst write operation. Once $\overline{\mathrm{WE}}$ is brought to Low, data input become valid after specified time duration, and internal address counter is reactivated. The write address of the cycle where data being suspended and the first write address as the result of $\overline{\mathrm{WE}}=\mathrm{L}$ are the same address.
Burst write suspend function is available when the device is operating in $\overline{W E}$ level controlled burst write only.

MB84SF6H6H6L2-70

- Burst Read Termination

Burst read operation can be terminated by $\overline{\mathrm{CE}} 1 \mathrm{r}$ brought to High. If BL is set on Continuous, burst read operation is continued endless unless terminated by $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{H}$. It is inhibited to terminate burst read before first data out is completed. In order to guarantee last data output, the specified minimum value of $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{L}$ hold time from clock edge must be satisfied. After termination, the specified minimum recovery time is required to start new access.

- Burst Write Termination

Burst write operation can be terminated by $\overline{\mathrm{CE}} 1 \mathrm{r}$ brought to High. If BL is set on Continuous, burst write operation is continued endless unless terminated by $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{H}$. It is inhibited to terminate burst write before first data in is completed. In order to guarantee last write data being latched, the specified minimum values of $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{L}$ hold time from clock edge must be satisfied. After termination, the specified minimum recovery time is required to start new access.

MB84SF6H6H6L2-70

3. AC Characteristics (Under Recommended Operating Conditions unless otherwise noted)

- Asynchronous Read Operation (Page mode)

Parameter	Symbol	Value		Unit	Notes
		Min	Max		
Read Cycle Time	trc	70	1000	ns	*1, *2
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Access Time	tce	-	70	ns	*3
$\overline{\text { OE Access Time }}$	toe	-	40	ns	*3
Address Access Time	$t_{A A}$	-	70	ns	*3, *5
$\overline{\text { ADV Access Time }}$	tav		70	ns	*3
$\overline{\text { LB, UB Access Time }}$	tBA	-	30	ns	*3
Page Address Access Time	tpaa	-	20	ns	*3, *6
Page Read Cycle Time	tprc	20	1000	ns	*1, *6, *7
Output Data Hold Time	tor	5	-	ns	*3
$\overline{\text { CE1r Low to Output Low-Z }}$	tclz	5	-	ns	*4
$\overline{\text { OE Low to Output Low-Z }}$	tolz	0	-	ns	*4
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Low to Output Low-Z	tblz	0	-	ns	*4
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to Output High-Z	tchz	-	20	ns	*3
$\overline{\text { OE High to Output High-Z }}$	tohz	-	20	ns	* 3
$\overline{\text { LB, }} \overline{\text { UB }}$ High to Output High-Z	tвнz	-	20	ns	*3
Address Setup Time to $\overline{\text { CE1 }}$ 1r Low	tasc	-5	-	ns	
Address Setup Time to $\overline{\text { OE Low }}$	taso	10	-	ns	
ADVV Low Pulse Width	tvpL	10	-	ns	*8
Address Hold Time from $\overline{\text { ADV High }}$	tahv	5	-	ns	
Address Invalid Time	tax	-	10	ns	*5, *9
Address Hold Time from $\overline{\mathrm{CE}} 1 \mathrm{r}$ High	tснан	-5	-	ns	*10
Address Hold Time from $\overline{\text { OE High }}$	tонан	-5	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Pulse Width	tcp	15	-	ns	

*1 : Maximum value is applicable if $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low without change of address input of A_{3} to A_{22}.
If needed by system operation, please contact local FUJITSU representative for the relaxation of $1 \mu \mathrm{~s}$ limitation.
*2 : Address should not be changed within minimum trc.
*3 : The output load 50 pF with 50Ω termination to V ccor $\times 0.5 \mathrm{~V}$.
*4 : The output load 5 pF without any other load.
*5 : Applicable to A_{3} to A_{22} when $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low.
*6 : Applicable only to $\mathrm{A}_{0}, \mathrm{~A}_{1}$ and A_{2} when $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low for the page address access.
*7 : In case Page Read Cycle is continued with keeping $\overline{\mathrm{CE}} 1 \mathrm{r}$ stays Low, $\overline{\mathrm{CE}} 1 \mathrm{r}$ must be brought to High within $4 \mu \mathrm{~s}$. In other words, Page Read Cycle must be closed within $4 \mu \mathrm{~s}$.
*8 : tvpL is specified from the negative edge of either $\overline{\mathrm{CE}} 1 \mathrm{r}$ or $\overline{\mathrm{ADV}}$ whichever comes late.
*9 : Applicable when at least two of address inputs among applicable are switched from previous state.
*10 : trc (Min) and tprc (Min) must be satisfied.

