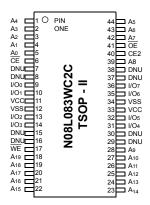
NanoAmp Solutions, Inc. 670 North McCarthy Blvd. Suite 220, Milpitas, CA 95035 ph: 408-935-7777, FAX: 408-935-7770

8Mb Ultra-Low Power Asynchronous CMOS SRAM

 $1024K \times 8$ bit

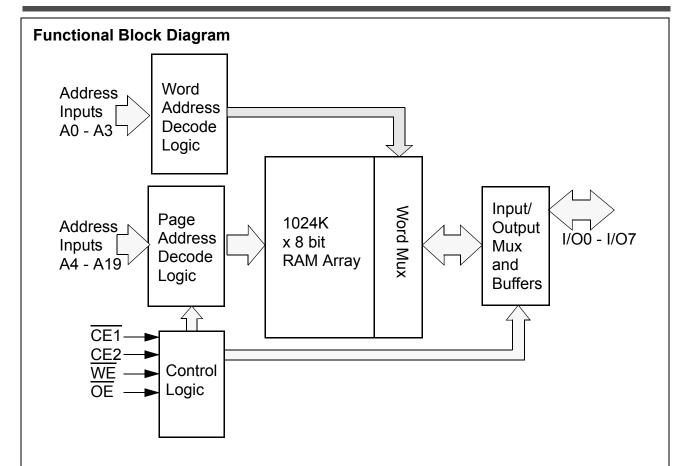
Overview

The N08L083WC2C is an integrated memory device containing a 8 Mbit Static Random Access Memory organized as 1,048,576 words by 8 bits. The device is designed and fabricated using NanoAmp's advanced CMOS technology to provide both high-speed performance and ultra-low power. The device operates with two chip enable (CE1 and CE2) controls and output enable (OE) to allow for easy memory expansion. The N08L083WC2C is optimal for various applications where low-power is critical such as battery backup and hand-held devices. The device can operate over a very wide temperature range of -40°C to +85°C and is available in JEDEC standard packages compatible with other standard 512Kb x 16 SRAMs


Features

- Single Wide Power Supply Range 2.2 to 3.6 Volts
- · Very low standby current 2.0µA at 3.0V (Typical)
- · Very low operating current 1.5mA at 3.0V and 1µs(Typical)
- Simple memory control Dual Chip Enables (CE1 and CE2) Byte control for independent byte operation Output Enable (OE) for memory expansion
- Low voltage data retention Vcc = 1.5V
- Very fast output enable access time 25ns OE access time
- · Automatic power down to standby mode
- · TTL compatible three-state output driver
- Ultra Low Power Sort Available

Product Family


Part Number	Package Type	Operating Temperature	Power Supply (Vcc)	Speed	Standby Current (I _{SB}), Typical	Operating Current (Icc), Typical
N08L083WC2CT1	44 TSOP II Pb Free	-40°C to +85°C	2.2V - 3.6V	55ns	2 μΑ	1.5 mA @ 1MHz

Pin Configuration

Pin Descriptions

Pin Name	Pin Function
A ₀ -A ₁₉	Address Inputs
WE	Write Enable Input
CE1, CE2	Chip Enable Input
ŌE	Output Enable Input
I/O ₀ -I/O ₇	Data Inputs/Outputs
V _{CC}	Power
V _{SS}	Ground
NC	Not Connected

Functional Description

CE1	CE2	WE	ŌĒ	I/O ₀ - I/O ₇	MODE	POWER
Н	Х	Х	Х	High Z	Standby	Standby
Х	L	Х	Х	High Z	Standby	Standby
L	Н	L	X ¹	Data In	Write ³	Active
L	Н	Н	L	Data Out	Read	Active
L	Н	Н	Н	High Z	Active	Active

^{1.} When $\overline{\text{WE}}$ is invoked, the $\overline{\text{OE}}$ input is internally disabled and has no effect on the circuit.

