

## EV1517DR-00B 3.3V, 1A Sepic Evaluation Board

The Future of Analog IC Technology

## **GENERAL DESCRIPTION**

The EV1517DR-00B is a MP1517 evaluation board that is configured to provide a regulated 3.3V output at up to 1A from a 3V to 4.2V input. The output voltage is adjustable by changing resistors on the evaluation board. The high 1.1MHz switching frequency allows for smaller external components producing a compact solution for a wide range of load currents. Soft-start, cycle-by-cycle current limiting, and input under voltage lockout prevent overstressing or damage to sensitive external circuitry at startup and output short-circuit conditions. Current-mode regulation and external compensation components allow the MP1517 control loop to be optimized over a wide variety of input voltage, output voltage, and load current conditions.

### **ELECTRICAL SPECIFICATIONS**

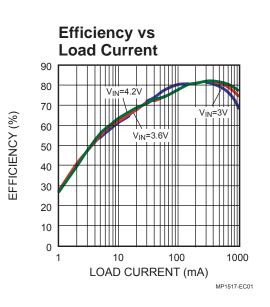
| Parameter      | Symbol           | Value | Units |
|----------------|------------------|-------|-------|
| Input Voltage  | V <sub>IN</sub>  | 3-4.2 | V     |
| Output Voltage | V <sub>OUT</sub> | 3.3   | V     |
| Output Current | I <sub>OUT</sub> | 1     | Α     |

### FEATURES

- Provides 3.3V, 1A Output from as Low as 3V Input
- Over 80% Efficiency
- Inherent Output Disconnect at Shutdown Mode
- 1.1MHz Switching Frequency
- 0.5µA Shutdown Current
- Fully Assembled and Tested

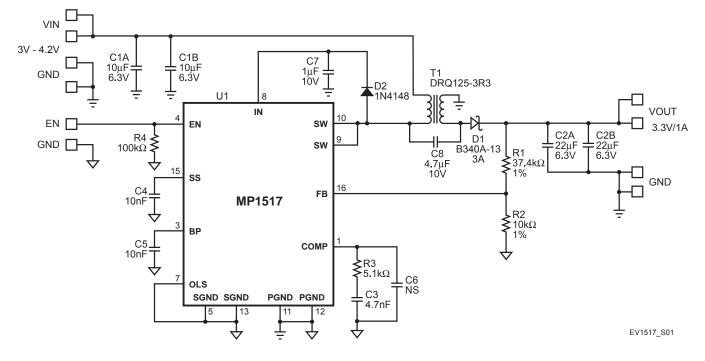
#### **APPLICATIONS**

- Boost and SEPIC Regulators
- Handheld Computers
- Cell Phone Camera Flash, PDAs
- Digital Still and Video Cameras


"MPS" and "The Future of Analog IC Technology", are Trademarks of Monolithic Power Systems, Inc.

# **EV1517DR-00B EVALUATION BOARD**




(L x W x H) 2.0" x 2.0" x 0.4" (5cm x 5cm x 1cm)

| Board Number | MPS IC Number |  |  |
|--------------|---------------|--|--|
| EV1517DR-00B | MP1517DR      |  |  |





