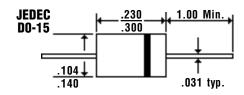


RGPZ15A ... 15M Series


### Preliminary Data Sheet

# 1.5 Amp Glass Passivated Sintered Fast Switching Rectifiers

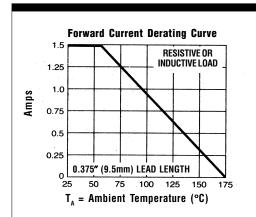
## Semiconductor Description

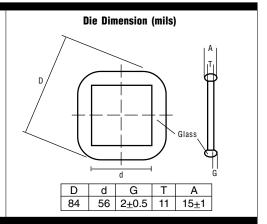


#### **Mechanical Dimensions**

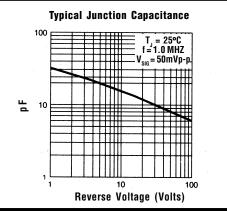


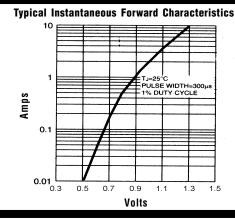
#### **Features**

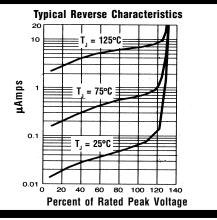

- LOWEST COST FOR GLASS SINTERED FAST SWITCHING CONSTRUCTION
- LOWEST V, FOR GLASS SINTERED FAST SWITCHING CONSTRUCTION
- TYPICAL I<sub>R</sub> < 100 nAmps


- 1.5 AMP OPERATION @ T<sub>A</sub> = 55°C, WITH NO THERMAL RUNAWAY
- SINTERED GLASS CAVITY-FREE JUNCTION

| Electrical Characteristics @ 25°C.  Maximum Ratings                                                        | RGPZ15A 15M Series |     |     |             |     |     |       | Units        |
|------------------------------------------------------------------------------------------------------------|--------------------|-----|-----|-------------|-----|-----|-------|--------------|
|                                                                                                            | 15A                | 15B | 15D | 15 <b>G</b> | 15J | 15K | 15M   |              |
| Peak Repetitive Reverse VoltageV <sub>RRM</sub>                                                            | 50                 | 100 | 200 | 400         | 600 | 800 | 1000  | Volts        |
| RMS Reverse VoltageV <sub>R(rms)</sub>                                                                     | 35                 | 70  | 140 | 280         | 420 | 560 | 700   | Volts        |
| DC Blocking VoltageV <sub>DC</sub>                                                                         | 50                 | 100 | 200 | 400         | 600 | 800 | 1000  | Volts        |
| Average Forward Rectified CurrentI <sub>F(av)</sub> Current 3/8" Lead Length @ T <sub>A</sub> = 55°C       | 1.5                |     |     |             |     |     |       | Amps         |
| Non-Repetitive Peak Forward Surge CurrentI <sub>FSM</sub> 8.3mS, ½ Sine Wave Superimposed on Rated Load    | 50                 |     |     |             |     |     |       | Amps         |
| Forward Voltage @ Rated Forward Current and 25°CV <sub>F</sub>                                             | 1.2                |     |     |             |     |     |       | Volts        |
| Full Load Reverse CurrentI <sub>R</sub> (av)<br>Full Cycle Average @ T <sub>A</sub> = 55°C                 | 100                |     |     |             |     |     |       |              |
| DC Reverse CurrentI <sub>R(max)</sub> @ Rated DC Blocking Voltage $T_A = 25^{\circ}C$ $T_A = 150^{\circ}C$ |                    |     |     |             |     |     |       | μAmp<br>μAmp |
| Typical Junction CapacitanceC <sub>J</sub> (Note 1)                                                        |                    |     |     | 25 .        |     |     |       | pF           |
| Maximum Thermal ResistanceR <sub>eJA</sub> (Note 2)                                                        |                    |     |     | 30 .        |     |     |       | °C/W         |
| Maximum Reverse Recovery Timet <sub>RR</sub> (Note 3)                                                      | <                  | 1   | 50  | >           | 250 | < 5 | 500 > | nS           |
| Operating & Storage Temperature RangeT,, T <sub>STRG</sub>                                                 | 65 to 175          |     |     |             |     |     |       | °C           |





## Preliminary Data Sheet | 1.5 Amp Glass Passivated | Sintered Fast Switching **Rectifiers**






#### Non-Repetitive **Peak Forward Surge Current** 50 T,=T,max. 8.3 mS Single Half Sine Wave 40 (Jedec Method) 30 20 10 Number of Cycles @ 60 HZ







Ratings at 25 Deg. C ambient temperature unless otherwise specified.

Single Phase Half Wave, 60 HZ Resistive or Inductive Load.

For Capacitive Load, Derate Current by 20%.

- NOTES: 1. Measured @ 1 MHZ and applied reverse voltage of 4.0V.
  - 2. Thermal Resistance from Junction to Ambient at 3/8" Lead Length, P.C. Board Mounted.
  - 3. Reverse Recovery Condition  $I_F = 0.5A$ ,  $I_R = 1.0A$ ,  $I_{RR} = 0.25A$ .