Capacitance¹

Item	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	V _{IN} = 0V, f = 1 MHz, T _A = 25°C		10	pF
I/O Capacitance	C _{I/O}	V _{IN} = 0V, f = 1 MHz, T _A = 25°C		10	рF

^{1.} These parameters are verified in device characterization and are not 100% tested

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Voltage on any pin relative to V _{SS}	V _{IN,OUT}	-0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	-0.3 to 4.5	V
Power Dissipation	P _D	500	mW
Storage Temperature	T _{STG}	-65 to 150	°C
Operating Temperature	T _A	-40 to +85	°C
Soldering Temperature and Time	T _{SOLDER}	260°C, 10sec	°C

Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Operating Characteristics (Over Specified Temperature Range)

Item	Symbol	Test Conditions		Min.	Typ ¹	Max	Unit
Supply Voltage	V _{CC}			2.2	3.0	3.6	V
Data Retention Voltage	V_{DR}	Chip Disabled		1.5			V
Input High Voltage	\/	Vcc = 2.2V to 2.7V		1.8		V _{CC} +0.3	V
Input High Voltage	V_{IH}	Vcc = 2.7V to 3.6V		2.2		V _{CC} +0.3	V
Input Low Voltage	V _{IL}	Vcc = 2.2V to 2.7V		-0.3		0.6	V
input Low voltage	V IL	Vcc = 2.7V to 3.6V		-0.3		0.8	V
Output High Voltage	V _{OH}	$I_{OH} = -0.1 \text{mA}, Vcc = 2.2 \text{V}$		2.0			V
Output riight voltage	VOH	I _{OH} = -1.0mA, Vcc = 2.7V		2.4			V
Output Low Voltage	V _{OL}	$I_{OL} = 0.1 \text{mA}, Vcc = 2.2 \text{V}$				0.4	٧
Output Low Voltage		$I_{OL} = 2.1 \text{mA}, Vcc = 2.7 \text{V}$				0.4	'
Input Leakage Current	I _{LI}	V _{IN} = 0 to V _{CC}		-1		1	μΑ
Output Leakage Current	I _{LO}	V _{OUT} = 0 to V _{CC} Output Disabled		-1		1	μА
Read/Write Operating Supply Current	laar	V _{CC} =3.6 V, V _{IN} =V _{IH} or V _{IL}			1.5	3.0	mA
@ 1 μs Cycle Time ²	I _{CC1}	Chip Enabled, I _{OUT} = 0	ᆛ		1.5	3.0	ША
Read/Write Operating Supply Current	I _{CC2}	V_{CC} =3.6 V, V_{IN} = V_{IH} or V_{IL} Chip			12.0	20.0	mA
@ fmax	1002	Enabled, I _{OUT} = 0	-L		12.0	15.0	ША
		$V_{IN} = V_{CC}$ or $0V$			2.0	20	
Maximum Standby Current	I _{SB1}	Chip Disabled t_A = 85°C, V_{CC} = 3.6 V	-L		2.0	8	μА
Maximum Data Retention Current	l	Vcc = 1.5V, CE ≥ Vcc - 0.2V,				10	
waxiiiiuiii Data Retention Current	I _{DR}	$VIN \ge Vcc$ - 0.2V or $VIN \le 0.2V$	ᆛ			4	μΑ

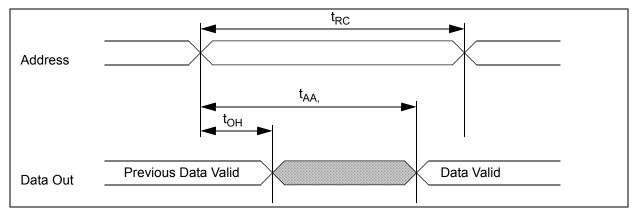
^{1.} Typical values are measured at Vcc=Vcc Typ., T_A=25°C and not 100% tested.

Stock No. 23379-A 3

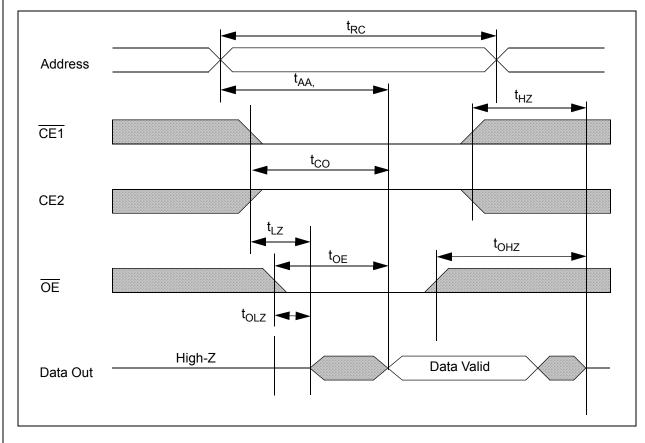
^{2.} This parameter is specified with the outputs disabled to avoid external loading effects. The user must add current required to drive output capacitance expected in the actual system.