#### **EVALUATION BOARD SCHEMATIC**



### **EV1517DR-00B BILL OF MATERIALS**

| Qty | Ref      | Value  | Description                          | Package | Manufacturer | Manufacturer P/N |
|-----|----------|--------|--------------------------------------|---------|--------------|------------------|
| 2   | C1A, C1B | 10µF   | Ceramic Cap, 6.3V, X5R               | 1210    | TDK          | C3225X5R1A106K   |
| 2   | C2A, C2B | 22µF   | Ceramic Cap, 6.3V, X7R               | 1210    | TDK          | C3225X5R0J226M   |
| 1   | C3       | 4.7nF  | Ceramic Cap, 50V, X7R                | 0805    | Panasonic    | ECJ-2VB1H472K    |
| 2   | C4, C5   | 10nF   | Ceramic Cap, 50V, X7R                | 0805    | TDK          | C2012X7R1H103K   |
| 1   | C6       |        | Do Not Stuff                         |         |              |                  |
| 1   | C7       | 1uF    | Ceramic Cap, 10V, X5R                | 0805    | TDK          | C2012X5R1A105K   |
| 1   | C8       | 4.7uF  | Ceramic Cap, 10V, X5R                | 0805    | Panasonic    | ECJ-2FB1A475K    |
| 1   | D1       |        | Schottky Diode, 40V, 3A, SMA         |         | Diodes Inc   | B340LA-13-F      |
| 1   | D2       |        | Rectifier Diode, 75V, 200mW, SOD-323 |         | Diodes Inc   | 1N4148WS-7       |
| 1   | R1       | 37.4KΩ | Film Resistor, 1%                    | 0805    | Panasonic    | ERJ-6ENF3742V    |
| 1   | R2       | 10KΩ   | Film Resistor, 1%                    | 0805    | Panasonic    | ERJ-6ENF1002V    |
| 1   | R3       | 5.1KΩ  | Film Resistor, 5%                    | 0805    | Panasonic    | ERJ-6GEYJ512V    |
| 1   | R4       | 100KΩ  | Film Resistor, 5%                    | 0805    | Panasonic    | ERJ-6GEYJ104V    |
| 1   | T1       | 3.3uH  | Coupled Inductors, 4.63A, SMD        |         | Cooper       | DRQ125-3R3       |
| 1   | U1       |        | DC-DC Converter                      |         | MPS          | MP1517DR         |



### PRINTED CIRCUIT BOARD LAYOUT

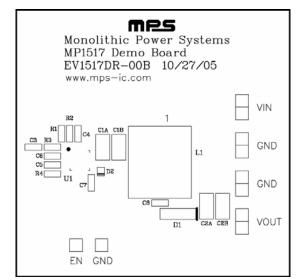



Figure 1—Top Silk Layer

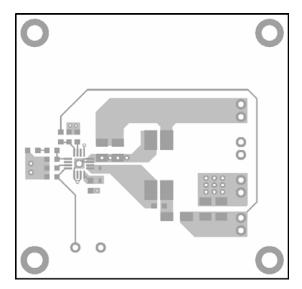



Figure 2—Top Layer

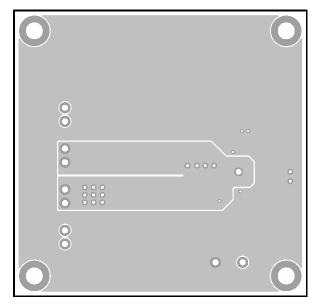



Figure 3—Bottom Layer



#### QUICK START GUIDE

The output voltage of this board is set to 12V. The board layout accommodates most commonly used inductors and output capacitors.

- 1. Preset Power Supply to  $3V \le V_{IN} \le 4.2V$ .
- 2. Turn Power Supply off.
- 3. Connect Power Supply terminals to:

Positive (+): VIN, EN

Negative (-): GND

4. Connect Load to:

Positive (+): VOUT

Negative (-): GND

- 5. Turn Power Supply on after making connections.
- 6. The MP1517 is enabled on the evaluation board once  $V_{IN}$  is applied. To disable the MP1517, disconnect EN from VIN.
- 7. The output voltage  $V_{\text{OUT}}$  can be changed by varying R1. Calculate the new value using the formula:

$$R1 = \left(\frac{V_{OUT}}{V_{FB}} - 1\right)R2$$

Where  $V_{FB} = 0.7V$  and R2 =  $10k\Omega$ 

For example, for  $V_{OUT}$  = 3.6V

$$R1 = \left(\frac{3.6V}{0.7V} - 1\right) \times 10k\Omega = 41.4k\Omega$$

Therefore use a 41.2k $\Omega$  standard 1% value resistor.

**NOTICE:** The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.