- Asynchronous Write Operation

Parameter	Symbol	Value		Unit	Notes
		Min	Max		
Write Cycle Time	twc	70	1000	ns	*1, *2
Address Setup Time	tas	0	-	ns	*3
$\overline{\text { ADV Low Pulse Width }}$	tvpL	10	-	ns	*4
Address Hold Time from $\overline{\text { ADV High }}$	taHv	5	-	ns	
$\overline{\mathrm{CE} 1 r}$ Write Pulse Width	tcw	45	-	ns	*3
$\overline{W E}$ Write Pulse Width	twp	45	-	ns	*3
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Write Pulse Width	tsw	45	-	ns	*3
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Write Recovery Time	twrc	15	-	ns	*5
$\overline{\text { WE Write Recovery Time }}$	twr	15	1000	ns	*5
$\overline{\mathrm{LB}}$, UB Write Recovery Time	tBR	15	1000	ns	*5
Data Setup Time	tos	15	-	ns	
Data Hold Time	tD	0	-	ns	
$\overline{\text { OE High to } \overline{\mathrm{CE}} 1 r \text { Low Setup Time for Write }}$	tohcl	-5	-	ns	*6
$\overline{\text { OE }}$ High to Address Setup Time for Write	toes	0	-	ns	*7
$\overline{\mathrm{LB}}$, $\overline{\text { UB }}$ Write Pulse Overlap	tswo	30	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Pulse Width	tcp	15	-	ns	

*1: Maximum value is applicable if $\overline{\mathrm{CE}} 1 \mathrm{r}$ is kept at Low without any address change. If the relaxation is needed by system operation, please contact local FUJITSU representative for the relaxation of $1 \mu \mathrm{~s}$ limitation.
*2 : Minimum value must be equal or greater than the sum of write pulse (tcw, twp or tew) and write recovery time (twrc, twr or ter).
*3: Write pulse is defined from High to Low transition of $\overline{\mathrm{CE}} 1 \mathrm{r}, \overline{\mathrm{WE}}$ or $\overline{\mathrm{LB}} / \overline{\mathrm{UB}}$, whichever occurs last.
*4: tvpL is specified from the negative edge of either $\overline{\mathrm{CE}} 1 \mathrm{r}$ or $\overline{\mathrm{ADV}}$ whichever comes late.
*5 : Write recovery is defined from Low to High transition of $\overline{\mathrm{CE}} 1 \mathrm{r}$, $\overline{\mathrm{WE}}$ or $\overline{\mathrm{LB}} / \overline{\mathrm{UB}}$, whichever occurs first.
*6: If $\overline{\mathrm{OE}}$ is Low after minimum tohcl, read cycle is initiated. In other word, $\overline{\mathrm{OE}}$ must be brought to High within 5 ns after CE1r is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum tro is met.
*7: If $\overline{\mathrm{OE}}$ is Low after new address input, read cycle is initiated. In other word, $\overline{\mathrm{OE}}$ must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum trc is met and data bus is in High-Z.

- Synchoronous Operation - Clock Input (Burst mode)

Parameter		Symbol	Value		Unit	Notes
			Min	Max		
Clock Period	$\mathrm{RL}=5$	tck	13	-	ns	*1
	RL $=4$		18	-	ns	*1
	RL $=3$		30	-	ns	*1
Clock High Time		tck	4	-	ns	
Clock Low Time		tckL	4	-	ns	
Clock Rise/Fall Time		tckt	-	3	ns	*2

*1 : Clock period is defined between valid clock edge.
*2 : Clock rise/fall time is defined between $\mathrm{V}_{\text {ін }}$ Min and $\mathrm{V}_{\text {IL }}$ Max.