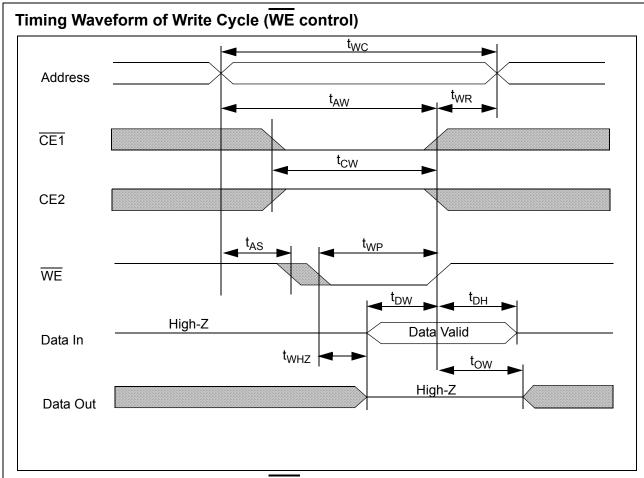
Timing Test Conditions

Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	1V/ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Output Load	CL = 30pF/50pF
Operating Temperature	-40 to +85 °C

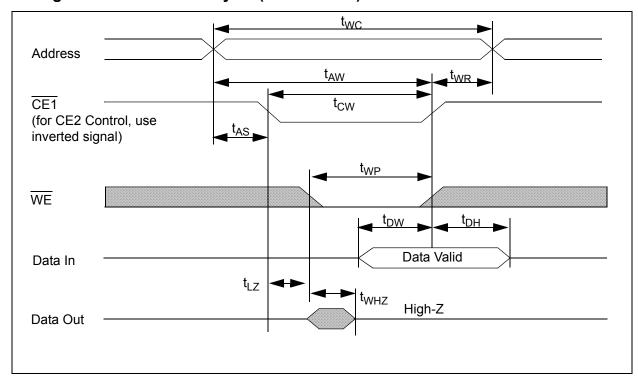

Timing

Mana	Ob. al	ŧ	55	Heita
ltem	Symbol	Min	Max	- Units
Read Cycle Time	t _{RC}	55		ns
Address Access Time (Random Access)	t _{AA}		55	ns
Chip Enable to Valid Output	t _{CO}		55	ns
Output Enable to Valid Output	t _{OE}		25	ns
Chip Enable to Low-Z output	t _{LZ}	10		ns
Output Enable to Low-Z Output	t _{OLZ}	5		ns
Chip Disable to High-Z Output	t _{HZ}		20	ns
Output Disable to High-Z Output	t _{OHZ}		20	ns
Output Hold from Address Change	t _{OH}	10		ns
Write Cycle Time	t_{WC}	55		ns
Chip Enable to End of Write	t _{CW}	40		ns
Address Valid to End of Write	t _{AW}	40		ns
Write Pulse Width	t _{WP}	40		ns
Address Setup Time	t _{AS}	0		ns
Write Recovery Time	t _{WR}	0		ns
Write to High-Z Output	t _{WHZ}		20	ns
Data to Write Time Overlap	t _{DW}	25		ns
Data Hold from Write Time	t _{DH}	0		ns
End Write to Low-Z Output	t _{OW}	10		ns

