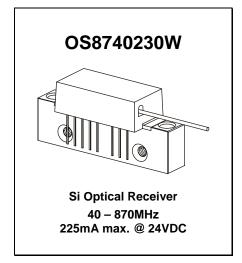
Si Optical Receiver, 40 - 870MHz, 225mA max. @ 24VDC

FEATURES


- Excellent linearity
- Superior return loss performance
- · Extremely low distortion
- Optimal reliability
- Excellent price/performance ratio
- Low noise
- Excellent flatness

APPLICATION

• 40 to 870 MHz CATV amplifier systems

DESCRIPTION

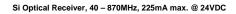
 Hybrid high dynamic range optical receiver amplifier module. Two of the module pins are for connection to 24V (DC), one for amplifier supply voltage, the other for the PIN diode bias. The module contains a single mode optical input suitable for wavelengths from 1290 to 1600 nm, a terminal to monitor the PIN diode current and an electrical output with an impedance of 75 Ω.

HANDLING

 Fiberglass optical coupling: maximum tensile strength = 5 N; minimum bending radius = 35mm.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134)


SYMBOL	PARAMETER	MIN.	MAX.	UNIT
f	frequency range	40	870	MHz
Pin	optical input power (continuous)	-	5	mW
ESD	ESD sensitivity	500		V
	(human body model; R = 1.5 k Ω , C = 100 pF)			
T _{stg}	storage temperature	- 40	+ 85	°C
T _{mb}	operating mounting base temperature	- 20	+ 85	°C

CHARACTERISTICS

Table 1: Bandwidth 40 to 870MHz; $V_B = 24V$; $T_{mb} = 30^{\circ}C$; $Z_L = 75 \Omega$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
S	responsivity	λ = 1310 nm, f=40 to 870MHz	900			V/W
SL	slope straight line	f = 40 to 870 MHz	0.0		2.0	dB
FL	flatness straight line	f = 40 to 870 MHz	1	0.7	1.0	dB
	optical input return loss		45		1	dB
S ₂₂	output return loss	f = 40 to 870 MHz	12.0		ı	dB
EINC	equivalent input noise	f = 40 to 750 MHz			7.5	pA/√Hz
		f = 750 to 870 MHz			8.0	pA/√Hz
S_λ	spectral sensitivity	λ = 1310 +- 20 nm	0.85		-	A/W
		λ = 1550 +- 20 nm	0.90		-	A/W
λ	optical wavelength		1290		1600	nm
I _{tot}	total current consumption (DC) 3)				225	mA
I _{bias}	PIN diode bias current		-	6.0	10.0	mA

	Page 1 of 5	2006 Sept 12	Document Revision Level B
--	-------------	--------------	---------------------------

CHARACTERISTICS

Table 2: Distortion data 40 - 870 MHz; $V_B = 24V$; $T_{mb} = 30$ °C; $Z_L = 75 \Omega$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
d ₂	second order distortion 1)	$f_{\rm m} = 54.0 {\rm MHz}^{4)}$	-		-73.0	dBc
		$f_{\rm m}$ = 446.5 MHz ⁵⁾	-		-68.0	dBc
		$f_{\rm m}$ = 548.5 MHz ⁶⁾	-		-67.0	dBc
		$f_{\rm m} = 746.5 {\rm MHz}^{7)}$	-		-63.0	dBc
		$f_{\rm m}$ = 854.5 MHz $^{8)}$	-		-63.0	dBc
d_3	third order distortion 2)	$f_{\rm m} = 55.25 {\rm MHz}^{-9)}$	-		-80.0	dBc
-3		$f_{\rm m}$ = 445.25 MHz ¹⁰⁾	-		-80.0	dBc
		$f_m = 547.25 \text{ MHz}^{11)}$	-		-80.0	dBc
		$f_m = 745.25 \text{ MHz}^{12)}$	-		-75.0	dBc
		$f_m = 853.25 \text{ MHz}^{13)}$	-		-75.0	dBc

Notes:

- 1. Two laser test; each laser with 40% modulation index; Popt = 1 mW (total).
- 2. Three laser test; each laser with 60% modulation index; Popt = 1 mW (total)
- 3. I_{tot} is total current into hybrid with both pins 4 and 5 connected to $V_B=24V$
- 4. fm = 54 MHz; f1 = 187.25 MHz; f2 = 133.25 MHz.
- 5. fm = 446.5 MHz; f1 = 97.25 MHz; f2 = 349.25 MHz.
- 6. fm = 548.5 MHz; f1 = 109.25 MHz; f2 = 439.25 MHz.
- 7. fm = 746.5 MHz; f1 = 133.25 MHz; f2 = 613.25 MHz.
- 8. fm = 854.5 MHz; f1 = 133.25 MHz; f2 = 721.25 MHz.
- 9. fm = 55.25 MHz; f1 = 109.25 MHz; f2 = 133.25 MHz; f3 = 187.25 MHz.
- 10. fm = 445.25 MHz; f1 = 193.25 MHz; f2 = 349.25 MHz; f3 = 97.25 MHz.
- 11. fm = 547.25 MHz; f1 = 217.25 MHz; f2 = 439.25 MHz; f3 = 109.25 MHz.
- 12. fm = 745.25 MHz; f1 = 133.25 MHz; f2 = 265.25 MHz; f3 = 613.25 MHz. 13. fm = 853.25 MHz; f1 = 133.25 MHz; f2 = 265.25 MHz; f3 = 721.25 MHz.

