Dual USB Power Control Switch with
Over-Current/Voltage Protection
PA3526

Features

2 independent switches
Individual open-drain fault flag pins
2.7 V to 5.5 V input

500 mA continuous load current per port
$140 \mathrm{~m} \Omega$ maximum on-resistance
$1 \mu \mathrm{~A}$ Maximum Standby Supply Current
Thermal shutdown
Undervoltage lockout (UVLO)
o Active-high or active-low enable versions

Applications

- USB Power Management
- Hot plug-in power supplies
o Battery - Charger circuits

Ordering Information

Part Number	Enable	Temperature Range
PA3526-H	Active High	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
PA3526-L	Active Low	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Pin configuration PA3526X

Pin Description

Pin Number	Pin Name	
1,4	EN(A/B)	Enable (Input): Logic-compatible enable input. High input > 2.1V typical. Low input <1.9V typical (H active high, L active low).
2,3	FLG(A/B)	Fault Flag (Output): Active-low, open-drain output. Indicates overcurrent, and thermal shutdown, UVLO, OVLO.
6	GND	Ground.
7	IN	Supply Input: Output MOSFET drain. Also supplies IC's internal circuitry.
8,5	OUT(A/B)	Switch Output: Output MOSFET source. Typically connect to switched side of load.

Detailed description
 \section*{Power switch}

The power switch is an N-channel MOSFET with a maximum on-state resistance of $500 \mathrm{~m} \Omega\left(\mathrm{~V}_{\mathbb{I N}}=5 \mathrm{~V}\right)$. The power switch supplies a minimum of 100 mA per switch.
Enable (EN or EN)
The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce the supply current to less than $1 \mu \mathrm{~A}$ when a logic high is present on EN (PA3526-L) or a logic low is present on EN (PA3526-H). The enable input is compatible with both TTL and CMOS logic levels.

Driver

The driver controls the gate voltage of the power switch. To limit large current surges the driver incorporates circuitry that controls the rise times and fall times of the output voltage.

Charge pump

An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate of the MOSFET above the source.

Fault Flag FLG (A/B)

FLG is an N-channel, open-drain MOSFET output. The fault-flag is active (low) for one or more of the following conditions: under-voltage, current limit, or thermal shutdown. The flag output MOSFET is capable of sinking a 10 mA load to typically 100 mV above ground.
Multiple FLG pins may be "wire NO Red" to a common pull-up resistor.
Thermal shutdown
An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to approximately $150^{\circ} \mathrm{C}$.
Hysteresis is built into the thermal sense circuit.
Over-voltage lockout
OVLO (over-voltage lockout) prevents the output MOSET from turning on if V_{IN} exceeds approximately 6.5 V . Over voltage detection function only when at least one switch is enabled

Dual USB Power Control Switch with
 Over-Current/Voltage Protection
 PA3526

Current sense (CS)

A sense FET monitors the current supplied to the load. When an overload or short circuit is encountered, the current-sense circuitry sends a control signal to the driver. The driver in turn reduces the gate voltage and sends the power FET into its saturation region, which switches the output into a constant current mode.

Under-voltage lockout

UVLO (under-voltage lockout) prevents the output MOSFET from turning on until $\mathrm{V}_{\mathbb{I}}$ exceeds approximately 2.3 V . In the under-voltage state, the FLAG will be low. After the switch turns on, if the voltage drops below approximately 2.1 V , UVLO shuts off the output MOSFET and signals fault flag. Under-voltage detection functions only when at least one switch is enabled.

Absolute Maximum Ratings (Note1)

Parameter	Maximum	Units
Supply Voltage $\left(\mathrm{V}_{\text {IN }}\right)$	6	V
Fault Flag Voltage $\left(\mathrm{V}_{\mathrm{FLG}}\right)$	6	
Fault Flag Current $\left(\mathrm{l}_{\mathrm{FLG}}\right)$	50	mA
Output Voltage $\left(\mathrm{V}_{\mathrm{OUT}}\right)$	6	V
Output Current $\left(\mathrm{l}_{\mathrm{oUT}}\right)$	Internally Limited	A
Control input $\left(\mathrm{V}_{\mathrm{EN}}\right)$	-0.3 to 12	V
Storage Temperature $\left(\mathrm{T}_{\mathrm{S}}\right)$	-65 to 150	${ }^{\circ} \mathrm{C}$

Operating Ratings (Note 2)

Parameter	PA3526
Supply Voltage $\left(\mathrm{V}_{\text {IV }}\right)$	2.7 V to 5.5 V
Ambient Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Electrical Characteristics