- Synchronous Operation - Address Latch (Burst mode)

Parameter	Symbol	Value		Unit	Notes
		Min	Max		
Address Setup Time to ADV Low	tasvL	-5	-	ns	*1
Address Setup Time to $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low	tascl	-5	-	ns	*1
Address Hold Time from $\overline{\text { ADV High }}$	tahv	5	-	ns	
$\overline{\text { ADV Low Pulse Width }}$	tvpL	10	-	ns	*2
$\overline{\text { ADV Low Setup Time to CLK }}$	tvsck	5	-	ns	*3
$\overline{\text { ADV }}$ Low Setup Time to $\overline{\mathrm{CE}}$ 1r Low	tvicl	5	-	ns	*1
$\overline{\mathrm{CE}} 1$ Low Setup Time to CLK	tclck	5	-	ns	*3
$\overline{\text { ADV Low Hold Time from CLK }}$	tckvh	1	-	ns	*3
Burst End $\overline{\text { ADV }}$ High Hold Time from CLK	tvivi	13	-	ns	

*1: tascl is applicable if $\overline{\mathrm{CE}} 1$ brought to Low after $\overline{\mathrm{ADV}}$ is brought to Low under the condition where tvlcL is satisfied.
The both of tascland tasvl must be satisfied if tvlcl is not satisfied.
*2 : tvpL is specified from the negative edge of either $\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{ADV}}$ whichever comes late.
*3 : Applicable to the 1st valid clock edge.

- Synchronous Read Operation (Burst mode)

Parameter		Symbol	Value		Unit	Notes	
		Min	Max				
Burst Read Cycle Time			trcb	-	8000	ns	
CLK Access Time		$\mathrm{tac}_{\text {c }}$	-	11	ns	*1	
Output Hold Time from CLK		tckax	3	-	ns	*1	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ Low to WAIT Low		tclit	5	20	ns	*1	
$\overline{\text { OE Low to WAIT Low }}$		toltı	0	20	ns	*1	
$\overline{\text { ADV Low to WAIT Low }}$		tviti	0	20	ns	*1	
CLK to WAIT Valid Time		tcktv	-	11	ns	*1	
$\overline{\text { WAIT Valid Hold Time from CLK }}$		tckтх	3	-	ns	*1	
$\overline{\text { CE1r }}$ Low to Output Low-Z		tclz	5	-	ns	*2	
$\overline{\text { OE Low to Output Low-Z }}$		tolz	0	-	ns	*2	
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Low to Output Low-Z		tblz	0	-	ns	*2	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to Output High-Z		tchz	-	20	ns	*1	
$\overline{\text { OE High to Output High-Z }}$		tohz	-	20	ns	*1	
$\overline{\text { LB, }} \overline{\text { UB }}$ High to Output High-Z		tbhz	-	20	ns	*1	
$\overline{\text { CE1r }}$ High to $\overline{\text { WAIT High-Z }}$		tchtz	-	20	ns	*1	
$\overline{\mathrm{OE}}$ High to WAIT High-Z		tohtz	-	20	ns	*1	
$\overline{\text { OE Low Setup Time to 1st Data-out }}$		tole	30	-	ns		
$\overline{\text { UB, }} \overline{\text { LB }}$ Setup Time to 1st Data-out		tbsa	26	-	ns	*3	
$\overline{\text { OE Setup Time to CLK }}$		tosck	5	-	ns		
$\overline{\text { OE Hold Time from CLK }}$		tскон	5	-	ns		
Burst End $\overline{\text { CE1 }}$ 1r Low Hold Time from CLK		Тсксьн	5	-	ns		
Burst End $\overline{\text { UB, }} \overline{\text { LB }}$ Hold Time from CLK		tсквн	5	-	ns		
Burst Terminate Recovery Time	$\mathrm{BL}=8,16$	ttrb	26	-	ns	*4	
	BL = Continuous		70	-	ns	*4	

*1 : The output load 50 pF with 50Ω termination to $\mathrm{V} \mathrm{ccor} \times 0.5 \mathrm{~V}$.
*2 : The output load 5 pF without any other load.
*3 : Once they are determined, they must not be changed until the end of burst.
*4 : Defined from the Low to High transition of $\overline{\mathrm{CE}} 1 \mathrm{r}$ to the High to Low transition of either $\overline{\mathrm{ADV}}$ or $\overline{\mathrm{CE}} 1 \mathrm{r}$ whichever occurs late.