CABLE LENGTHS AND CONNECTOR TYPES

Table 3:

		sion A, and Figure 2	Dimension B, see Figure 2		Optical Connector
TAB	inches	mm	inches	mm	Туре
-012	33.4 ^{+0.5} _{-4.}	848 +13102.	No Outer Jacket		FC/APC
-013	33.4 ^{+0.5} _{-4.}	848 +13102.	No Outer Jacket		SC/APC
-014	37.5 +0.5 -3.5	952 ^{+13.} _{-89.}	0.325 min., 0.550 max.	8.3 min., 14.0 max.	FC/APC
-015	37.5 +0.5 -3.5	952 ^{+13.} _{-89.}	0.325 min., 0.550 max.	8.3 min., 14.0 max.	SC/APC
-016	21.1 +0.5 -1.5	536 ^{+13.} _{-38.}	0.325 min., 0.550 max.	8.3 min., 14.0 max.	FC/APC
-017	21.1 +0.5 -1.5	536 ^{+13.} _{-38.}	0.325 min., 0.550 max	8.3 min., 14.0 max.	SC/APC

	Page 2 of 5	2006 Sept 12	Document Revision Level B
--	-------------	--------------	---------------------------

Si Optical Receiver, 40 – 870MHz, 225mA max. @ 24VDC

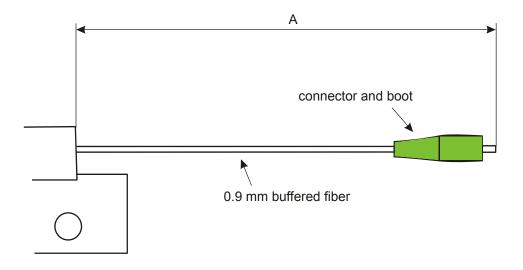


Figure 1: Detail of cable attachment (TABs -012, -013)

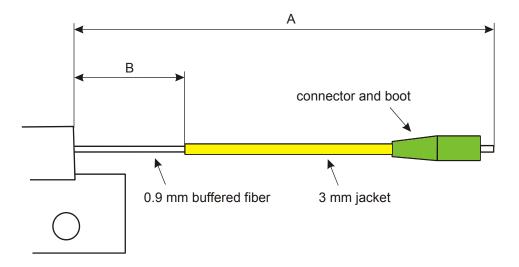


Figure 2: Detail of cable attachment, (TABs -014, -015, -016, -017)

Si Optical Receiver, 40 – 870MHz, 225mA max. @ 24VDC

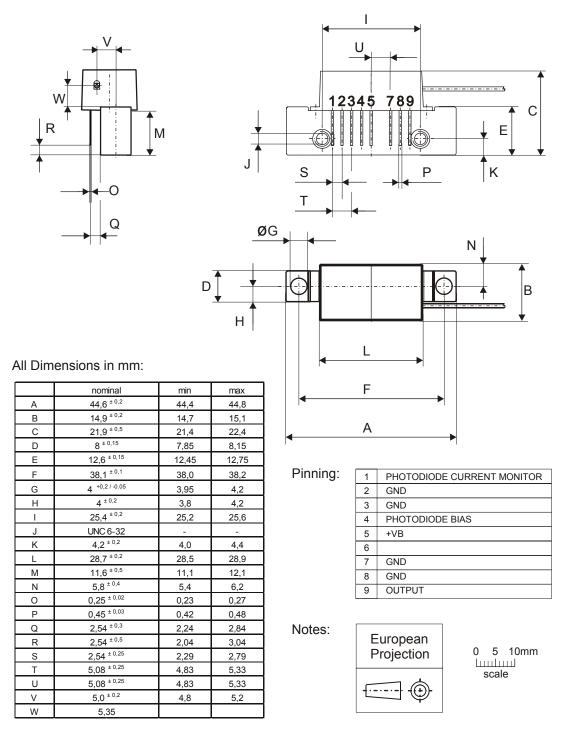


Figure 2: Mechanical dimensions

Page 4 of 5	2006 Sept 12	Document Revision Level B
-------------	--------------	---------------------------

Si Optical Receiver, 40 - 870MHz, 225mA max. @ 24VDC

DEFINITIONS

Data Sheet Status	
Objective Product Specification	This data sheet contains target or goal specifications for product development.
Preliminary Product Specification	This data sheet contains preliminary data; supplementary data may be published later.
Product Specification	This data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Premier Devices reserves the right to make changes without further notice to any products herein. Premier Devices makes no warranty representation or guarantee regarding the suitability of its products for any particular purpose, nor does Premier Devices assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Premier Devices datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Premier Devices does not convey any license under its patent rights nor the rights of others. Premier Devices products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Premier Devices product could create a situation where personal injury or death may occur. Should Buyer purchase or use Premier Devices products for any such unintended or unauthorized application, Buyer shall indemnify and hold Premier Devices and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, and claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Premier Devices was negligent regarding the design or manufacture of the part.

© Premier Devices Germany GmbH 2006

How to contact us:

Loeffelholzstrasse 20, D-90441 Nuernberg, Germany Phone: +49 (0) 911 9411 233, FAX: +49 (0) 911 9411 198

Email: sales.germany@premierdevices.com, Internet: http://www.premierdevices.de/

Page 5 of 5	2006 Sept 12	Document Revision Level B