DATA SHEET

74F2952
Registered transceiver, non-inverting (3-State)
74F2953
Registered transceiver, inverting (3-State)

Product specification
IC15 Data Handbook

PHILIPS

Transceivers

74F2952 Registered transceiver, non-inverting (3-State)
 74F2953 Registered transceiver, inverting (3-State)

FEATURES

- 8-bit registered transceivers
- Two 8-bit, back-to-back registers store data moving in both directions between two bidirectional buses
- Separate Clock, Clock Enable and 3-State Enable provided for each register
- 74F2952 non-inverting
- 74F2953 inverting
- AM2952/2953 functional equivalent
- 'A' outputs sink 24 mA and source 3 mA
- 'B' outputs sink 64mA and source 15 mA
- 300 mil wide 24-pin Slim DIP package

DESCRIPTION

The 74F2952 and 74F2953 are 8-bit registered transceivers. Two 8-bit back-to-back registers store data flowing in both directions between two bi-directional buses. Data applied to the inputs is entered and stored on the rising edge of the Clock (CPXX) provided that the Clock Enable (CEXX) is Low. The data is then present at the 3-State output buffers, but is only accessible when the Output Enable ($\overline{O E X X}$) is Low. Data flow from ' A ' inputs to ' B ' outputs is the same as for ' B ' inputs to ' A ' outputs.

TYPE	TYPICAL $\mathbf{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
74 F 2952	160 MHz	105 mA
74 F 2953	160 MHz	105 mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE $\mathbf{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, $\mathrm{Tamb}^{\boldsymbol{\circ}} \mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PACKAGE DRAWING NUMBER
24-pin Plastic Slim DIP (300mil)	N74F2952N, N74F2953N	SOT222-1
24-pin Plastic SOL ${ }^{1}$	N74F2952D, N74F2953D	SOT137-1
28-pin Plastic Leaded Chip Carrier	N74F2952A, N74F2953A	SOT261-2

NOTE

1. Thermal mounting techniques are recommended. See SMD Process Applications for a discussion of thermal consideration for surface mounted devices.

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74F(U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7	Port A, 3-State inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
B0 - B7	Port B, 3-State inputs	$3.5 / 1.0$	$70 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
CPAB, CPBA	Clock inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { CEAB }, ~ C E B A ~}$	Clock Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
$\overline{\text { OEAB }}, \overline{\text { OEBA }}$	Output Enable inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.6 \mathrm{~mA}$
A0 - A7	Port A, 3-State outputs	$150 / 40$	$3.0 \mathrm{~mA} / 24 \mathrm{~mA}$
B0 - B7	Port B, 3-State outputs	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$

NOTE: One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.6 mA in the Low state.

PIN CONFIGURATIONS

DIP - 74F2952

PLCC - 74F2952

DIP - 74F2953

PLCC - 74F2953

LOGIC SYMBOL - 74F2952

IEC/IEEE SYMBOL - 74F2952

LOGIC SYMBOL - 74F2953

IEC/IEEE SYMBOL - 74F2953

LOGIC DIAGRAM - 74F2952

LOGIC DIAGRAM - 74F2953

FUNCTION TABLE for Register An or Bn

INPUTS			$\begin{gathered} \text { INTERNAL } \\ \mathbf{Q} \end{gathered}$	OPERATING MODE
An or Bn	CPXX	CEXX		
X	X	H	NC	Hold data
L	\uparrow	L	L	
H	\uparrow	L	H	Load data

$H=$ High voltage level
$\mathrm{L}=$ Low voltage level
$\uparrow=$ Low-to-High transition
$X=$ Don't Care
$X X=A B$ or $B A$
$N C=$ No Change

FUNCTION TABLE for Output Enable

INPUTS	$\underset{\mathbf{Q}}{\text { INTERNAL }}$	An or Bn OUTPUTS		OPERATING MODE
OEXX		74F2952	74F2953	
H	X	Z	Z	Disable outputs
L	L	L	H	Enable outputs
L	H	H	L	

$H=$ High voltage level
$L=$ Low voltage level
$X=$ Don't Care
$X X=A B$ or $B A$
$Z=$ High impedance "off" state

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
I_{N}	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to +5.5	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	$\mathrm{A} 0-\mathrm{A} 7$	48
	Operating free-air temperature range	$\mathrm{B} 0-\mathrm{B} 7$	mA
$\mathrm{~T}_{\text {stg }}$	Storage temperature range	128	mA

