Discrete POWER & Signal **Technologies** # **MPS6543** ### **NPN RF Transistor** This device is designed for use as RF amplifiers, oscillators and multipliers with collector currents in the 100 $\,\mu A$ to 10 mA range. Sourced from Process 47. See MPSH11 for characteristics. #### **Absolute Maximum Ratings*** TA = 25°C unless otherwise noted | Symbol | Parameter | Value | Units | |-----------------------------------|--|-------------|-------| | V_{CEO} | Collector-Emitter Voltage | 25 | V | | V _{CBO} | Collector-Base Voltage | 35 | V | | V _{EBO} | Emitter-Base Voltage | 3.0 | V | | I _C | Collector Current - Continuous | 50 | mA | | T _J , T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | ^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. #### **Thermal Characteristics** TA = 25°C unless otherwise noted | Symbol | Characteristic | Max | Units | |-----------------|--|------------|-------------| | | | MPS6543 | | | P _D | Total Device Dissipation Derate above 25°C | 350
2.8 | mW
mW/°C | | $R_{\theta JC}$ | Thermal Resistance, Junction to Case | 125 | °C/W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 357 | °C/W | ## **NPN RF Transistor** (continued) | Symbol | Parameter | Test Conditions | Min | Max | Units | |---|--|--|--------|-------|-------| | Зупівої | Parameter | rest Conditions | IVIIII | IVIAX | Units | | | | | | | | | OFF CHA | RACTERISTICS | | | | | | $V_{(BR)CEO}$ | Collector-Emitter Breakdown Voltage* | $I_C = 1.0 \text{ mA}, I_B = 0$ | 25 | | V | | V _{(BR)CBO} | Collector-Base Breakdown Voltage | $I_C = 100 \mu A, I_E = 0$ | 35 | | V | | $V_{(BR)EBO}$ | Emitter-Base Breakdown Voltage | $I_E = 100 \mu A, I_C = 0$ | 3.0 | | V | | I _{CBO} | Collector Cutoff Current | $V_{CB} = 25 \text{ V}, I_{E} = 0$ | | 0.1 | μΑ | | | F ''' O . " O | V 00VI 0 | | 4.0 | ^ | | | Emitter Cutoff Current | V _{EB} = 2.0 V, I _C = 0 | | 1.0 | μΑ | | ON CHAF | RACTERISTICS* | $V_{EB} = 2.0 \text{ V}, I_C = 0$ $V_{CF} = 10 \text{ V}, I_C = 4.0 \text{ mA}$ | 25 | 1.0 | μΑ | | ON CHAF | RACTERISTICS* | | 25 | 0.35 | μA | | ON CHAF | RACTERISTICS* DC Current Gain | $V_{CE} = 10 \text{ V}, I_{C} = 4.0 \text{ mA}$ | 25 | | | | ON CHAP | RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage | $V_{CE} = 10 \text{ V}, I_{C} = 4.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ | 25 | 0.35 | V | | ON CHAP h _{FE} V _{CE(sat)} V _{BE(on)} | RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage | $V_{CE} = 10 \text{ V}, I_{C} = 4.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ | 25 | 0.35 | V | | ON CHAF h _{FE} V _{CE(sat)} V _{BE(on)} | RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage | $V_{CE} = 10 \text{ V}, I_{C} = 4.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ | 750 | 0.35 | V | | ON CHAP h _{FE} V _{CE(sat)} V _{BE(on)} | RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage IGNAL CHARACTERISTICS | $V_{CE} = 10 \text{ V}, I_{C} = 4.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 4.0 \text{ mA}, V_{CE} = 10 \text{ V},$ | | 0.35 | V | ^{*}Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty Cycle} \leq 2.0\%$