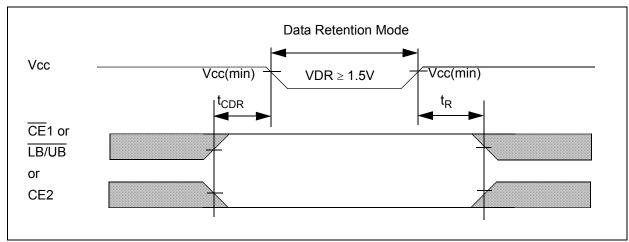

Note

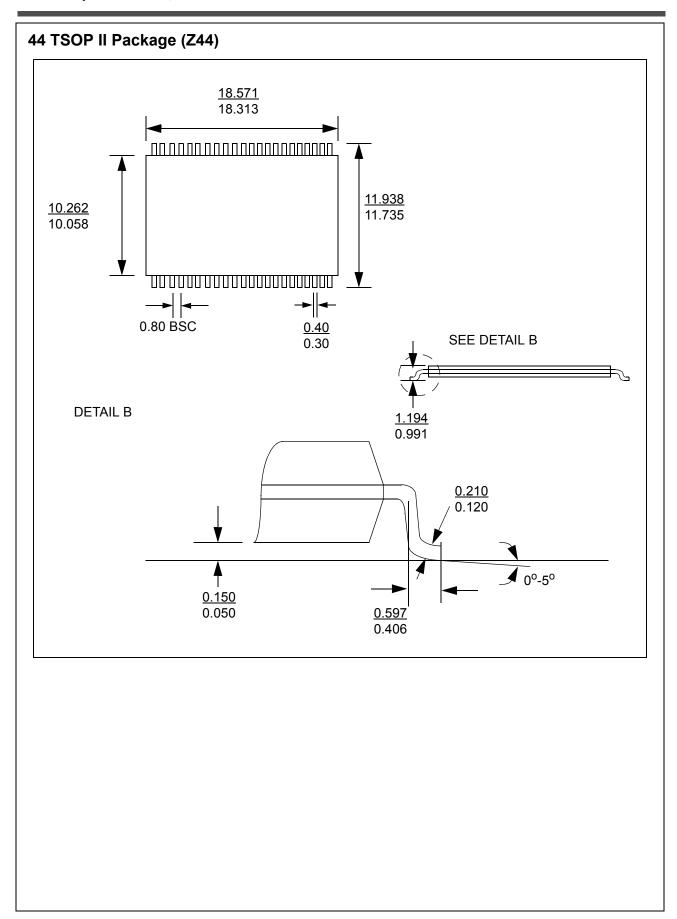

- 1. Full device AC operation assumes a 100us ramp time from 0 to Vcc(min) and 200µs wait time after Vcc stablization.
- 2. Full device operation requires linear Vcc ramp from V_{DR} to $Vcc(min) \ge 100us$ or stable at $Vcc(min) \ge 100\mu s$.

Timing of Read Cycle ($\overline{CE1} = \overline{OE} = V_{IL}$, $\overline{WE} = CE2 = V_{IH}$)

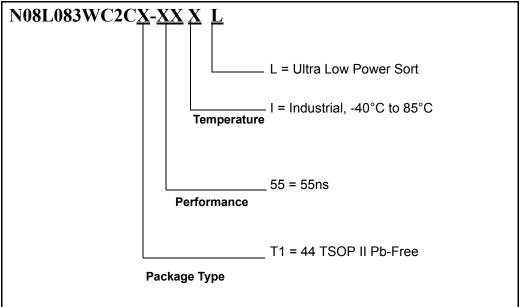


Timing Waveform of Read Cycle (WE=V_{IH})


Timing Waveform of Write Cycle (CE1 Control)


Data Retention Characteristics

Parameter	Description	Condition		Min	Тур	Max	Unit
V_{DR}	Vcc for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$\label{eq:Vcc} \begin{split} &Vcc = 1.5 \text{V, CE} \geq \text{Vcc - 0.2V,} \\ &\text{VIN} \geq \text{Vcc - 0.2V or VIN} \leq 0.2 \text{V} \end{split}$	-L			10 4	μΑ
t _{CDR}	Chip Deselect to Data Retention Time			0			ns
t _R	Operation Recovery Time			t _{RC}			ns


Data Retention Waveform

Note: Full device operation requires linear Vcc ramp from VDR to Vcc(min) > 100 μs

Ordering Information

Revision History

Revision	Date	Change Description
Α	Jan 14. 2005	Initial Release

© 2001 - 2002 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this data sheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this data sheet are provided for illustration purposes only and they vary depending upon specific applications.

NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instruments.