TA $=25 \circ \mathrm{C}, \mathrm{VIN}=+5 \mathrm{~V}$; unless noted

Parameter	Condition	Min	Typ	Max	Units
Supply Current	Note 3, switch off, OUT = open,		0.5	1	$\mu \mathrm{A}$
	Note 3, all switches on, OUT = open,		120	200	
Enable Input Threshold	Low-to-high transition		2.1	2.4	V
	High-to-low transition, Note 3	0.8	1.9		
Enable Input Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \mid 5.5 \mathrm{~V}$	-0.5	± 0.01	0.5	$\mu \mathrm{A}$
Enable Input Capacitance			1		pF
Switch Resistance	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}$, each switch		100	140	m
	$\mathrm{V}_{\text {IN }}=2,7 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=500 \mathrm{~mA}$, each switch		140	180	
Output Turn-On Delay	$\mathrm{R}_{\mathrm{L}}=10 \Omega$, each output		0.5		ms
Output Turn-On Rise Time	$R_{L}=10 \Omega$, each output		1		ms
Output Turn off Delay	$\mathrm{R}_{\mathrm{L}}=10 \Omega$, each output		1	20	$\mu \mathrm{S}$
Output Turn off Fall Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega$, each output		1	20	$\mu \mathrm{S}$
Output Leakage Current	each output (output disabled)			10	$\mu \mathrm{A}$
Continuous Load Current	each output	0.5			A
Short-Circuit Current Limit	each output (enable into load) $\mathrm{V}_{\text {OUT }}=4.0 \mathrm{~V}$	0.5	1.2	1.9	A
	each output (enable into load) $\mathrm{V}_{\text {Out }}=0.1 \mathrm{~V}$		1	1.5	
Current-Limit Threshold	Ramped load applied to enabled output, $\mathrm{V}_{\text {Out }} \leq 4.0 \mathrm{~V}$		1.6	2.2	A
Over temperature Shutdown Threshold	T_{J} increasing		135		${ }^{\circ} \mathrm{C}$
	T_{J} decreasing		125		
Error Flag Output Resistance	$\mathrm{V}_{\mathrm{IN}=5,0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}}$		10	25	Ω
	$\mathrm{V}_{\mathrm{IN}^{\prime}}=3,3 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$		11	35	
	$\mathrm{V}_{\text {IN }}=2,7 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}$		12	40	
Error Flag Off Current	$\mathrm{V}_{\mathrm{FLAG}}=5 \mathrm{~V}$		0.01	1	$\mu \mathrm{A}$
UVLO Threshold	$\mathrm{V}_{\text {IN }}$ increasing		2.3		V
	$\mathrm{V}_{\text {IN }}$ decreasing		2.1		
OVLO Threshold	$\mathrm{V}_{\text {IN }}$ increasing		6.5		V
	$\mathrm{V}_{\text {IN }}$ decreasing		6.3		

Note 1: Exceeding the absolute maximum rating may damage the device.
Note 2: The device is not guaranteed to function outside its operating rating
Note 3: Off is $\delta 0.8 \mathrm{~V}$ and on is $\varepsilon 2.4 \mathrm{~V}$ for the PA3526-H. Off is $\varepsilon 2.4 \mathrm{~V}$ and on is $\delta 0.8 \mathrm{~V}$ for the PA3526-L. The enable input has approximately 200 mV of hysteresis.

Dual USB Power Control Switch with
Over-Current/Voltage Protection PA3526

Block Diagram

Pad Location PA3526

Pad Location Coordinates

\mathbf{N}	Pad Name		Pad size $(\propto \mathbf{m} \times \mathbf{m})$	Coordinates, $\mu \mathrm{m}$	
		X			
1	ENA	136×120	323.5	220	
2	FLGA	136×120	1111.5	237.5	
3	FLGB	136×120	2187.5	237.5	
4	ENB	136×120	2975.5	220	
5	OUTB	140×130	3079	1260.5	
5	OUTB	140×130	3079	1465.5	
5	OUTB	140×130	3079	1664	
6	GND	140×130	3079	1943.5	
7	IN	140×130	1650	1260.5	
7	IN	140×130	1650	1462.5	
7	IN	140×130	1650	1664	
8	OUTA	140×130	220	1259	
8	OUTA	140×130	220	1465.5	
8	OUTA	140×130	220	1664.5	

Chip size $3.3 \times 2.15 \mathrm{~mm}$