MB84SF6H6H6L2-70

- Synchronous Write Operation (Burst mode)

Parameter		Symbol	Value		Unit	Notes	
		Min	Max				
Burst Write Cycle Time			twc	-	8000	ns	
Data Setup Time to Clock		tosck	5	-	ns		
Data Hold Time from CLK		tohck	3	-	ns		
$\overline{\text { WE }}$ Low Setup Time to 1st Data In		twlo	30	-	ns		
$\overline{\text { UB, }} \overline{L B}$ Setup Time for Write		tBs	-5	-	ns	*1	
$\overline{\text { WE Setup Time to CLK }}$		twsck	5	-	ns		
$\overline{\text { WE }}$ Hold Time from CLK		tckwh	5	-	ns		
$\overline{\text { CE1r L Low to WAIT High }}$		tclth	5	20	ns	*2	
$\overline{\text { WE Low to } \overline{\text { WAIT }} \text { High }}$		twLth	0	20	ns	*2	
$\overline{\text { CE1r }}$ High to WAIT High-Z		tchtz	-	20	ns	*2	
$\overline{\text { WE High to WAIT High-Z }}$		twhtz	-	20	ns	*2	
Burst End $\overline{\text { CE1r }}$ Low Hold Time from CLK		tсксьн	5	-	ns		
Burst End $\overline{\mathrm{CE}} 1 \mathrm{r}$ High Setup Time to next CLK		tснск	5	-	ns		
Burst End $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ Hold Time from CLK		tсквн	5	-	ns		
Burst Write Recovery Time		twrb	26		ns	*3	
Burst Terminate Recovery Time	$B L=8,16$	tтrb	26	-	ns	*4	
	BL = Continuous	ttrb	70	-	ns	*4	

*1: Defined from the valid input edge to the High to Low transition of either $\overline{\mathrm{ADV}}, \overline{\mathrm{CE}} 1 \mathrm{r}$, or $\overline{\mathrm{WE}}$, whichever occurs last. And once they are determined, they must not be changed until the end of burst.
*2 : The output load 50 pF with 50Ω termination to $\mathrm{Vccor} \times 0.5 \mathrm{~V}$.
*3 : The output load 5 pF without any other load.
*4: Defined from the valid clock edge where last data-in being latched at the end of burst write to the High to Low transition of either $\overline{\text { ADV }}$ or $\overline{\mathrm{CE}} 1 \mathrm{r}$ whichever occurs late for the next access.
*5 : Defined from the Low to High transition of $\overline{\mathrm{CE}} 1 r$ to the High to Low transition of either $\overline{\mathrm{ADV}}$ or $\overline{\mathrm{CE}} 1 \mathrm{r}$ whichever occurs late for the next access.

- Power Down Parameters

Parameter	Symbol	Value		Unit	Note
		Min	Max		
CE2r Low Setup Time for Power Down Entry	tcsp	20	-	ns	*1
CE2r Low Hold Time after Power Down Entry	tc2LP	70	-	ns	*1
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Hold Time following CE2r High after Power Down Exit [SLEEP mode only]	tснн	300	-	$\mu \mathrm{s}$	*1
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Hold Time following CE2r High after Power Down Exit [not in SLEEP mode]	tсннр	1	-	$\mu \mathrm{s}$	*2
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Setup Time following CE2r High after Power Down Exit	tchs	0	-	ns	*1

*1: Applicable also to power-up.
*2 : Applicable when Partial mode is set.

- Other Timing Parameters

Parameter	Symbol	Value		Unit	Note
		Min	Max		
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to $\overline{\mathrm{OE}}$ Invalid Time for Standby Entry	tchox	10	-	ns	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High to $\overline{\mathrm{WE}}$ Invalid Time for Standby Entry	tchwx	10	-	ns	*1
CE2r High Hold Time after Power-up	tc2 ${ }^{\text {HL}}$	50	-	$\mu \mathrm{s}$	
$\overline{\mathrm{CE}} 1 \mathrm{r}$ High Hold Time following CE2r High after Power-up	tch	300	-	$\mu \mathrm{s}$	
Input Transition Time (except for CLK)	t ${ }^{\text {T }}$	1	25	ns	*2, *3

*1: Some data might be written into any address location if torwx (Min) is not satisfied.
*2 : Except for clock input transition time.
*3: The Input Transition Time ($\mathrm{t} \boldsymbol{\tau}$) at AC testing is shown in below. If actual $\mathrm{t} t$ is longer than specified values, it may violate $A C$ specification of some timing parameters.

