MicroCapacitance (MC) SIDACtor Device

The TO-92 MC *SIDACtor* series is intended for applications sensitive to load values. Typically, high speed connections require a lower capacitance. $C_{\rm O}$ values for MC devices are 40% lower than a standard EC part.

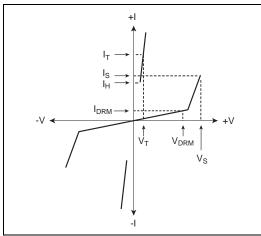
This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968-A (formerly known as FCC Part 68) without the need of series resistors.

Electrical Parameters

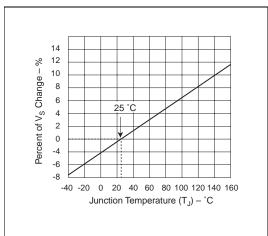
Part Number *	V _{DRM} Volts	V _S Volts	V _T Volts	I _{DRM} μAmps	I _S mAmps	I _T Amps	I _H mAmps	C _O pF
P0640EC MC	58	77	4	5	800	2.2	150	60
P1500EC MC	140	180	4	5	800	2.2	150	50
P2600EC MC	220	300	4	5	800	2.2	150	40
P3100EC MC	275	350	4	5	800	2.2	150	40

^{*} For surge ratings, see table below.

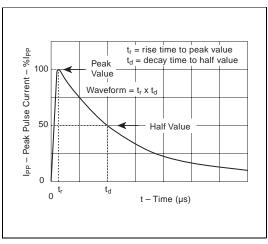
General Notes:

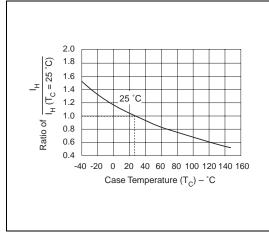

- All measurements are made at an ambient temperature of 25 °C. IPP applies to -40 °C through +85 °C temperature range.
- IPP is a repetitive surge rating and is guaranteed for the life of the product.
- · Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities.
- V_{DRM} is measured at I_{DRM}.
- V_S is measured at 100 V/μs.
- Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request.
- Off-state capacitance (C_{O}) is measured at 1 MHz with a 2 V bias.

Surge Ratings


	Series	l _{PP} 2x10 μs Amps	I _{PP} 8x20 μs Amps	I _{PP} 10x160 μs Amps	I _{PP} 10x560 μs Amps	I _{PP} 10x1000 μs Amps	I _{TSM} 60 Hz Amps	di/dt Amps/µs
l	С	500	400	200	150	100	50	500

Thermal Considerations


Package	Symbol	Parameter	Value	Unit	
	TJ	Operating Junction Temperature Range	-40 to +150	°C	
TO-92	Ts	Storage Temperature Range	-65 to +150	°C	
	$R_{ hetaJA}$	Thermal Resistance: Junction to Ambient	90	°C/W	


V-I Characteristics

Normalized V_S Change versus Junction Temperature

 $t_{r} \ x \ t_{d}$ Pulse Wave-form

Normalized DC Holding Current versus Case Temperature