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I_{IK}	Input clamp current				-18	mA
IOH	High-level output current	A0-A7			-3	mA
		B0-B7			-15	mA
lol	Low-level output current	A0-A7			24	mA
		B0-B7			64	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP2	MAX							
V_{OH}	High-level output voltage	A0-A7				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {CC }}$	2.7	3.3				V			
		B0-B7	$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {cc }}$	2.0				V			
				$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	A0-A7	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}=24 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
					$\pm 5 \% \mathrm{~V}_{\text {CC }}$		0.35	0.50	V			
		B0-B7		$\mathrm{I}_{\text {OL }}=48 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\text {CC }}$		0.38	0.55	V			
				$\mathrm{l} \mathrm{OL}=64 \mathrm{~mA}$	$\pm 5 \% \mathrm{~V}_{\mathrm{CC}}$		0.42	0.55	V			
$\mathrm{V}_{\text {IK }}$	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$				-0.73	-1.2	V			
1	Input current at maximum input voltage	CPAB, CPBA, OEAB, OEBA, CEAB, CEBA	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		$\begin{aligned} & \mathrm{A} 0-\mathrm{A} 7, \\ & \mathrm{~B} 0-\mathrm{B} 7 \end{aligned}$	$\mathrm{V}_{C C}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1	mA			
$\mathrm{IIH}^{\text {H }}$	High-level input current	CPAB, CPBA, OEAB, DEBA, CEAB, CEBA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current	CPAB, CPBA, OEAB, OEBA, CEAB, CEBA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$					-0.6	mA			
$\mathrm{IIH}^{+} \mathrm{l}_{\text {OZH }}$	Off-state output current High-level voltage applied	$\begin{aligned} & \hline \mathrm{A} 0-\mathrm{A} 7, \\ & \mathrm{~B} 0-\mathrm{B} 7 \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
$\mathrm{I}_{\text {IL }}+\mathrm{l}_{\text {OZL }}$	Off-state output current Low-level voltage applied	$\begin{aligned} & \text { A0-A7, } \\ & \text { B0-B7 } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$,	$=0.5 \mathrm{~V}$				-600	$\mu \mathrm{A}$			
los	Short-circuit output current ${ }^{3}$	A0-A7	$V_{C C}=M A X, V_{O}=0 \mathrm{~V}$			-60		-150	mA			
		B0-B7				-100		-225	mA			
$I_{\text {cc }}$	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				90	140	mA			
		$\mathrm{i}_{\text {CCL }}$					120	175	mA			
		$\mathrm{I}_{\text {cCz }}$					105	155	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. Not more than one output should be shorted at a time. For testing los, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	145	160		135		MHz
tpLH $t_{\text {PHL }}$	Propagation delay CPBA or CPAB to An or Bn	Waveform 1	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable time OEBA or OEAB to An or Bn	Waveform 3 Waveform 4	$\begin{aligned} & \hline 2.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLLZ}} \end{aligned}$	Output Disable time OEBA or OEAB to An or Bn	Waveform 3 Waveform 4	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER		TEST CONDITION	LIMITS					UNIT	
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$						
			MIN	TYP	MAX	MIN	MAX			
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low An or Bn to CPAB or CPBA	74F2952		Waveform 2	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$			5.0 4.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low An or Bn to CPAB or CPBA	74F2953		Waveform 2	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			4.0 4.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low An or Bn to CPAB or CPBA		Waveform 2	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$			0.0 0.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low CEAB, $\overline{C E B A}$ to CPAB, CPBA		Waveform 2	$\begin{aligned} & \hline 0.0 \\ & 4.0 \end{aligned}$			$\begin{aligned} & \hline 0.0 \\ & 4.0 \end{aligned}$		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low CEAB, CEBA to CPAB, CPBA		Waveform 2	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$			2.5 3.0		ns	
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CPAB or CPBA pulse width, High or Low		Waveform 1	3.0 3.5			3.0 3.5		ns	

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output.

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 2. Data Setup and Hold Times

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$ $\mathbf{m i n}$.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.70	0.38	3.94	1.63 1.14	0.56 $\mathbf{m a x}$									
inches	0.43	0.36 0.25	31.9 31.5	6.73 6.48	2.54	7.62	3.51 3.05	8.13 7.62	10.03 7.62	0.25	2.05			

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF		\square (95-03-11

detail X

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 04 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	POC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			$-92-11-17$	

detail X

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A	$\begin{gathered} \mathrm{A}_{1} \\ \text { min. } \end{gathered}$	A_{3}	$\begin{gathered} \mathrm{A}_{4} \\ \max . \end{gathered}$	b_{p}	b_{1}	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	$e_{\text {d }}$	e_{E}	H_{D}	H_{E}	k	$\begin{gathered} \mathrm{k}_{1} \\ \max . \end{gathered}$	L_{p}	v	W	y	$\begin{aligned} & Z_{D}{ }^{(1)} \\ & \text { max. } \end{aligned}$	$\begin{aligned} & Z_{E}^{(1)} \\ & \max \end{aligned}$	β
mm	$\begin{aligned} & 4.57 \\ & 4.19 \end{aligned}$	0.51	0.25	3.05	$\begin{aligned} & 0.53 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.66 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 11.43 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 11.43 \end{aligned}$	1.27	$\begin{aligned} & 10.92 \\ & 9.91 \end{aligned}$	$\begin{gathered} 10.92 \\ 9.91 \end{gathered}$	$\begin{aligned} & 12.57 \\ & 12.32 \end{aligned}$	$\begin{aligned} & 12.57 \\ & 12.32 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.07 \end{aligned}$	0.51	$\begin{aligned} & 1.44 \\ & 1.02 \end{aligned}$	0.18	0.18	0.10	2.16	2.16	
inches	$\begin{aligned} & 0.180 \\ & 0.165 \end{aligned}$	0.020	0.01	0.12	$\begin{aligned} & 0.021 \\ & 0.013 \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.026 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.450 \end{aligned}$	$\begin{aligned} & 0.456 \\ & 0.450 \end{aligned}$	0.05	$\begin{aligned} & 0.430 \\ & 0.390 \end{aligned}$	$\begin{aligned} & 0.430 \\ & 0.390 \end{aligned}$	$\begin{aligned} & 0.495 \\ & 0.485 \end{aligned}$	$\begin{aligned} & 0.495 \\ & 0.485 \end{aligned}$	$\begin{aligned} & 0.048 \\ & 0.042 \end{aligned}$	0.020	$\begin{aligned} & 0.057 \\ & 0.040 \end{aligned}$	0.007	0.007	0.004	0.085	0.085	

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT261-2				\bigcirc	$\begin{aligned} & 92-11-17 \\ & 95-02-25 \end{aligned}$

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1996

All rights reserved. Printed in U.S.A.
Date of release: 05-96
Document order number:
9397-750-05202

Let's make things better.

PHILIPS