MB84SF6H6H6L2-70

- AC Test Conditions

Description		Symbol	Test Setup	Value	Unit	Note
Input High Level		V_{1}	-	Vccor $\times 0.8$	V	
Input Low Level		VIL	-	Vccar $\times 0.2$	V	
Input Timing Measurement Level		Vref	-	Vccor $\times 0.5$	V	
Input Transition Time	Async.	t	Between $\mathrm{V}_{\mathbf{I L}}$ and V_{1+}	5	ns	
	Sync.			3	ns	

- AC MEASUREMENT OUTPUT LOAD CIRCUIT

- Asynchronous Read Timing \#1-1 (Basic Timing)

- Asynchronous Read Timing \#1-2 (Basic Timing)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$ and $\overline{\mathrm{WE}}=\mathrm{H}$.

MB84SF6H6H6L2-70

- Asynchronous Read Timing \#2 (즈 \& Address Access)

- Asynchronous Read Timing \#3 ($\overline{\mathrm{LB}} / \overline{\mathrm{UB}}$ Byte Access)

- Asynchronous Read Timing \#4 (Page Address Access after CE1r Control Access)

- Asynchronous Read Timing \#5 (Random and Page Address Access)

MB84SF6H6H6L2-70

- Asynchronous Write Timing \#1-1 (Basic Timing)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$ and $\overline{\mathrm{ADV}}=\mathrm{L}$.

- Asynchronous Write Timing \#1-2 (Basic Timing)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$.

- Asynchronous Write Timing \#2 ($\overline{\text { WE Control }}$)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$ and $\overline{\mathrm{ADV}}=\mathrm{L}$.

- Asynchronous Write Timing \#3-1 (产E / $\overline{\text { LB }} / \overline{\text { UB }}$ Byte Write Control)

MB84SF6H6H6L2-70

- Asynchronous Write Timing \#3-2 ($\overline{\mathrm{WE}} / \overline{\mathrm{LB}} / \overline{\mathrm{UB}}$ Byte Write Control)

- Asynchronous Write Timing \#3-3 ($\overline{\mathrm{WE}} / \overline{\mathrm{LB}} / \overline{\mathrm{UB}}$ Byte Write Control)

- Asynchronous Write Timing \#3-4 ($\overline{\mathrm{WE}} / \overline{\mathrm{LB}} / \overline{\mathrm{UB}}$ Byte Write Control)

- Asynchronous Read / Write Timing \#1-1 (CE1r Control)

MB84SF6H6H6L2-70

- Asynchronous Read / Write Timing \#1-2 ($\overline{\mathrm{CE}} 1 \mathrm{r} / \overline{\mathrm{WE}} / \overline{\mathrm{OE}}$ Control)

- Asynchronous Read / Write Timing \#2 ($\overline{\mathrm{OE}}, \overline{\mathrm{WE}}$ Control)

- Asynchronous Read / Write Timing \#3 ($\overline{\mathrm{OE}}, \overline{\mathrm{WE}}, \overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Control)

Notes: • This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$ and $\overline{\mathrm{ADV}}=\mathrm{L}$.

- $\overline{\mathrm{CE}} 1 \mathrm{r}$ can be tied to Low for $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$ controlled operation.

- Clock Input Timing

Notes: • Stable clock input must be required during $\overline{\mathrm{CE}} 1 \mathrm{r}=\mathrm{L}$.

- tck is defined between valid clock edge.
- tскт is defined between $\mathrm{V}_{\text {ıн }}$ Min and $\mathrm{V}_{\text {IL }}$ Max.

MB84SF6H6H6L2-70

- Address Latch Timing (Synchronous Mode)

- Synchronous Read Timing \#1 (OE Control)

Note : This timing diagram assumes $C E 2 r=H$, the valid clock edge on rising edge and $B L=8$ or 16 .

MB84SF6H6H6L2-70

- Synchronous Read Timing \#2 (CE1r Control)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

- Synchronous Read Timing \#3 ($\overline{\text { ADV }}$ Control)

Note : This timing diagram assumes $C E 2 r=H$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

MB84SF6H6H6L2-70

- Synchronous Write Timing \#1 (产E Level Control)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

- Synchronous Write Timing \#2 (WE Single Clock Pulse Control)

Note : This timing diagram assumes CE2r $=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

MB84SF6H6H6L2-70

- Synchronous Write Timing \#3 ($\overline{\text { ADV }}$ Control)

Note : This timing diagram assumes CE2r $=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

- Synchronous Write Timing \#4 (产E Level Control, Single Write)

MB84SF6H6H6L2-70

- Synchronous Read to Write Timing \#1 (CE1 Control)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

- Synchronous Read to Write Timing \#2((̄DV Control)

Note : This timing diagram assumes $C E 2 r=H$, the valid clock edge on rising edge and $B L=8$ or 16 .

MB84SF6H6H6L2-70

- Synchronous Write to Read Timing \#1 (言1r Control)

Note : This timing diagram assumes CE2r $=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16.

- Synchronous Write to Read Timing \#2 (̄ㅡㄴ Control)

Note : This timing diagram assumes $\mathrm{CE} 2 \mathrm{r}=\mathrm{H}$, the valid clock edge on rising edge and $\mathrm{BL}=8$ or 16 .

MB84SF6H6H6L2-70

- POWER-UP Timing \#1

*1: Vccor shall be applied and reach the specified minimum level prior to Vccr applied.
*2 : The both of CE1r and CE2r shall be brought to High together with Vccor prior to Vccr applied.
Otherwise POWER-UP Timing\#2 must be applied for proper operation.
*3: The tснн specifies after Vccr reaches specified minimum level and applicable to both CE1r and CE2r.

- POWER-UP Timing \#2

*1: Vccor shall be applied and reach specified minimum level prior to Vcc applied.
*2: The tсгнц specifies from CE2r Low to High transition after Vccr reaches specified minimum level.
If CE2r became High prior to $\mathrm{V}_{\text {ccr }}$ reached specified minimum level, tсгнн is defined from V ccr minimum.
*3: $\overline{\mathrm{CE}} 1 \mathrm{r}$ shall be brought to High prior to or together with CE2r Low to High transition.

- POWER DOWN Entry and Exit Timing

Note : This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and Power-Down program was not performed prior to this reset.

- Standby Entry Timing after Read or Write

Note : Both tchox and tchwx define the earliest entry timing for Standby mode.
If either of timing is not satisfied, it takes tree (Min) period for Standby mode from $\overline{\mathrm{CE}} 1 \mathrm{r}$ Low to High transition.

MB84SF6H6H6L2-70

- Configuration Register Set Timing \#1 (Asynchronous Operation)

*1 : The all address inputs must be High from Cycle \#1 to \#5.
*2 : The address key must confirm the format specified in FUNCTIONAL DESCRIPTION. If not, the operation and data are not guaranteed.
*3: After tcp or trc following Cycle \#6, the Configuration Register Set is completed and returned to the normal operation. top and trc are applicable to returning to asynchronous mode and to synchronous mode respectively.

- $\overline{\text { WE Configuration Register Set Timing \#2 (Synchronous Operation) }}$

Notes : • The all address inputs must be High from Cycle \#1 to \#5.

- The address key must confirm the format specified in FUNCTIONAL DESCRIPTION. If not, the operation and data are not guaranteed.
- After ttrв following Cycle \#6, the Configuration Register Set is completed and returned to the normal operation.

MB84SF6H6H6L2-70

- PIN CAPACITANCE

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Input Capacitance	CIn	$\mathrm{V}_{\mathrm{IN}}=0$	-	-	20.0	pF
Output Capacitance	Cout	Vout $=0$	-	-	25.0	pF
Control Pin Capacitance	$\mathrm{Clin2}^{2}$	$\mathrm{V}_{\text {IN }}=0$	-	-	25.0	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

- HANDLING OF PACKAGE

Please handle this package carefully since the sides of package create acute angles.

CAUTION

- The high voltage (V_{ID}) cannot apply to address pins and control pins except RESET. Exception is when autoselect and sector group protect function are used, then the high voltage (V_{10}) can be applied to RESET.
- Without the high voltage (V_{ID}) , sector group protection can be achieved by using "Extended Sector Group Protection" command.

- ORDERING INFORMATION

MB84SF6H6H6L2-70

PACKAGE DIMENSION

115-ball plastic FBGA

(BGA-115P-M03)

© 2003 FUUTSU LIMITED B115003S-C.1-1
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

MB84SF6H6H6L2-70

FUJITSU LIMITED

Abstract

All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

